
Lipschitz functions — II

This file provides detailed information promised in the course directory file lipschitz1.pdf.
At some points we shall need input from multivariable calculus.

Lipschitz conditions

The restriction of a smooth function (say of class Cr) to a compact set satisfies a strong form
of uniform continuity that generalizes the matrix inequality

|Ax| ≤ ‖ A ‖ ·|x|

where x ∈ R
n us viewed as an n × 1 column vector, A is an m × n matrix with real entries, and

‖ A ‖ is a nonnegative constant called the (matrix) norm of A. For the sake of completeness, here
is the formal definition. It is a fairly straightforward exercise to show that if A is a real m × n
matrix then there is some positive constant M > 0 such that |Ax| ≤ M |x| for all column vectors
x (for example, if Lj is the length of the jth column vector then we can take M to be n times the
maximum of the lengths Lj), and the matrix norm ‖ A ‖ is merely the greatest lower bound of all
such constants M .

THEOREM. Let U be open in R
n, let f : U → R

m be a C1 function, and let K ⊂ U be compact.

Then there is a constant B > 0 such that

|f(u) − f(v)| ≤ B |u − v|

for all u, v ∈ K such that u 6= v.

The displayed inequality is called a Lipschitz condition for f . This strong form of uniform
continuity associates to each ε > 0 a corresponding δ equal to ε/B. An example of a function
not satisfying any Lipschitz condition is given by h(x) =

√
x on the closed unit interval [0, 1] (use

the Mean Value Theorem and limt→0+ h′(t) = +∞). Incidentally, the inverse of this map is a
homeomorphism that does satisfy a Lipschitz condition (e.g., we can take B = 2).

The inequality
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for u, v ∈ R shows that f(x) = |x| is a function that satisfies a Lipschitz condition but is not C 1.

If f is a mapping from one metric space (X,dX ) to another metric space (Y,dY ), then a
Lipschitz constant for f on a subset K ⊂ X (not necessarily compact) is a number B > 0 such that

dY ( f(u), f(v) ) ≤ B · dX(u, v)

for all u, v ∈ K such that u 6= v; if no subset is specified then then the understanding is that we
are considering a Lipschitz condition on all of X. Note that even if Lipschitz constants exist, they
are definitely not unique; if B is a Lipschitz constant for f on a set K and C > B, then C is also
a Lipschitz constant for f on a set K.

By the remarks preceding the statement of the theorem, if f is a linear transformation defined
by an m × n matrix A, then by definition the matrix norm of A is an optimal Lipschitz constant
for f .
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Proof of theorem. For each x ∈ K there is a δ(x) > 0 such that N2δ(x)(x) ⊂ U . By compactness
there are finitely many points x1, · · · , xq such that the sets Nδ(xi)(xi) cover K. Let Bi be the
maximum of ‖ Df ‖ for |y − xi| ≤ δ(xi). If Bi = 0 for all i then Df = 0 on an open set containing
K and therefore f is constant on K, so that the conclusion of the theorem is trivial. Therefore we
shall assume some Bi > 0 for the rest of the proof.

By the Mean Value Estimate we know that y, z ∈ Nδ(xi)(xi) implies that |f(y) − f(z)| ≤
Bi|y − z|.

Let η > 0 be a Lebesgue number for the open covering of K determined by the sets Nδ(xi)(xi),
and let M ⊂ K × K be the set of all points (u, v) ∈ K × K such that |u − v| ≥ η/2. The function
∆(u, v) = |u − v| is continuous on K ×K, and consequently it follows that M is a closed and thus
compact subset of K × K. Consider the continuous real-valued function on M defined by

h(u, v) =
|f(u) − f(v)|

|u − v| .

Since the denominator is positive on M , this is a continuous function and therefore attains a
maximum value A.

Let B be the maximum of the numbers A,B1, · · · , Bk, and suppose that (u, v) ∈ K × K.
If (u, v) ∈ M , then by the preceding paragraph we have |f(u) − f(v)| ≤ A · |u − v|. On the
other hand, if (u, v) 6∈ M , then |u − v| < η/2 and thus there some i such that u, v ∈ Nδ(xi)(xi).
By the Mean Value Estimate we know that |f(u) − f(v)| ≤ Bi · |u − v| in this case. Therefore
|f(u) − f(v)| ≤ B · |u − v| for all u and v.

Two solved exercises on Lipschitz functions

1. (i) Suppose that X and Y are subsets of R
n and R

m respectively and that f : X → Y
and g : Y → R

p are maps that satisfy Lipschitz conditions on X and Y respectively. Prove that the

composite g of also satisfies a Lipschitz condition.

SOLUTION.

By our assumptions there are positive constants A and B such that |f(x)−f(x′)| ≤ A · |x−x′|
and |g(y) − g(y′)| ≤ B · |y − y′|. If we set y = f(x) and y′ = f(x′) in these formulas we obtain

|g of(x) − g of(x′)| ≤ B · |f(x) − f(x′)| ≤ AB · |x − x′|

which shows that g of satisfies a Lipschitz condition.

(ii) Suppose that X ⊂ R
n, and let f, g : X → R

m and h : X → R satisfy Lipschitz conditions.

Prove that f + g satisfies a Lipschitz condition and if X is compact then h · f also satisfies a Lipschitz

condition. If h > 0 and X is compact, does 1/h satisfy a Lipschitz condition? Prove this or give a

counterexample.

SOLUTION.

Let A and B be Lipschitz constants for f and g respectively. Furthermore, let C be a Lipschitz
constant for h.

We verify first that f + g satisfies a Lipschitz condition:

|[f + g](x) − [f + g](x′)| = |f(x) + g(x) − f(x′) − g(x′)| ≤ |f(x) − f(x′)| + |g(x) − g(x′)| ≤
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A · |x − x′| + B · |x − x′| = (A + B) |x − x′|

In order to prove that h · f satisfies a Lipschitz condition we need to use the upper bounds
for |f | and |h| which are guaranteed by compactness. Call these bounds P and Q respectively. We
then have that

|h(x)f(x) − h(x′)f(x′)| = |h(x)f(x) − h(x)f(x′) + h(x)f(x′) − h(x′)f(x′)| ≤

|h(x)f(x) − h(x)f(x′)| + |h(x)f(x′) − h(x′)f(x′)| ≤ Q · |f(x) − f(x′)| + P · |h(x) − h(x′)| ≤

QA |x − x′| + PC |x − x′| = (QA + PC) |x − x′|

and hence the product satisfies a Lipschitz condition.

Finally, 1/h does satisfy a Lipschitz condition, and here is the proof: In addition to the
preceding let m be the minimum value of |h| on X. Then we have
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The denominator is at least m
2, and the numerator is at most C · |x − x′|, and therefore Cm

−2 is
a Lipschitz constant for 1/h.

(iii) Suppose that X ⊂ R
n, and let f : X → R

m be given. Prove that f satisfies a Lipschitz

condition if and only if all of its coordinate functions do.

SOLUTION.

( =⇒ ) If f satisfies a Lipschitz condition with Lipschitz constant A and fi is the ith coordinate
function, then

|fi(x) − fi(y)| ≤ |f(x) − f(y)| ≤ A · |x − y|

for all x and y.

( ⇐= ) If each coordinate function fi satisfies a Lipschitz condition, then one can write f =
∑

i fi ei where ei is the standard ith unit vector; therefore the conclusion follows from the first part
of the exercise and finite induction.

2. In the notation of the preceding exercise, suppose that X = A∪B and that f is continuous

and satisfies Lipschitz conditions on A and B as well as on an open neighborhood of A ∩ B. Does

f satisfy a Lipschitz condition on A ∪ B? Prove this or give a counterexample. What happens if we

assume A and B are compact? Justify your answer.

SOLUTION.

The answer to the first question is NO. Consider the function on R−{0} that is 1 for positive
numbers and −1 for negative numbers. This satisfies a Lipschitz condition on A and B as well as an
open neighborhood of A∩B = ∅. However, if we take x and x′ to be ±1/n then |f(x)− f(x′)| = 2
while |x − x′| = 2/n, and hence any Lipschitz constant for f on A ∪B would have to be at least n
for every positive integer n. Therefore f does not satisfy a Lipschitz condition on A ∪ B.
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The answer to the second question is yes. Let U be an open neighborhood of A ∩ B on which
f satisfies a Lipschitz condition, and let K0 be the associated Lipschitz constant. Similarly, let K1

and K2 be Lipschitz constants for f on A and B respectively.

Formally, there are initially 64 cases to consider depending upon whether or not u lies in A,
B or U (a total of 8 possibilities), and likewise for v. However, many of the formal possibilities
are inconsistent with the conditions that u and v belong to A ∪ B. In particular, we cannot have
u 6∈ A and u 6∈ B and we cannot have u ∈ A, u ∈ B, but u 6∈ U ⊃ A∩B. This brings us down to 5
possibilities each for u and v. Here is the list of possibilities for u:

[u1] u 6∈ A, u ∈ B and u 6∈ U
[u2] u 6∈ A, u ∈ B and u ∈ U
[u3] u ∈ A, u 6∈ B and u 6∈ U
[u4] u ∈ A, u 6∈ B and u ∈ U
[u5] u ∈ A, u ∈ B and u ∈ U

Of course, there is a similar list for v, and the set of all 25 possibilities is given by taking one from
each list.

Fortunately, separate arguments are not needed for each of the 25 cases. In particular, the
four cases obtained by combining the first two possibilities for u and v involve situations where
both points lie in B and therefore |f(u) − f(v)| ≤ K2 |u − v|. Likewise, the nine cases obtained by
combining the last three possibilities for u and v involve situations where both points lie in A and
therefore |f(u) − f(v)| ≤ K1 |u − v|.

This leaves us with twelve cases; six are given by taking one of the first two possibilities for u
and one of the last three possibilities for v, and six are given by switching the roles of u and v. If
we do the latter, we are down to six cases.

The cases [u2] + [v2] and [u2] + [v3] are situations where both point belong to U and therefore
|f(u) − f(v)| ≤ K0 |u − v|. In each of the remaining cases, at least one of u or v does not belong
to U . Consider the continuous function on

(

(A ∪ B) × (A ∪ B)
)

− U × U

defined by the quotient
|f(u) − f(v)|

|u − v| .

Since the domain of this function is compact, it has a maximum value K3, and thus we have
|f(u) − f(v)| ≤ K3 |u − v| if (u, v) lies in the set described above.

If we take K to be the largest of the numbers Ki for 0 ≤ i ≤ 3, then K will be a Lipschitz
constant for f on A ∪ B.
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