Drawing to accompany Additional Exercise II.4.12

Here is a drawing of a typical region being considered in this exercise. We are actually interested in two regions, one of which is the closed region \boldsymbol{A} consisting of all points $(\boldsymbol{x}, \boldsymbol{y})$ where $\boldsymbol{a} \leq \boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{y} \leq \boldsymbol{f}(\boldsymbol{x})$ and the other of which is the open region \boldsymbol{V} consisting of all points (x, y) where $a<x<b$ and $g(x)<y<f(x)$.

Intuitively it probably seems clear that \boldsymbol{A} should be the closure of \boldsymbol{V} and \boldsymbol{V} should be the interior of \boldsymbol{A}, and that the boundaries of both regions should be the points in $\boldsymbol{A}-\boldsymbol{V}$. The purpose of the exercise is to justify this intuition.

(Source: http://www.math24.net/definite-integral.html)
The idea is to set up a comparison with a fundamental example; namely the solid square region defined by $\mathbf{0} \leq \boldsymbol{x}, \boldsymbol{y} \leq \mathbf{1}$. In this case everything can be analyzed in a straightforward manner, and we generalize to regions like \boldsymbol{A} and \boldsymbol{V} by constructing a homomorphism from the square to \boldsymbol{A}. More precisely, we construct a homeomorphism of the coordinate plane to itself which sends the solid square to \boldsymbol{A} and its interior points to \boldsymbol{V} (and its boundary points to $\boldsymbol{A}-\boldsymbol{V}$).

