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III . Spaces with special properties

III.1 : Compact spaces – I

Problems from Munkres, § 26, pp. 170 − 172

3. Suppose that Ai ⊂ X is compact for 1 ≤ i ≤ n, and suppose that U is a family of open
subsets of X whose union contains ∪i Ai. Then for each i there is a finite subfamily Ui whose union
contains Ai. If we take U∗ to be the union of all these subfamilies then it is finite and its union
contains ∪i Ai. Therefore the latter is compact.

7. We need to show that if F ⊂ X × Y is closed then πX [F ] is closed in X, and as usual it
is enough to show that the complement is open. Suppose that x 6∈ πX [F ]. The latter implies that
{x} × Y is contained in the open subset X × Y − F , and by the Tube Lemma one can find an
open set Vx ⊂ X such that x ∈ V and Vx × Y ⊂ X × Y − F . But this means that the open set
Vx ⊂ X lies in the complement of πX [F ], and since one has a conclusion of this sort for each such
x it follows that the complement is open as required.

8. ( =⇒ ) We shall show that the complement of the graph is open, and this does not use the
compactness condition on Y (although it does use the Hausdorff property). Suppose we are given
(x, y) such that y 6= x. Then there are disjoint open sets V and W in Y such that y ∈ V and
f(x) ∈ W . Since f−1[W ] is open in X and contains x, there is an open set U containing x such
that f [U ] ⊂ W . It follows that U × V is an open subset of X × Y that is disjoint from Γf . Since
we have such a subset for each point in the complement of Γf it follows that X × Y − Γf is open
and that Γf is closed.

( ⇐= ) As in a previous exercises let γ : X → Γf be the graph map and let j : Γf → X × Y
be inclusion. General considerations imply that the map πX

oj is continuous and 1–1 onto, and
γ is the associated set-theoretic inverse. If we can prove that πX

oj is a homeomorphism, then γ
will also be a homeomorphism and then f will be continuous by a previous exercise. The map in
question will be a homeomorphism if it is closed, and it suffices to check that it is a composite of
closed mappings. By hypothesis j is the inclusion of a closed subset and therefore j is closed, and
the preceding exercise shows that πX is closed. Therefore the composite is a homeomorphism as
claimed and the mapping f is continuous.

Problem from Munkres, § 27, pp. 177 − 178

2. (a) The function of x described in the problem is continuous, so its set of zeros is a closed
set. This closed set contains A so it also contains A. On the other hand if x 6∈ A then there is an
ε > 0 such that Nε(x) ⊂ X − A, and in this case it follows that d(x,A) ≥ ε > 0.

1



(b) The function f(a) = d(x, a) is continuous and d(x,A) is the greatest lower bound for its
set of values. Since A is compact, this greatest lower bound is a minimum value that is realized at
some point of A.

(c) The union is contained in U(A, ε) because d(x, a) < ε implies d(x,A) < ε. To prove the
reverse inclusion suppose that y is a point such that δ = d(y,A) < ε. It then follows that there is
some point a ∈ A such that d(y, a) < ε because the greater than the greatest lower bound of all
possible distances. The reverse inclusion is an immediate consequence of the existence of such a
point a.

(d) Let F = X − U and consider the function g(a) = d(a, F ) for a ∈ A. This is a continuous
function and it is always positive because A∩F = ∅. Therefore it takes a positive minimum value,
say ε. If y ∈ A ⊂ U(A, ε) then d(a, y) < ε ≤ d(a, F ) implies that y 6∈ F , and therefore U(A, ε) is
contained in the complement of F , which is U .

(e) Take X to be all real numbers with positive first coordinate, let A be the points of X
satisfying y = 0, and let U be the set of all points such that y < 1/|x|. Then for every ε > 0 there is
a point not in U whose distance from A is less than ε. For example, consider the points (2n, 1/n).

Additional exercises

1. Each of the subsets Xn is compact by an inductive argument, and since X is Hausdorff each
one is also closed. Since each set in the sequence contains the next one, the intersection of finitely
many sets Xk(1), · · · , Xk(n) in the collection is the set Xk(m) where k(m) is the maximum of the
k(i). Since X is compact, the Finite Intersection Property implies that the intersection A of these
sets is nonempty. We need to prove that f(A) = A. By construction A is the set of all points that
lie in the image of the k-fold composite ◦kf of f with itself. To see that f maps this set into itself
note that if a = [◦kf ](xk) for each positive integer k then f(a) = [◦kf ]( f(xk) ) for each k. To see
that f maps this set onto itself, note that a = [◦kf ](xk) for each positive integer k implies that

a = f
(

[◦kf ](xk+1)
)

for each k.

2. (a) In this situation it is convenient to work with topologies in terms of their closed subsets.
Let F be the family of closed subsets of X associated to T and let F ∗ be the set of all subsets E
such that E ∩ C is closed in X for every compact subset C ⊂ X. If E belongs to F then E ∩ C
is always closed in X because C is closed, so F ⊂ F ∗. We claim that F∗ defines a topology on X
and X is a Hausdorff k-space with respect to this topology.

The empty set and X belong to F ∗ because they already belong to F . Suppose that Eα belongs
to F∗ for all α; we claim that for each compact subset C ⊂ X the set C ∩∩α Eα is F -closed in X.
This follows because

C ∩
⋂

α

Eα =
⋂

α

(C ∩ Eα)

and all the factors on the right hand side are F -closed (note that they are compact). To conclude
the verification that F∗ is a topology, suppose that E1 and E2 belong to F∗. Once again let C ⊂ X
be compact, and observe that the set-theoretic equation

C ∩ (E1 ∪ E2) = (C ∩ E1) ∪ (C ∩ E2)

implies the right hand side is F -closed if E1 and E2 are.
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Therefore F∗ defines the closed subspaces of a topological space; let Tκ be the associated
family of open sets. It follows immediately that the latter contains T, and one obtains a Hausdorff
space by the following elementary observation: If (X,T) is a Hausdorff topological space and T∗ is

a topology for X containing T, then (X,T∗) is also Hausdorff. This is true because the disjoint
open sets in T containing a pair of disjoint points are also (disjoint) open subsets with respect to
T∗ containing the same respective points.

We now need to show that K(X) = (X,Tκ) is a k-space and the topology is the unique minimal
one that contains T and has this property. Once again we switch over to using the closed subsets in
all the relevant topologies. The most crucial point is that a subset D ⊂ X is F -compact if and only
if it is F∗-compact; by construction the identity map from [X,F ∗] to [X,F ] is continuous (brackets
are used to indicate the subset families are the closed sets), so if D is compact with respect to F ∗

it image, which is simply itself, must be compact with respect to F . How do we use this? Suppose
we are given a subset B ⊂ X such that B ∩ D is F ∗-closed for every F∗-compact subset D. Since
the latter is also F -compact and the intersection B ∩D is F ∗ compact (it is a closed subspace of a
compact space), we also know that B ∩ D is F -compact and hence F -closed. Therefore it follows
that F∗ is a k-space topology. If we are given the closed subsets for any Hausdorff k-space topology
E containing F , then this topology must contain all the closed sets of F ∗. Therefore the latter
gives the unique minimal k-space topology containing the topology associated to F .

(b) Suppose that F ⊂ Y has the property that F ∩C is closed in Y for all compact sets C ⊂ Y .
We need to show that f−1[F ] ∩ D is closed in X for all compact sets D ⊂ X.

If F and D are as above, then f [D] is compact and by the assumption on f we know that

f−1 [F ∩ f [D] ] = f−1[F ] ∩ f−1 [ f [D] )

is closed in X with respect to the original topology. Since f−1 [ f(D] ) contains the closed compact
set D we have

f−1[F ] ∩ f−1 (f [D]) ∩ D = f−1[F ] ∩ D

and since the left hand side is closed in X the same is true of the right hand side. But this is what
we needed to prove.

3. (a) ( =⇒ ) The sequence of open subsets has a maximal element; let UN be this element.
Then n ≥ N implies UN ⊂ Un by the defining condition on the sequence, but maximality implies
the reverse inclusion. Thus UN = Un for n ≥ N .

( ⇐= ) Suppose that the Chain Condition holds but there is a nonempty family U of open
subsets with no maximal element. If we pick any open set U1 in this family then there is another
open set U2 in the family that properly contains U2. Similarly, there is another open subset U3 in
the family that properly contains U2, and we can inductively construct an ascending chain of open
subspaces such that each properly contains the preceding ones. This contradicts the Ascending
Chain Condition. Therefore our assumption that U had no maximal element was incorrect.

(b) ( =⇒ ) Take an open covering {Uα } of U for which each open subset in the family is
nonempty, and let W be the set of all finite unions of subsets in the open covering. By definition
this family has a maximal element, say W . If W = U then U is compact, so suppose W is properly
contained in U . Then if u ∈ U − W and U0 is an open set from the open covering that contains
u, it will follow that the union W ∩ U0 is also a finite union of subsets from the open covering
and it properly contains the maximal such set W . This is a contradiction, and it arises from our
assumption that W was properly contained in U . Therefore U is compact.

( ⇐= ) We shall show that the Ascending Chain Condition holds. Suppose that we are given
an ascending chain

U1 ⊂ U2 ⊂ · · ·

3



and let W = ∪n Un. By our hypothesis this open set is compact so the open covering {Un } has a
finite subcovering consisting of Uk(i) for 1 ≤ i ≤ m. If we take N to be the maximum of the k(i)’s
it follows that W = UN and Un = UN for n ≥ N .

(c) We begin by verifying the statement in the hint. If U is open in a noetherian Hausdorff space
X, then U is compact and hence U is also closed (since X is Hausdorff). Since U is Hausdorff, one
point subsets are closed and their complements are open, so the complements of one point sets are
also closed and the one point subsets are also open. Thus a noetherian Hausdorff space is discrete.
On the other hand, an infinite discrete space does not satisfy the Ascending Chain Condition (pick
an infinite sequence of distinct points xk and let Un be the first n points of the sequence. Therefore
a noetherian Hausdorff space must also be finite.

(d) Suppose Y ⊂ X where X is noetherian. Let V = {Vα } be a nonempty family of open
subspaces of Y , write Vα = Uα ∩ Y where Uα is open in X, and let U = {Uα }. Since X is
noetherian, this family has a maximal element U ∗, and the intersection V ∗ = U∗ ∩ Y will be a
maximal element of V.

4. Since X is Hausdorff every one point set is closed, and this implies that L(A) is closed in X.
We are assuming that A is compact, and since the closed subset L(A) is contained in A it follows
that L(A) is also compact.

5. (i) Since X is compact we know that f [X] is compact in R with respect to the lower
semicontinuity topology. Every subset C ⊂ R has an open covering in this topology consisting of
proper open subsets (bα,∞) ∩ C because every point lies in a proper open subset (with respect
to the lower semicontinuity topology). If C is compact, this means that C is contained in a finite
union of these sets:

C ⊂
k
⋃

j=1

(bj ,∞)

The right hand side is equal to (b∗,∞) where b∗ is the smallest in the finite collection of numbers
{bj}, and this implies that x > b∗ for all x ∈ C. In particular, this applies to f [X] if f is lower
semicontinuous and X is compact, and hence we have shown that f [X] has a lower bound.

(ii) To continue the discussion from (i), let m be the greatest lower bound of f [X]. Then
for each n > 0 the set Fn = f−1

[

(−∞,m + 1
n ]
]

is nonempty, for there will be some x ∈ X such
that f(x) < m − 1

n ; since (−∞,m + 1
n ] is closed in the lower semicontinuity topology, it follows

that Fn is also closed. Since Fn ⊃ Fn+1 for all n, this yields a nested sequence of closed subspaces
F1 ⊃ · · · Fn ⊃ Fn+1 · · · such that each Fn is nonempty. By the compactness of X we know that
their intersection must also be nonempty.

Let x0 ∈ ∩n Fn. Then since x0 ∈ Fk for each k we have f(x) ≤ m+ 1
k for each k. This implies

that f(x) ≤ m. However, we also know that m is a lower bound for f [X], and therefore we must
have f(x0) = m; in other words, f takes a minimum value at x0.

III.2 : Complete metric spaces

Problems from Munkres, § 43, pp. 270 − 271

(a) Let {xn } be a Cauchy sequence in X and choose M so large that m, n ≥ M implies
d(xm.xn) < ε. Then all of the terms of the Cauchy sequence except perhaps the first M − 1 lie in
the closure of Nε(xM ), which is compact. Therefore it follows that the sequence has a convergent
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subsequence {xn(k) }. Let y be the limit of this subsequence; we need to show that y is the limit
of the entire sequence.

Let η > 0 be arbitrary, and choose N1 ≥ M such that m, n ≥ N1 implies d(xm, xn) < η/2.
Similarly, let N2 ≥ M be such that n(k) > N2 implies d(xn(k), y) < η/2. If we take N to be
the larger of N1 and N2, and application of the Triangle Inequality shows that n ≤ N implies
d(xn, y) < η. Therefore y is the limit of the given Cauchy sequence and X is complete.

(b) Take U ⊂ R2 to be the set of all points such that xy < 1. This is the region “inside”
the hyperbolas y = ± 1/x that contains the origin. It is not closed in R2 and therefore cannot be
complete. However, it is open and just like all open subsets U of R2 if x ∈ X and Nε(x) ⊂ U then
Nε/2(x) has compact closure in U .

3. (b) By the symmetry of the problem it is enough to show that if (X,d) is complete then so
is (X, e). Suppose that {xn } is a Cauchy seuence with respect to e; we claim it is also a Cauchy
sequence with respect to d. Let ε > 0, and take δ > 0 such that e(u, v) < δ implies d(u, v) < ε. If
we choose M so that m, n ≥ M implies e(xn, xm) < δ, then we also have d(xn, xm) < ε. Therefore
the original Cauchy sequence with respect to e is also a Cauchy sequence with respect to d. By
completeness this sequence has a limit, say y, with respect to d, and by continuity this point is
also the limit of the sequence with respect to e.

6. (a) This follows because a closed subspace of a complete metric space is complete.

(c) The image of the function f is the graph of φ, and general considerations involving graphs
of continuous functions show that f maps U homeomorphically onto its image. If this image is
closed in X×R then by (a) we know that U is topologically complete, so we concentrate on proving
that f(U) ⊂ X ×R is closed. The latter in turn reduces to proving that the image is closed in the
complete subspace U ×R, and as usual one can prove this by showing that the complement of f [U ]
is open. The latter in turn reduces to showing that if (x, t) ∈ U × R − f [U ] then there is an open
subset containing (x, t) that is disjoint from U .

Since φ is continuous it follows immediately that the graph of φ is closed in the open subset
U × R. Thus the open set U × R − f [U ] is open in U × R, and it only remains to consider points
in U − U × R. Let (x, t) be such a point. In this case one has d(x,X − U) = 0. There are three
cases depending on whether t is less than, equal to or greater than 0. In the first case we have that
(x, t) ∈ U × (−∞, 0) which is open in U × R and contains no points of f [U ] because the second
coordinates of points in the latter set are always positive. Suppose now that t = 0. Then by
continuity of distance functions there is an open set V ⊂ U such that x ∈ V and d(y,X − U) < 1
for all y ∈ V . It follows that V × (−1, 1) contains (x, t) and is disjoint from f [U ]. Finally, suppose
that t > 0. Then by continuity there is an open set V ⊂ U such that x ∈ V and

d(y,X − U) <
2

3t

for all y ∈ V . It follows that V × (t/2, 3t/2) contains (x, t) and is disjoint from f [U ], and this
completes the proof of the final case.

Additional exercises

1. Follow the hint, and try to see what a function in the intersection would look like. In
the first place it has to satisfy f(0) = 1, but for each n > 0 it must be zero for t ≥ 1/n. The latter
means that the f(t) = 0 for all t > 0. Thus we have determined the values of f everywhere, but the
function we obtained is not continuous at zero. Therefore the intersection is empty. Since every

5



function in the set An takes values in the closed unit interval, it follows that if f and g belong to
An then ‖f − g‖ ≤ 1 and thus the diameter of An is at most 1 for all n. In fact, the diameter is
exactly 1 because f(0) = 1.

For the sake of completeness, we should note that each set An is nonempty. One can construct
a “piecewise linear” function in the set that is zero for t ≥ 1/n and decreases linearly from the 1
to 0 as t increases from 0 to 1/n. (Try to draw a picture of the graph of this function!)

2. For each positive integer k let Hk(y) be the vector whose first k coordinates are the same as
those of y and whose remaining coordinates are zero, and let Tk = I − Hk (informally, these are
“head” and “tail” functions). Then Hk and Tk are linear transformations and |Hk(y)|, |Tk(y)| ≤ |y|
for all y.

Since Cauchy sequences are bounded there is some B > 0 such that |xn| ≤ B for all n.
Let x be given as in the hint. We claim that x ∈ `2; by construction we know that Hk(x) ∈ `2

for all k. By the completeness of RM we know that limn→∞ Hk(xn) = Hk(x) and hence there is
an integer P such that n ≥ P implies |Hk(x) − Hk(xn)| < ε. If n ≥ P we then have that

|Hk(x)| ≤ |Hk(xn)| + |Hk(x) − HM (kn)| ≤ |xn| + |HM (x) − HM (xn)| < B + ε .

By construction |x| is the least upper bound of the numbers |Hk(x)| if the latter are bounded, and
we have just shown the latter are bounded. Therefore x ∈ `2; in fact, the argument can be pushed
further to show that |x| ≤ B, but we shall not need this.

We must now show that x is the limit of the Cauchy sequence. Let ε > 0 and choose M this time
so that n, m ≥ M implies |xm − xn| < ε/6. Now choose N so that k ≥ N implies |Tk(xM )| < ε/6
and |Tk(x)| < ε/3; this can be done because the sums of the squares of the coordinates for xM and
x are convergent. If n ≥ M then it follows that

|Tk(xn)| ≤ |Tk(xM )| + |Tk(xn) − Tk(xM )| = |Tk(xn)| ≤ |Tk(xM )| + |Tk(xn − xM )| ≤

|Tk(xM )| + |xn − xM | ≤ ε

6
+

ε

6
=

ε

3
.

Choose P so that P ≥ M + N and n ≥ P implies |HN (x) − HN(xn)| < ε
3 . If n ≥ P we then have

|x − xn| ≤ |HN(x) − HN (xn)| + |TN (x) − TN (xn)| ≤

|HN (x) − HN(xn)| + |TN (x)| + |TN (xn)| <
ε

3
+

ε

3
+

ε

3
= ε .

This completes the proof.

III.3 : Implications of completeness

Problems from Munkres, § 48, pp. 298 − 300

1. If the interior of the closure of Bn is empty, then Bn is nowhere dense. Thus if the interior
of the closure of each Bn is empty then X is of the first category.

2. View the real numbers as a vector space over the rationals. The previous argument on
the existence of bases implies that the set {1} is contained in a basis (work out the details!).
Let B be such a basis (over the rationals), and let W be the rational subspace spanned by all
the remaining vectors in the basis. Then R is the union of the cosets c + W where c runs over
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all rational numbers, and this is a countable union. We claim that each of these cosets has a
nonempty interior. To see this, note that each coset contains exactly one rational number, while
if there interior were nonempty it would contain an open interval and every open interval contains
infinitely many rational numbers (e.g., if c ∈ (a, b) there is a strictly decreasing sequence of rational
numbers rn ∈ (c, b) whose limit is c).

4. According to the hint, we need to show that if {Vn } is a sequence of open dense subsets in
X, then (∩n Vn) is dense.

Let x ∈ X, and let W be an open neighborhood of x that is a Baire space. We claim that the
open sets Vn ∩W are all dense in W . Suppose that W0 is a nonempty open subset of W ; then W0

is also open in X, and since ∩n Vn is dense in X it follows that

W0 ∩ (W ∩ Vn) = (W0 ∩ W ) ∩ Vn = W0 ∩ Vn 6= ∅

for all n. Therefore Vn ∩ W is dense in W . Since W is a Baire space and, it follows that

⋂

n

(Vn ∩ W ) = W ∩
(

⋂

n

Vn

)

is dense in W .
To show that (∩n Vn) is dense in X, let U be a nonempty open subset of X, let a ∈ U , let Wa

be an open neighborhood of a that is a Baire space, and let U0 = U ∩ W (hence a ∈ U0). By the
previous paragraph the intersection

U0 ∩
(

⋂

n

(W ∩ Vn)

)

is nonempty, and since this intersection is contained in

U ∩
(

⋂

n

Vn

)

it follows that the latter is also nonempty, which implies that the original intersection (∩n Vn) is
dense.

Problem from Munkres, § 27, pp. 178 − 179

6. PRELIMINARY OBSERVATION. Each of the intervals that is removed from An−1 to
construct An is entirely contained in the former. One way of doing this is to partition [0, 1] into
the 3n intervals

[

b

3n
,
b + 1

3n

]

where b is an integer between 0 and 3n − 1. If we write down the unique 3-adic expansion of b as a
sum

n−1
∑

i=0

ai 3i

where bi ∈ {0, 1, 2}, then Ak consists of the intervals associated to numbers b such that none of
the coefficients bi is equal to 1. Note that these intervals are pairwise disjoint; if the interval
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corresponding to b lies in Ak then either the interval corresponding to b+1 or b−1 is not one of the
intervals that are used to construct Ak (the base 3 expansion must end with a 0 or a 2, and thus
one of the adjacent numbers has a base 3 expansion ending in a 1). The inductive construction of
An reflects the fact that for each k the middle third is removed from the closed interval

[

k

3n−1
,
k + 1

3n−1

]

.

(a) By induction Ak is a union of 2k pairwise disjoint closed intervals, each of which has length
3−k; at each step one removes the middle third from each of the intervals at the previous step.
Suppose that K ⊂ C is nonempty and connected. Then for each n the set K must lie in one of the
2n disjoint intervals of length 3−n in An. Hence the diameter of K is ≤ 3−n for all n ≥ 0, and this
means that the diameter is zero; i.e., K consists of a single point.

(b) By construction C is an intersection of closed subsets o the compact space [0, 1], and
therefore it is closed and hence compact.

(c) If we know that the left and right endpoints for the intervals comprising An are also
(respectively) left and right hand endpoints for intervals comprising An+1, then by induction it will
follow that they are similar endpoints for intervals comprising An+k for all k ≥ 0 and therefore
they will all be points of C. By the descriptions given before, the left hand endpoints for An are
all numbers of the form b/3n where b is a nonnegative integer of the form

n−1
∑

i=0

bi 3i

with bi = 0 or 2 for each i, and the right hand endpoints have the form (b + 1)/3n where b has the
same form. If b has the indicated form then

b

3n
=

3b

3n+1
, where 3b =

n
∑

i=1

bi−1 3i

shows that b/3n is also a left hand endpoint for one of the intervals comprising An+1. Similarly,
if (b + 1)/3n is a right hand endpoint for an interval in An and b is expanded as before, then the
equations

b + 1

3n
=

3b + 3

3n+1

and

(3b + 3) − 1 = 3b + 2 = 2 +

n
∑

i=1

bi−1 3i

show that (b + 1)/3n is also a right hand endpoint for one of the intervals comprising An+1.

(d) If x ∈ C then for each n one has a unique closed interval Jn of length 2−n in An such
that x ∈ Jn. Let λn(x) denote the left hand endpoint of that interval unless x is that point,
and let λn(x) be the right hand endpoint in that case; we then have λn(x) 6= x. By construction
∣

∣λn(x)−x
∣

∣ < 2−n for all n, and therefore x = limn→∞ λn(x). On the other hand, by the preceding
portion of this problem we know that λn(x) ∈ C, and therefore we have shown that x is a limit
point of C, which means that x is not an isolated point.
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(e) One way to do this is by using (d) and the Baire Category Theorem. By construction C
is a compact, hence complete, metric space. It is infinite by (c), and every point is a limit point
by (d). Since a countable complete metric space has isolated points, it follows that C cannot be
countable.

In fact, one can show that |C| = 2ℵ0 . The first step is to note that if { ak } is an infinite

sequence such that ak ∈ {0, 2} for each k, then the series

∞
∑

k=1

ak

3k

converges and its sum lies in C.

This assertion may be verified as follows: The infinite series converges by a comparison test
with the convergent series such that ak = 2 for all k. Given a point as above, the partial sum

n
∑

k=1

ak

3k

is a left hand endpoint for one of the intervals comprising An. The original point will lie in An if
the sum of the rest of the terms is ≤ 1/3. But

∞
∑

k=n+1

ak

3k
≤

∞
∑

k=n

2

3k
=

2

3n+1
· 1

(1 − 1
3 )

=
1

3

so the point does lie in An. Since n was arbitrary, this means that the sum lies in ∩n An = C.
Returning to the original problem of determining |C|, we note that the set A of all sequences

described in the assertion is in a natural 1–1 correspondence with the set of all functions from the
positive integers to {0, 1}. Let A0 be the set of all functions whose values are nonzero for infinitely
many values of n, and let A1 be the functions that are equal to zero for all but finitely many values
of n. We then have that |A1| = ℵ0 and A0 is infinite (why?). The map sending a function in A0 to
the associated sum of an infinite series is 1–1 (this is just a standard property of base N expansions
— work out the details), and therefore we have

|A0| ≤ |C| ≤ |R| = 2ℵ0

and
|A0| = |A0| + ℵ0 = |A0| + |A1| = |A| = 2ℵ0

which combine to imply |C| = 2ℵ0 .

Additional exercises

1. Suppose that the conclusion is false: i.e., A is not nowhere dense in X and B is not nowhere
dense in Y . Then there are nonempty open sets U and V contained in the closures of A and B
respectively, and thus we have

∅ 6= U × V ⊂ A × B = A × B

and therefore A × B is not nowhere dense in X × Y .
To see that we cannot replace “or” with “and” take X = Y = R and let A and B be equal

to [0, 1] and {0} respectively. Then A is not nowhere dense in X but A × B is nowhere dense in
X × Y .

2. The space R
∞ has this property because it is the union of the closed nowhere dense subspaces

An that are defined by the condition xi = 0 for i > n.

3. %vfil
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First of all, the map f is 1–1 onto; we are given that it is onto, and it is 1–1 because u 6= v
implies d( f(u), f(v) ) > d(u, v) > 0. Therefore f has an inverse, at least set-theoretically, and we
denote f−1 by T .

We claim that T satisfies the hypotheses of the Contraction Lemma. The proof of this begins
with the relations

d(T (u), T (v) ) = d( f−1(u), f−1(v) ) =
1

C1
d
(

f
(

f−1(u)
)

, f
(

f−1(v)
) )

= d(u, v) .

Since C > 1 it follows that 0 < 1/C < 1 and consequently the hypotheses of the Contraction
Lemma apply to our example.

Therefore T has a unique fixed point p; we claim it is also a fixed point for f . We shall follow the
hint. Since T is 1–1 and onto, it follows that x = T (T −1(x) ) and that T (x) = x =⇒ x = T−1(x);
the converse is even easier to establish, for if x = T −1(x) the application of T yields T (x) = x.
Since there is a unique fixed point p such that T (p) = p, it follows that there is a unique point, in
fact the same one as before, such that p = T −1(p), which is equal to f(p) by definition.

THE CLASSICAL EUCLIDEAN CASE.

This has two parts. The first is that every expanding similarity of Rn is expressible as a
so-called affine transformation T (v) = cAv + b where A is given by an orthogonal matrix. The
second part is to verify that each transformation of the type described has a unique fixed point.
By the formula, the equation T (x) = x is equivalent to the equation x = cAx + b, which in turn
is equivalent to (I − cA)x = b. The assertion that T has a unique fixed point is equivalent to
the assertion that this linear equation has a unique solution. The latter will happen if I − cA is
invertible, or equivalently if det(I − cA) 6= 0, and this is equivalent to saying that c−1 is not an
eigenvalue of A. But if A is orthogonal this means that |Av| = |v| for all v and hence the only
possible eigenvalues are ± 1; on the other hand, by construction we have 0 < c−1 < 1 and therefore
all of the desired conclusions follow. The same argument works if 0 < c < 1, the only change being
that one must substitute c−1 > 1 for 0 < c−1 < 1 in the preceding sentence.

4. We need to show that ϕ maps [
√

a, x0] into itself and that the absolute value of its derivative
takes a maximum value that is less than 1.

In this example, the best starting point is the computation of the derivative, which is simply
an exercise in first year calculus:

ϕ′(x) =
1

2

(

1 − a

x2

)

This expression is an increasing function of x over the set [
√

a,+∞); its value at
√

a is 0 and the
limit at +∞ is 1/2. In particular, the absolute value of the derivative on [

√
a, x0] is less than 1/2,

and by the Mean Value Theorem the latter in turn implies that ϕ maps the interval in question to

[√
a,

√
a + x0

2

]

which is contained in [
√

a, x0].

5. (i) We shall first prove that the interior of H in R
n is empty. Suppose to the contrary that

there is some p ∈ H and some ε > 0 such that Nε(p) ⊂ H. Then by the definition of H we know
that F = 0 on Nε(p). However, we have

F (p + ta) = F (p) + t|a|2 = t|a|2

10



so p + ta 6∈ H for t 6= 0; since t < ε/|a| implies that p + ta ∈ Nε(p), we cannot have Nε(p) ⊂ H.
This contradiction implies that the interior of H is empty. Note also that H is closed because it is
the zero set of a continuous real valued function.

We shall now prove that Rn−H is dense in Rn. If this were not the case, then the complement
of the closure contains some open subset of the form Nr(q), and this open subset would have to be
contained in H. Since H has an empty interior, this cannot happen, and therefore Rn − H must
be dense in Rn.

(ii) We have Rn−∪i Hi = ∩i (Rn − Hi), and by (i) we know that each factor in the intersection
is an open dense subset. Since a finite intersection of open and dense subsets is dense, it follows
that the set in question is dense.

6. (i) The function in question can be rewritten in the vector form F (x) = 〈a, x〉 − b, where
a = (a1, · · · , an) and 〈 , 〉 denotes the usual dot product. Suppose that x0 lies in H, and consider
the curve x0 + ta for t ∈ R. Then F (x + ta) = 〈a, x + ta〉+ b = 〈a, x0〉+ t|a|2 − b, and since x0 lies
on the hyperplane defined by F (x) = 0 we have F (x + ta) = t|a|2, where a 6= 0. This quantity is
positive if t > 0 and negative if t < 0, so both H+ and H− are nonempty. These sets are open by
continuity of F , so the only thing left to prove is that these subsets are convex. Following the hint,
we shall first prove that F (ty + (1 − t)x) = t F (y) + (1 − t)F (x) for all x, y ∈ Rn and t ∈ R:

F (ty + (1 − t)x) = 〈a, ty + (1 − t)x〉 − b = t〈a, y〉 + (1 − t) 〈a, x〉 − b =

t〈a, y〉 + (1 − t) 〈a, x〉 −
(

t b + (1 − t) b
)

= t (〈a, y〉 − b) + (1 − t) (〈a, x〉 − b) =

t F (y) + (1 − t)F (x)

If 0 < t < 1 and the values F (x), F (y) are both positive or both negative, the identity and convexity
of (0,∞) ⊂ R imply that F (ty + (1 − t)x) is also positive or negative. Therefore both H+ and H−

are convex.

(ii) Suppose that F (x) > 0 > F (y). We want to find some t such that 0 < t < 1 and
0 = F (tx + (1 − t)y) = t F (x) + (1 − t)F (y). This equation has the solution

t =
−F (y)

F (x) − F (y)

so we need to show that the right hand side lies between 0 and 1. Since F (y) < 0, the numerator is
positive, and likewise for the denominator because F (x) > 0 and hence F (x) − F (y) > F (x) > 0.
Furthermore, the latter chain of inequalities implies that t < 1.

(iii) Let H denote the topology on Rn generated by half-spaces, and let M be the usual metric
topology. Since half-spaces are open in the metric topology, it follows that H ⊂ M. To prove
the reverse implication, note that it suffices to prove that the base for M consisting of the d〈∞〉

neighborhoods
n
∏

j=1

(ai − ε, ai + ε)

is contained in H. This will follow if we can show that each of the displayed sets is a finite intersection
of half-spaces, and the latter in turn follows because the subspace in the display is the intersection
of the half-spaces defined by the strict inequalities xj − aj > −ε and xj − aj < ε for 1 ≤ j ≤ n.

Note. Many systems of synthetic axioms for classical geometries include some form of Space

Separation Axiom which states that the complement of a hyperplane (a line in two dimensions,
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a plane in three dimensions, etc.) satisfies the conclusions of this exercise, and for such a system
there is a natural synthetic topology generated by the half-spaces. One implication of the preceding
exercise is that this synthetic topology coincides with the usual one if we are working with axioms
for Euclidean geometry or closely related systems.

III.4 : Connected spaces

Problems from Munkres, § 23, p. 152

2. Let C be the connected component of ∪n An containing A1. We shall prove by induction
that Ak ⊂ C for each positive integer k. It will follow that C = ∪n An and that the latter is
connected.

Suppose that Ak is contained in C; we want to show that Ak+1 ⊂ C. We are given that there
is at least one point p ∈ Ak ∪Ak+1, and therefore we know that this union of the connected subsets
Ak and Ak+1 is connected. Since C is a connected component of ∪n An containing Ak, it follows
that C must also contain the connected subset Ak ∪ Ak+1, and hence it follows that Ak+1 ⊂ C,
completing the proof of the inductive step.

3. Suppose that C is a nonempty open and closed subset of Y = A∪B. Then by connectedness
either A ⊂ C or A ∩ C = ∅; without loss of generality we may assume the first holds, for the
argument in the second case will follow by interchanging the roles of C and Y − C. We need to
prove that C = Y .

Since each Aα for each α we either have Aα ⊂ C or Aα ∩ C = ∅. In each case the latter
cannot hold because A ∩ Aα is a nonempty subset of C, and therefore Aα is contained in C for all
α. Therefore C = Y and hence Y is connected.

4. Suppose that we can write X = C∪D where C and D are disjoint nonempty open and closed
subsets. Since C is open it follows that either D is finite or all of X; the latter cannot happen
because X − D = C is nonempty. On the other hand, since C is closed it follows that either C is
finite or C = X. Once again, the latter cannot happen because X − C = D is nonempty. Thus X
is a union of two finite sets and must be finite, which contradicts our assumption that X is infinite.
This forces X to be connected.

5. Suppose that C is a maximal connected subset; then C also has the discrete topology, and
the only discrete spaces that are connected are those with at most one point.

There are many examples of totally disconnected spaces that are not discrete. The set of
rational numbers and all of its subspaces are fundamental examples; here is the proof: Let x and y
be distinct rational numbers with x < y. Then there is an irrational number r between them, and
the identity

Q =
(

Q ∩ (−∞, r)
)

∪
(

Q ∩ (r,+∞, r)
)

gives a separation of Q, thus showing that x and y lie in different connected components of Q. But
x and y were arbitrary so this means that no pair of distinct points can lie in the same connected
component of Q. The argument for subsets of Q proceeds similarly.

9. A good way to approach this problem is to begin by drawing a picture in which X × Y is
a square and A × B is a smaller concentric square. It might be helpful to work with this picture
while reading the argument given here.

Let x0 ∈ X − A and y0 ∈ Y − B, and let C be the connected component of (x0, y0) in
X ×Y −A×B. We need to show that C is the entire space, and in order to do this it is enough to
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show that given any other point (x, y) in the space there is a connected subset of X × Y − A × B
containing it and (x0, y0). There are three cases depending upon whether or not x ∈ A or y ∈ B
(there are three options rather than four because we know that both cannot be true).

If x 6∈ A and y 6∈ B then the sets X × {y0} and {x} × Y are connected subsets such that
(x0, y0) and (x, y0) lie in the first subset while (x, y0) and (x, y) lie in the second. Therefore there is a
connected subset containing (x, y) and (x0, y0) by Exercise 3.— Now suppose that x ∈ A but y 6∈ B.
Then the two points in question are both contained in the connected subset X×{y}∪times{x0}×Y .
Finally, if x 6∈ A but y ∈ B, then the two points in question are both contained in the connected
subset X × {y0} ∪ {x} × Y . Therefore the set X × Y − A × B is connected.

12. [Assuming Y is a closed subset of X. Munkres does not explicitly assume Y 6= ∅,
but without this assumption the conclusion is false.] Since X − Y is open in X and A and B are
disjoint open subsets of X − Y , it follows that A and B are open in X. The latter in turn implies
that X ∪ A and Y ∪ B are both closed in X.

We shall only give the argument for X ∪A; the proof for X ∪B is the similar, the only change
being that the roles of A and B are interchanged. Once again, it might be helpful to draw a picture.

Suppose that C is a nonempty proper subset of Y ∪ A that is both open and closed, and let
D = (Y ∪ A) − C. One of the subsets C, D must contain some point of Y , and without loss of
generality we may assume it is C. Since Y is connected it follows that all of Y must be contained
in C. Suppose that D 6= ∅. Since D is closed in Y ∪A and the latter is closed in X, it follows that
D is closed in X. On the other hand, since D is open in Y ∪A and disjoint from Y it follows that
D is open in A, which is the complement of Y in Y ∪ A. But A is open in X and therefore D is
open in X. By connectedness we must have D = X, contradicting our previous observation that
D ∩ Y = ∅. This forces the conclusion that D must be empty and hence Y ∪ A is connected.

Problems from Munkres, § 24, pp. 157 − 159

1. (b) Take X = (0, 1) ∪ (2, 3) and Y = (0, 3), let f be inclusion, and let g be multiplication by
1/3. There are many other examples. In the spirit of part (a) of this exercise, one can also take
X = (0, 1), Y = (0, 1], f = inclusion and g = multiplication by 1/2, and similarly one can take
X = (0, 1], Y = [0, 1], f = inclusion and g(t) = (t + 1)/2.

FOOTNOTE. Notwithstanding the sort of examples described in the exercises, a result of S. Banach
provides a “resolution” of X and Y if there are continuous embeddings f : X → Y and g : Y → X;
namely, there are decompositions X = X1 ∪X2 and Y = Y1 ∪ Y2 such that X1 ∩X2 = Y1 ∩ Y1 = ∅
and there are homeomorphisms X1 → X2 and Y1 → Y2. The reference is S. Banach, Un théorème

sur les transformations biunivoques, Fundamenta Mathematicæ 6 (1924), 236–239.

Additional exercises

1. Define a binary relation ∼ on X such that u ∼ v if and only if there are open subsets U and
V in U such that u ∈ U , v ∈ V , and there is a sequence of open sets {U0, U1, · · · Un} in U such
that U = U0, V = Un, and Ui ∩ Ui+1 6= ∅ for all i. This is an equivalence relation (verify this in
detail!). Since every point lies in an open subset that belongs to U it follows that the equivalence
classes are open. Therefore the union of all but one equivalence class is also open, and hence a
single equivalence class is also closed in the space. If X is connected, this can only happen if there
is exactly one equivalence class.

2. This is similar to some arguments in the course notes and to the preceding exercise. The
hypothesis that the relation is locally constant implies that equivalence classes are open. Therefore
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the union of all but one equivalence class is also open, and hence a single equivalence class is also
closed in the space. If X is connected, this can only happen if there is exactly one equivalence
class.

3. The important point is that Qn is dense in Rn; given a point x ∈ Rn with coordinates xi

and ε > 0 we can choose rational numbers qi such that |qi − xi| < ε/n; if y has coordinates qi then
|x − y| < ε follows immediately. Since R

n is locally connected, the components of open sets are
open, and therefore we conclude that every component of a nonempty open set U ⊂ R

n contains
some point of Qn. Picking one such point for each component we obtain a 1–1 map from the set of
components into the countable set Qn.

The Cantor set is an example of a closed subset of R for which the components are the one
point subsets and there are uncountably many points.

4. (i) FALSE. One simple counterexample is given by taking X = Y = R and A = B = {0}.
Then X × Y − A × B is merely R2 − {0}, which is the image of the connected set (0,∞) × [0, 2π]
under the polar coordinate map sending (r, θ) to (r cos θ, r sin θ).

(ii) FALSE. Take A = (0, 1] and B = {0, 1} so that A ∩ B = {1} and A ∪ B = [0, 1].

(iii) TRUE. Given that the hypotheses are nearly the same as in (ii) but slightly stronger,
one might guess this answer, but of course a proof is still needed.

We shall only prove that A is connected; the connectedness of B will then follow by inter-
changing the roles of A and B in the argument given here. — Suppose that A is not connected,
and write it as a union of two nonempty closed subsets A1 ∪ A2. Since A ∩ B is connected, this
intersection is contained in either A1 or in A2; renumbering these sets if necessary, we may as well
assume that A∩B ⊂ A1, which means that ∅ = A∩ B ∩A2 = B ∩ A2. Since B 6= ∅ and B ∩A2 is
empty, the set B ∩A1 must be nonempty. Consider the closed subspaces B ∪A1 and A2. They are
both nonempty, they are disjoint, and their union is A ∪ B. Therefore A ∪ B is disconnected. On
the other hand, we assumed that A ∪ B was connected, so we have reached a contradiction. The
source of the problem was our added assumption that A was disconnected, so this must be false
and we are forced to conclude that A is connected.

5. Assume that the conclusion is false and that B ∩ Bdy (A) = ∅. Therefore no point of B is
a boundary point of A; in other words, for every point b ∈ B there is some open neighborhood U
such that either U does not contain any points of X or else U does not contain any points of X−A.
This can be rephrased to state that either U ∩B is contained in B ∩A or in B ∩X −A depending
upon which of these sets contains b. It follows that B ∩ A and B ∩ X − A are open subsets in B
which are disjoint and whose union is B. By our hypotheses we also know that each intersection
is nonempty, and therefore we conclude that B is disconnected. The latter contradicts another of
our hypotheses; the source of the contradiction was the added condition that B∩Bdy (A) = ∅, and
therefore this statement cannot be true. We can rephrase this to say that B ∩ Bdy (A) 6= ∅ must
be true.

5. (i) If X is discrete and x ∈ X, then {x} by itself forms a neighborhood base at x; since {x}
is open and closed in X, it follows that X is totally disconnected in the sense of the definition.

As noted in the hint, a discrete space has no limit points because the deleted neighborhood
{x} − {x} is empty. However, the set A of all points x in R such that x = 0 or x = 1/n for
some positive integer n does have a limit point at 0, and we claim it is totally disconnected. Since
each one point subset {1/n} is open and closed, there is a clopen (closed + open) neighborhood
base at such points. There is also a clopen neighborhood base at 0, and it is given by the sets
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(−1/n, 1/n) ∩ A because this set is equal to [−2/(2n + 1), 2/(2n + 1)] ∩ A (the point 1/(n + 1) is
the maximal point in this set). Therefore A is not discrete but A is totally disconnected.

(ii) The first set is open and the second set is closed, and the sets in the first family form a
neighborhood base, so it is enough to show that the intersections of the open and closed intervals
with Q are equal. Since the closed intervals are obtained from the open intervals by adjoining the
two endpoints, it is enough to note that these endpoints are not rational numbers — a consequence
of the fact that

√
2 is irrational. This proves that Q is totally disconnected.

To see that every point of Q is a limit point of Q, note that if q ∈ Q then the sequence of
points q + 1

n
is rational and no point in the sequence is equal to q, but nevertheless the limit of the

sequence is q.

(iii) Suppose that X and Y are totally disconnected and (x, y) ∈ X × Y . Let {Uα} and {Yβ}
be clopen neighborhood bases at x and y respectively. Since the product of two clopen subsets is
clopen, it follows that {Uα ×Yβ} forms a clopen neighborhood base at (x, y). Since the latter point
was arbitrary, it follows that X × Y is totally disconnected.

7. Clearly there are two cases, one when n = 1 and the other when n ≥ 2.

The case n = 1. We know that the connected subsets of R are precisely those sets A such
that if x < y and x, y ∈ A, then the closed interval [x, y] is contained in A. Intuitively, we expect
that the only sets with this property are open intervals (possibly with ±∞ as endpoints), half-open
intervals (possibly with ±∞ as the open endpoint), and closed intervals. If this is true, then there
are 2ℵ0 choices for each endpoint, and for every pair of endpoints there are at most four intervals
depending upon which of the ≤ 2 endpoints belong to the interval, so an upper bound for the
cardinality of the family of connected subsets is 4 · 2ℵ0 · 2ℵ0 = 2ℵ0 , This number is also a lower
bound because we have the family of intervals [r,∞) where r runs through the elements of R, and
therefore the cardinality of the family of connected subsets is exactly 2ℵ0 .

We now have to verify the assertion that connected subsets of R are intervals. Let C be a
nonempty connected subset of R, so that u, v ∈ C and u < v imply [u, v] ⊂ C. Let a(C) be the
greatest lower bound of C if C has a lower bound, and let a(C) = −∞ otherwise. Similarly, let
b(C) be the least upper bound of C if C has an upper bound, and let b(C) = +∞ otherwise. Let
p be some point of C.

CLAIM: The set C is an interval whose lower endpoint is a(C) and whose upper endpoint is
b(C). — Since a(C) and b(C) are lower and upper bounds for C, it follows that C is contained in
the set of all points x satisfying a(C) ≤ x ≤ b(C), with the convention that there is strict inequality
if a(C) = −∞ or b(C) = +∞. If a(C) < b(C) and p ∈ C lies between these values, take sequences
{un} and {vn} in C such that un → a(C), vn → b(C), and un < p < vn for all n. By the assertion
in the first sentence of the first paragraph, then [un; vn] ⊂ C for all n, and therefore the union of
these subsets, which is the set of all x such that a(C) ≤ x ≤ b(C), is contained in C. Combining
this with the previous paragraph, we have

{x ∈ R | a(C) < x < b(C)} ⊂ C ⊂ {x ∈ R | a(C) ≤ x ≤ b(C)}

with the previous conventions if a(C) = −∞ or b(C) = +∞. For each pair of values a(C) and b(C)
there are up to four choices for C, depending upon whether or not a(C) or b(C) belong to C.

The case n ≥ 2. In order to avoid awkward typographical problems, let c = 2ℵ0 = |R|;
recall that we then have |Rn| = c for all positive integers n. Since the set of all subsets in Rn

then has cardinality 2c, it follows that |Cn| ≤ 2c for all n. Furthermore, since R2 is homeomorphic
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to a subspace of Rn if n ≥ 3 it follows that |C2| ≤ |Cn| for all n ≥ 3. Thus if we can show that
|C2| ≥ 2c, then it will follow that |Cn| = 2c > c for all n ≥ 2.

We can construct a family of 2c connected subsets of R2 as follows: One of our results implies
that if A is a connected subset of a topological space and A ⊂ B ⊂ A, then B is connected.
In particular, if we apply this to U = (0, 1)2 ⊂ R2, then each subset C of Bdy (U) determines a
connected subset U ∪C of R2, and C 6= C ′ implies that U∪C 6= U ∪C ′ because U∩Bdy (U) = ∅. In
particular, if we let C run through all the 2c subsets of (0, 1)×{0}, then this yields a family {U ∪C}
of 2c connected subsets of R2, and therefore we have proved the desired inequality |C2| ≥ 2c. As
noted before, this completes the proof that |Cn| = 2c > 2ℵ0 if n ≥ 2.

8. (i) Each line px in Lines (p, Rn − D) is an arcwise connected set containing p, so every point
in the set lies in the same arc component as p, and therefore Lines (p, Rn−D) is arcwise connected.

The complement of Lines (p, Rn −D) consists of all points y on punctured lines px−{p} such
that px contains a point of D; this point in D cannot be p because p 6∈ D. Since there is a unique
line joining two points (see the discussion below), every such line px is equal to pz for some z ∈ D.
Since there are only countably many points in D, there are only countably many lines px such that
px − {p} is contained in the complement of Lines (p, Rn − D).

(ii) The existence of a point x 6∈ pq is discussed in the postscript to the discussion following
the solution to this exercise, so the hint involves something which actually exists. If y ∈ px, then
q 6∈ px implies that the lines px and qy are distinct and hence can only have the point y in common
(because there is a unique line joining two points). By hypotheses q 6∈ D, and therefore there are
only countably many lines of the form qz where z ∈ D, and they are all distinct from px because
q 6∈ px (again by the uniqueness of a line joining two points). Therefore there are only countably
many points y ∈ px such that qy contains an element of D. Since there are uncountably many
points on the line px, it follows that there is some point w ∈ px − {p} such that qw ∩ D = ∅. We
then have qw ⊂ Rn − D, and this implies that pw ∪ qw ⊂ Rn − D, which in turn means that p
and q lie in the same arc component of Rn −D. Since p and q are arbitrary points of Rn −D, this
shows that the latter is arcwise connected.

Remark on lines in Rn. The solution to this exercise used the following standard geometrical
fact, both as intuition and as a logical step in the argument:

Two distinct lines in Rn have at most one point in common.

We also use a related statement: Given two points, there is a unique line containing them.

Since a rigorous proof of the first statement might not have been given in prerequisite under-
graduate courses, for the sake of completeness we shall give a self-contained proof here using vector
algebra. One can also use the concepts developed in Sections I.3 and II.2 of pg-all.pdf to view
this result as part of a more general pattern. We should probably start by formally defining the xy
joining two points x, yinRn (or more generally vectors in any vector space V ) to be the set of all
points z such that z = ty + (1 − t)x = x + t (y− x) for some scalar t. It is an elementary exercise
in linear algebra to check that a point w belongs to this set if and only if w = y + s (y − x) for
some scalar s (in fact, if w = z where z is given as above then we can take s = 1 − t).

Assume now that we are given a 6= b and c 6= d in R
n such that the lines ab and cd have two

distinct points in common. We need to prove that ab must be equal to cd.

If the lines have two points in common, then there are scalars s, t, u, v such that tb+(1−t)a =
sd + (1 − s) c and v b + (1 − v)a = ud + (1 − u) c. We may rewrite these in the forms

a + t (b − a) = c + s (d − c) , a + v (b − a) = c + u (d − c)
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and if we take the difference of these equations we find that (t−v) (b−a) = (s−u) (d−c). Therefore
there is a nonzero vector w such that b− a = K w and d− c = Lw; since the expressions on the
left are nonzero, it follows that K and L are both nonzero. These yield the equation

c − a = K (t − v)w = L (s − u)w

so that K (t − v) = L (s − u). Therefore for some scalars M and M ′ we have

c = a + M w = a + M ′ (b − a)

so that c ∈ ab. If we now reverse the roles of c and d in the preceding argument, we also find that
d ∈ ab.

We shall now prove that cd ⊂ ab; if we know this, then we can reverse the roles of the two
lines in the argument and also obtain the conclusion ab ⊂ cd, and if we combine these we have
ab = cd, which is what we wanted to prove. — To see this, let xincd. Then x = r c+(1− r)d for
some r. Now c,d ∈ ab implies that c = (1 − M ′)a + M ′ b (as before) and d = (1 − N ′)a + N ′ b
for some scalars M ′ and N ′. Direct substitution then yields the equation

x = (1 − rM ′ + (r − 1)N ′)a + (rM ′ + (1 − r)N ′)b

which shows that ab ⊂ cd. As noted earlier in this paragraph, similar reasoning shows the reverse
inclusion, and therefore the two lines must be equal.

Postscript. In our solution we also use the fact that if n ≥ 2 and p 6= q ∈ R
n, then there is some

point x which does not lie on the line pq, so to be complete we should also verify this assertion.
By definition, if x lies on pq then x − p is a scalar multiple of q − p. Since n ≥ 2 implies the
existence of some vector v which is not a multiple of q− p, it follows that x = p + v does not lie
on pq.

III.5 : Variants of connectedness

Problem from Munkres, § 24, pp. 157 − 159

8. (b) The closure A of an arc component A is NOT NECESSARILY arcwise connected; this
contrasts with the fact that connected components are always closed subsets. Consider the graph
of sin(1/x) for x > 0. It closure is obtained by adding the points in {0} × [−1, 1] and we have
shown that the space consisting of the graph and this closed segment is not path connected.

Problem from Munkres, § 25, pp. 162 − 163

10. [Only (a), (b) and examples A and B from (c).]
(a) The proofs that ∼ is reflexive and symmetric are very elementary and left to the reader.

Regarding transitivity, suppose that x ∼ y and y ∼ z and that we are given a separation of X as
A ∪ B. Without loss of generality we may assume that x ∈ A (otherwise interchange the roles of
A and B in the argument). Since x ∼ y it follows that y ∈ A, and the latter combines with y ∼ z
to show that z ∈ A. Therefore if we are given a separation of X as above, then x and z lie in the
same piece, and since this happens for all separations it follows that x ∼ z.
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(b) Let C be a connected component of X. Then A ∩ C is an open and closed subset of C
and therefore it is either empty or all of C. In the first case C ⊂ B and in the second case C ∩ B.
In either case it follows that all points of C lie in the same equivalence class. – If X is locally
connected then each connected component is both closed and open. Therefore, if x and y lie in
different components, say Cx and Cy, then X = Cx ∪ X − Cx defines a separation such that x
lies in the first subset and y lies in the second, so that x ∼ y is false if x and y do not lie in the
same connected component. Combining this with the previous part of the exercise, if X is locally
connected then x ∼ y if and only if x and y lie in the same connected component.

(c) [Note: Example C in this part of the problem was not assigned; some comments appear
below.]

Trying to solve this exercise without any pictures would probably be difficult at best and

hopelessly impossible at worst.

Drawings for Case A and Case C are in the file math205Axolutions03a.pdf.

Case A. We claim that the connected components are the closed segments {1/n} × [0, 1]
and the one point subsets {(0, 0)} and {(0, 1)}. — Each segment is connected and compact (hence
closed), and we claim each is also an open subset of A. This follows because the segment {1/n}×[0, 1]
is the intersection of A with the open subset

(

1

2

[

1

n
+

1

n + 1

]

,
1

2

[

1

n
+

1

n − 1

] )

× R .

Since the segment {1/n} × [0, 1] is open, closed and connected, it follows that it must be both a
component and a quasicomponent. It is also an arc component because it is arcwise connected.
This leaves us with the two points (0, 0) and (0, 1). They cannot belong to the same component
because they do not form a connected set. Therefore each belongs to a separate component and
also to a separate path component. The only remaining question iw whether or not they determine
the same quasicomponent. To show that they do lie in the same quasicomponent, it suffices to
check that if A = U ∪ V is a separation of X into disjoint open subsets then both points lie in the
same open set. Without loss of generality we may as well assume that the origin lies in U . It then
follows that for all n sufficiently large the points (1/n, 0) all lie in U , and the latter implies that
all of the connected segments {1/n} × [0, 1] is also lie in U for n sufficiently large. Since (0, 1) is
a limit point of the union of all these segments (how?), it follows that (0, 1) also lies in U . This
implies that (0, 1) lies in the same quasicomponent of A as (0, 0).

Case B. This set turns out to be connected but not arcwise connected. We claim that the
path components are given by {(0, 1)} and its complement. Here is the proof that the complement
is path connected: Let P be the path component containing all points of [0, 1] × {0}. Since the
latter has a nontrivial intersection with each vertical closed segment {1/n}× [0, 1] it follows that all
of these segments are also contained in P , and hence P consists of all points of A except perhaps
(0, 1). Since (0, 1) is a limit point of P (as before) it follows that B is connected and thus there
is only one component and one quasicomponent. We claim that there are two path components.
Suppose the extra point (0, 1) also lies in P . Then, for example, there will be a continuous curve
α : [0, 1] → A joining (0, 1) to (1/2, 1). Let t0 be the maximum point in the subset of [0, 1] where
the first coordinate is zero. Since the first coordinate of α(a) is 1, we must have t0 < 1. Since
A ∩ {0} ×R is equal to {(0, 0)} ∪ {(0, 1)}, it follows that α is constant on [0, t0], and by continuity
there is a δ > 0 such that |t− t0| < δ implies that the second coordinate of α(t) is greater than 1/2.
If t ∈ (t0, t0 + (δ/2)), then the first coordinate of α(t) is positive and the second is greater than 1/2.
In fact we can choose some t1 in the open interval such that the first coordinate is irrational. But
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there are no points in B∩( 1
2 ,+∞) whose first coordinates are irrational, so we have a contradiction.

The latter arises because we assumed the existence of a continuous curve joining (0, 1) to another
point in B. Therefore no such curve can exist and (0, 1) does not belong to the path component
P . Hence B has two path components, and one of them contains only one point.

Case C. This was not assigned, but we shall include the solution as an example of an
argument which is more challenging and should be understood passively. Before proceeding to the
solution, we shall give away the answer: The space C is connected and each of the (infinitely many)
closed segments given in the definition is a separate path component.

Once again, it would probably be extremely difficult to solve this part of the exercise without
the sort of drawing we have inserted into math205Asolutions03a.pdf. This drawing shows that
C is symmetric with respect to rotation through 90◦;i.e., if J(x, y) = (−y, x) is counterclockwise
rotation through a right angle, then J [C] = C. As usual, one needs to give a written argument
to verify this, but this is routine and the details are left to the reader (note that J maps the first
summand of C to the fourth, the fourth summand to the second, the second summand to the third,
and the third summand to the first).

The set C is a union of countably closed segments Ej,n which are defined by E0,n = {1/n}×[0, 1]
and Ek,n = Jk[E0,n] = Jk−1[Ek−1,n], where J is defined as in the preceding paragraph. Set
Ek = ∪n Ek,n. — Also, let K = {1, 1

2 , 1
3 , · · · } be defined as in Munkres’ formulation of the

exercise.

Suppose that D is a clopen subset of C which contains (1, 0). Since D is open, it also contains
points of the form (1/n, 1) for all but finitely many values of n, and hence it contains points from all
but finitely many of the intervals E3,n. By the connectedness of these intervals and the clopenness
of D, it follows that E3,n ⊂ D for n ≥ N0 for some N0. Each of the points (1/m, 0) is a limit
point of ∪n≥N0

E3,n (consider the sequence (1/m, 1/n) for n ≥ N0), and since D is closed it also
follows that (1/m, 0) ∈ D. Since the latter point lies in E0,m and the latter is connected, it follows
that the clopen set D also contains E0. Furthermore, since (0, 1) is a limit point of E0 (look at the
sequence (1/m, 1) in E0), it follows that J(1, 0) = (0, 1) ∈ D.

By the same reasoning, if k ≥ 1 we know that if J k(0, 1) ∈ D then Ej ⊂ D and Jk+1(0, 1) ∈ D.
Therefore we can put together an inductive argument to conclude that Ek ⊂ D for all k (since J4 is
the identity, there are only finitely many steps where a new conclusion is obtained). Finally, since
C = ∪j Ej it follows that C = D, which means that C is connected. Therefore there is only one
connected component, and there is also only one quasicomponent because each quasicomponent is
a union of components.

We must now describe the arc components of C; as noted earlier, we want to show that these
are the subspaces Ek,n. Most of the work involves proving the following:

CLAIM . If x ∈ Ek,n and U is an open neighborhood of x in C, then there is a subneigh-

borhood V of U such that the arc component of x in V is equal to Ek,n ∩ V .

Because of the symmetry of C under right angle rotations, it will suffice to prove this claim when
k = 0.

To simplify the notation, let Sqε(x) ⊂ R2 denote the open square of all points y ∈ R2 such
that d〈∞〉(x, y) < ε. We shall show that if x ∈ C as above then we can take V to have the form
Sqε(x) ∩ C for some ε > 0 (which suffices since the latter subsets form a neighborhood base at x).

As above, we need only consider the case where x ∈ E0,n0
for some positive integer n0, so we

have x = (1/n0, t0) for some t0 ∈ [0, 1]. If t0 > 0 then V = Sqε(x) ∩ C has the desired properties
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if we take ε to be smaller than both t0 and 1/(2n0); in fact, for this case the intersection lies on
the vertical line through x and it is arcwise connected. We now turn to the more complicated case
where t0 = 0. In this case, if ε < 1/(2n0) then V = Sqε(x) ∩ C is a disjoint union of the vertical
segment {1/n0} × [0, ε) and the horizontal segments (1/n0 − ε, 1/n0 + ε) × {1/m} for all integers
m such that 1/m < ε. From this description it is clear that the arc component of x in V is the
intersection of the latter with the vertical segment E0,n0

. This completes the proof of the claim (for
the sets E0,n; as noted before, symmetry considerations yield the same conclusion for Ek,n when
k = 1, 2, 3).

Using the claim we have just verified, we can prove that each subset Ek,n is an arc component
as follows: Let γ : [0, 1] → C be a continuous curve. If γ(t) ∈ Ek,n then the claim and the continuity
of γ imply that γ maps some interval (t−h, t+h)∩ [0, 1] into E0,n, and this implies that γ−1[Ek,n]
is an open subset of [0, 1] for each k and n. Since the sets Ek,n are pairwise disjoint and their union
is C, it follows that the open subsets γ−1[Ek,n] ⊂ [0, 1] are also pairwise disjoint and their union is
[0, 1]. Since the unit interval is connected, it follows that exactly one of these subsets is nonempty,
and therefore it must be the entire unit interval. In other words, we have shown that the image of
a continuous mapping from [0, 1] to C must be contained in some Ek,n, which means that every arc
component of C must be contained in some Ek,n. Finally, since the latter are arcwise connected,
it follows that each Ek,n is an arc component of C.

Additional exercises

1. In a locally connected space the connected components are open (and pairwise disjoint).
These sets form an open covering and by compactness there is a finite subcovering. Since no proper
subcollection of the set of components is an open covering, this implies that the set of components
must be finite.

2. Let Y = R2 and let X ⊂ R2 be the union of the horizontal half-line (0,∞) × {0} and the
vertical closed segment {−1} × [−1, 1]. These subsets of X are closed in X and pairwise disjoint.
Let f : X → R2 be the continuous map defined on (0,∞)×{0} by the formula f(t, 0) = (t, sin(1/t) )
and on {−1} × [−1, 1] by the formula f(−1, s) = (0, s). The image f [X] is then the example of a
non-locally connected space that is described in the course notes.

3. Consider the polar coordinate map [1,
√

2]× [0, 2π] which sends (r, θ) to (r cos θ, r sin θ). This
is a continuous onto mapping, and the domain is arcwise connected (in fact, it is a convex subset
of R2. Therfore the image, which is the annulus in the exercise, is also arcwise connected.

4. The result for Rn −{0} is implicit in one of the earlier starred exercises, but we shall give a
proof here because it can be done simply and the result for Sn−1 depends upon this fact.

If x, y ∈ Rn − {0} are linearly independent, then the line segment ty + (1 − t)x (0 ≤ t ≤ 1)
does not pass through 0 (if it did, then x and y would be linearly dependent), and hence x and y
lie in the same arc component of R

n − {0}. Suppose now that x and y are linearly dependent, so
that each is a nonzero multiple of the other. Since n ≥ 2 there is some vector z such that x and
z are linearly independent, and it follows immediately that y and z are also linearly independent.
Two applications of the previous argument then show that x, y, z all lie in the same arc component.
Thus in all cases we have shown that two arbitrary points x, y ∈ Rn − {0} always lie in the same
arc component, which means that the space under consideration is arcwise connected.

To prove the result for Sn−1, consider the map

σ : Rn − {0} −→ Sn−1
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which sends a nonzero vector v to the unit vector |v|−1 ·v pointing in the same direction. This map
is continuous since |v| 6= 0 on the domain, and it is clearly onto because σ(v) = v if v ∈ Sn−1 (so
that |v| = 1). Since Rn − {0} is arcwise connected, its image under σ — which is Sn−1 — must
also be arcwise connected.

5. (i) Let Q denote the quasicomponent of p in X. By definition q ∈ Q if and only if for each
separation of X into clopen subsets A ∪ B (with A ∩ B = ∅) both p and q lie in the same subset.

By definition, if q ∈ Q and C ⊂ X is a clopen subset containing p, then q ∈ C. Therefore Q
is contained in the intersection of all clopen subsets C such that p ∈ C. Conversely, if q lies in this
intersection, then if C is a clopen set containing p we have q ∈ C, which means that q lies in the
same quasicomponent as p.

(ii) We are assuming there are only finitely many components, so list them as C1 · · · , Cr.
Each of these subsets is closed since it is a component, and we claim that each is also open. This
is true because we have

X − Cj =
⋃

i6=j

Ci

for all j, so that the right hand side is a closed subset and hence its complement — which is Cj

— must be open. This means that every component of X is clopen, and by (i) it follows that the
quasicomponent of a point is contained in the component of a point. On the other hand, by Exercise
25.10 in Munkres we know that the reverse inclusion is true, and therefore the quasicomponent of
a point is equal to the connected component of that point.
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