
SOLUTIONS TO EXERCISES FOR

MATHEMATICS 205A — Part 4

Fall 2014

IV. Function spaces

IV.1 : General properties

Additional exercises

1. The mapping q is 1–1 because q(f) = q(g) implies that for all x we have f(x) = px
oq(f) =

px
oq(g) = g(x), which means that f = g.

To prove continuity, we need to show that the inverse images of subbasic open sets in Y X are
open in C(X,Y ). The standard subbasic open subsets have the form W({x}, U) = p−1

x (U) where
x ∈ X and U is open in Y . In fact, there is a smaller subbasis consisting of all such sets W({x}, U)
such that U = Nε(y) for some y ∈ Y and ε > 0. Suppose that f is a continuous function such that
q(f) lies in W({x}, U). By definition the later condition means that f(x) ∈ U . The latter in turn
implies that δ = ε − d( f(x), y) > 0, and if d(f, g) < δ then the Triangle Inequality implies that
d( g(x), y) < ε, which in turn means that g(x) ∈ U . Therefore q is continuous at f , and since f is
arbitrary this shows q is a continuous mapping.

2. It suffices to show that the map in question is onto and distance-preserving. The map is
onto because if u and v are continuous functions into Y and Z respectively, then we can retrieve
f by the formula f(x) =

(
u(x), v(x)

)
. Suppose now that f and g are continuous functions from

X to Y × Z. Then the distance from f to g is the maximum of d
(
f(x), g(x)

)
. The latter is less

than or equal to the greater of d
(
pY f(s), pY g(s)

)
and d

(
pY f(t), pY g(t)

)
. Thus if

Φ : C(X,Y × Z) → C(X,Y ) ×C(X,Z)

then the distance from Φ(f) to Φ(g) is greater than or equal to the distance from f to g. This
means that the map Φ−1 is uniformly continuous. Conversely, we claim that the distance from f to
g is greater than or equal to the distance between Φ(f) and Φ(g). The latter is equal to the larger
of the maximum values of d

(
pY

of(s), pY
og(s)

)
and d

(
pZ

of(t), pZ
og(t)

)
. If w ∈ X is where

d(f, g) takes its maximum, it follows that

d
(
f(w), g(t)

)
=

max
{

d
(
pY

of(w), pY
og(w)

)
, d

(
pZ

of(w), pZ
og(w)

) }

which is less than or equal to the distance between Φ(f) and Φ(g) as described above.

3. The distance between f and g is the maximum value of the distance between f(x) and
g(x) as x runs through the elements of x, which is the greater of the maximum distances between
f(x) and g(x) as x runs through the elements of C, where C runs through the set {A,B}. But
the second expression is equal to the larger of the distances between d(f |A, g|A) and d(f |B, g|B).
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Therefore the map described in the problem is distance preserving. As in the previous exercise, to
complete the proof it will suffice to verify that the map is onto. The surjectivity is equivalent to
saying that a function is continuous if its restrictions to the closed subsets A and B are continuous.
But we know the latter is true.

4. Let ε > 0 be given. We claim that the distance between f × g and f ′× g′ is less than ε if the
distance between f and f ′ is less than ε and the distance between g and g ′ is less than ε. Choose
u0 ∈ X and v0 ∈ Z so that

d
(
f ′ × g′(u0, v0), f × g(u0, v0),

)

is maximal and hence equal to the distance between f × g and f ′ × g′. The displayed quantity is
equal to the greater of d

(
f ′(u0), f(u0)

)
and d

(
g′(v0), g(v0)

)
. These quantities in turn are less

than or equal to d(f ′, f) and d(g′, g) respectively. Therefore if both of the latter are less than ε it
follows that the distance between f ′ × g′ and f × g is less than ε.

5. (i) Follow the hint. We then have V (h) oV (f) = V (h of) = V (id), which is the identity.
Likewise, we also have V (f) oV (h) = V (f oh) = V (id), which is the identity.

(ii) Again follow the hint. We then have U(f) oU(h) = U(h of) = V (id), which is the identity.
Likewise, we also have U(h) oV (f) = V (f oh) = V (id), which is the identity.

(iii) Let f : A → A′ and g : B → B′ be the homeomorphisms. Let U(f−1) oV (g) =
V (g) oU(f−1) — equality holds by associativity of composition. By the first two parts of the
exercise this map is the required homeomorphism from C(A,B) to C(A′, B′).

6. It will be convenient to denote α(γ, γ ′) generically by γ + γ ′. The construction then
implies that the distance between ξ + ξ ′ and η + η′ is the larger d(ξ, η) and d(ξ′, η′). Therefore the
concatenation map is distance preserving.

7. Follow the hint. If y 6= y′, then the values of k(y) at every point is X, and hence it is not
equal to y′, the value of k(y′) at every point of X. Therefore k is 1–1.

Next, we shall verify the set-theoretic identities described above. If y ∈ U then since k(y) is
the function whose value is y at every point we clearly have k(y) ∈ W(K,U), and hence k(U) ⊂
W(K,U) ∩ Image(k). Conversely, any constant function in the image of the latter is equal to k(y)
for some y ∈ U . The identity k−1(W(K,U) ) = U follows similarly.

8. As indicated in the hint, without loss of generality we may assume that s < t. Given a
function f in Diff(A,B), the Mean Value Theorem implies that

f(t) − f(s) = f ′(ξ) · (t − s)

for some ξ ∈ (s, t). By hypothesis |f ′(x)| ≤ B for all x, and therefore |f(t)− f(s)| = |f ′(ξ)||t− s| ≤
B · |t − s|. Therefore, if ε > 0 and δ = ε/B, then |s − t| < δ implies |f(s) − f(t)| < ε.

IV.2 : Adjoint equivalences

Additional exercises

1. The map A : F(X × Y,Z) → F(X, F(Y,Z) ) sends h : X × Y → Z to the function h[

such that [h[(x)](y) = h(x, y). The argument proving the adjoint formula for spaces of continuous
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functions modifies easily to cover these examples, and in fact in this case the proof is a bit easier
because it is not necessary to consider metrics or topologies.

2. Let y0 ∈ Y , and let L : Y × [0, 1] → Y be the map sending (y, t) to the point (1− t)y + ty0 on
the line segment joining y to y0. If we set H(x, t) = L( f(x), t), then H satisfies the conditions in
the hint and defines a continuous map in C(X,Y ) joining f to the constant function whose values
is always y0. Thus for each f we know that f and the constant function with value y0 lie in the
same arc component of C(X,Y ). Therefore there must be only one arc component.

3. By the adjoint formula there are homeomorphisms

C
(
X, C(Y,Z)

)
∼= C(X × Y,Z) ∼= C(Y × X,Z) ∼= C

(
Y, C(X,Z)

)

and this yields the desired 1–1 correspondence of sets.
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V. Constructions on spaces

V.1 : Quotient spaces

Problem from Munkres, § 22, pp. 144 − 145

4. (a) The hint describes a well-defined continuous map from the quotient space W to the real
numbers. The equivalence classes are simply the curves g(x, y) = C for various values of C, and
they are parabolas that open to the left and whose axes of symmetry are the x-axis. It follows that
there is a 1–1 onto continuous map from W to R. How do we show it has a continuous inverse? The
trick is to find a continuous map in the other direction. Specifically, this can be done by composing
the inclusion of R in R

2 as the x-axis with the quotient projection from R
2 to W . This gives the

set-theoretic inverse to R
2 → W and by construction it is continuous. Therefore the quotient space

is homeomorphic to R with the usual topology.

(b) Here we define g(x, y) = x2 + y2 and the equivalence classes are the circles g(x, y) = C for
C > 0 along with the origin. In this case we have a continuous 1–1 onto map from the quotient
space V to the nonnegative real numbers, which we denote by [0,∞) as usual. To verify that this
map is a homeomorphism, consider the map from [0,∞) to V given by composing the standard
inclusion of the former as part of the x-axis with the quotient map R

2 → V . This is a set-theoretic
inverse to the map from V to [0,∞) and by construction it is continuous.

Additional exercises

0. We claim that every subset of X/R is both open and closed. But a subset of the quotient is
open and closed if and only if the inverse image has these properties, and every subset of a discrete
space has these properties.

1. We need to show that U ⊂ A is open if and only if r−1[U ] is open in X. The ( =⇒ ) implication
is immediate from the continuity of r. To prove the other direction, note that r oi = idA implies
that

U = i−1
[
r−1[U ]

]
= A ∩ r−1[U ]

and thus if the inverse image of U is open in X then U must be open in A.

2. Let pX and pA denote the quotient space projections for X and A respectively. By construc-
tion, j is the unique function such that j opA = pX |A and therefore j is continuous. We shall define
an explicit continuous inverse k : X/R → A/R0. To define the latter, consider the continuous map
pA

or : X → A/R0. If yRz holds then r(y)R0 r(z), and therefore the images of y and z in A/R0

are equal. Therefore there is a unique continuous map k of quotient spaces such that k opX = pA
or.

This map is a set-theoretic inverse to j and therefore j is a homeomorphism.

3. (a) The relation is reflexive because x = 1 · x, and it is reflexive because y = αx for some
α 6= 0 implies x = α−1y. The relation is transitive because y = αx for α 6= 0 and z = βy for y 6= 0
implies z = βαx, and βα 6= 0 because the product of nonzero real numbers is nonzero.

(b) Use the hint to define r; we may apply the preceding exercise if we can show that for each
a ∈ S2 the set r−1({a}) is contained in an R-equivalence class. By construction r(v) = |v|−1v, so
r(x) = a if and only if x is a positive multiple of a (if x = ρ a then |x| = ρ and r(x) = a, while if
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a = r(x) then by definition a and x are positive multiples of each other). Therefore if xRy then
r(x) = ± r(y), so that r(x)R0 r(y) and the map

S2/[x ≡ ±x] −→ RP
2

is a homeomorphism.

4. Needless to say we shall follow the hints in a step by step manner.

Let h : D2 → S2 be defined by

h(x, y) = (x, y,
√

1 − x2 − y2 ).

Verify that h preserves equivalence classes and therefore induces a continuous map h on
quotient spaces.

To show that h is well-defined it is only necessary to show that its values on the R′-equivalence
classes with two elements are the same for both representatives. If π : S2 → RP

2 is the quotient
projection, this means that we need π oh(u) = π oh(v) if |u| = |v| = 1 and u = −v. This is
immediate from the definition of the equivalence relation on S2 and the fact that h(w) = w if
|w| = 1.

Why is h a 1 − 1 and onto mapping?

By construction h maps the equivalence classes of points on the unit circle onto the points of
S2 with z = 0 in a 1–1 onto fashion. On the other hand, if u and v are distinct points that are
not on the unit circle, then h(u) cannot be equal to ±h(v). The inequality h(u) 6= −h(v) follows
because the first point has a positive z-coordinate while the second has a negative z-coordinate.
The other inequality h(u) 6= h(v) follows because the projections of these points onto the first two
coordinates are u and v respectively. This shows that h is 1–1. To see that it is onto, recall that
we already know this if the third coordinate is zero. But every point on S2 with nonzero third
coordinate is equivalent to one with positive third coordinate, and if (x, y, z) ∈ S 2 with z > 0 then
simple algebra shows that the point is equal to h(x, y).

Finally, prove that RP
2 is Hausdorff and h is a closed mapping.

If the first statement is true, then the second one follows because the domain of h is a quotient
space of a compact space and continuous maps from compact spaces to Hausdorff spaces are always
closed. Since h is already known to be continuous, 1–1 and onto, this will prove that it is a
homeomorphism.

So how do we prove that RP
2 is Hausdorff? Let v and w be points of S2 whose images in

RP
2 are distinct, and let Pv and Pw be their orthogonal complements in R

3 (hence each is a 2-
dimensional vector subspace and a closed subset). Since Euclidean spaces are Hausdorff, we can find
an ε > 0 such that Nε(v)∩Pv = ∅, Nε(w) ∩Pw = ∅, Nε(v) ∩Nε(w) = ∅, and Nε(−v)∩Nε(w) = ∅.
If T denotes multiplication by −1 on R

3, then these conditions imply that the four open sets

Nε(v), Nε(w), Nε(−v) = T (Nε(v)) , Nε(−w) = T (Nε(w))

are pairwise disjoint. This implies that the images of the distinct points π(v) and π(w) in RP
2 lie in

the disjoint subsets π [Nε(v) ] and π [Nε(w) ] respectively. These are open subsets in RP
2 because

their inverse images are given by the open sets Nε(v)∪Nε(−v) and Nε(w)∪Nε(−w) respectively.

5. A set W belongs to (g of)∗T if and only if (g of)−1[W ] is open in X. But

(g of)−1[W ] = f−1
[
g−1[W ]

]
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so the condition on W holds if and only if g−1[W ] belongs to f∗T. The latter in turn holds if and
only if w belongs to g∗ (f∗T).

6. The object on the left hand side is the family of all sets having the form (f oh)−1[V ] where
V belongs to T. As in the preceding exercise we have

(f oh)−1[V ] = h−1
[
f−1[V ]

]

so the family in question is just h∗ (f∗T).

7. Let p : X × Y → X be projection onto the first coordinate. Then uRv implies p(u) = p(v)
and therefore there is a unique continuous map X × Y/R → X sending the equivalence class of
(x, y) to x. Set-theoretic considerations imply this map is 1–1 and onto, and it is a homeomorphism
because p is an open mapping.

8. (a) If X/R is Hausdorff then the diagonal ∆(X/R) is a closed subset of (X/R) × (X/R).
But π × π is continuous, and therefore the inverse image of ∆(X/R) must be a closed subset of
X × X. But this set is simply the graph of R.

(b) If π is open then so is pi × π, for the openness of π implies that π × π takes basic open
subsets of X × X into open subsets of (X/R) × (X/R). By hypothesis the complementary set
X × X − ΓR is open in X × X, and therefore its image, which is

(X/R) × (X/R) − ∆(X/R)

must be open in (X/R) × (X/R). But this means that the diagonal ∆(X/R) must be a closed
subset of (X/R)×(X/R) and therefore that X/R must satisfy the Hausdorff Separation Property.

(c) The condition on ΓR implies that each equivalence class is open. But this means that each
point in X/R must be open and hence the latter must be discrete.

9. (i) The binary relation R is symmetric and transitive but not symmetric. Therefore the
equivalence relation E generated by R consists of the union R with the diagonal of D2; in other
words, u E v if and only if u = v or u R v, and if u 6= v then u E v if and only if u = αv, where
|u| = |v| = 1 and αd = 1.

(ii) In order to prove the existence of the continuous mapping h∗ we need to show that
h(u) = h(v) if u R v and u 6= v; i.e., u = αv, where |u| = |v| = 1 and αd = 1. Under these conditions
we have h(z) = (0, zd), so if u and v satisfy the given conditions then h(u) = (0, ud) = (0, αdvd)
because αd = 1. Therefore h is constant on equivalence classes, which implies the existence of h∗.

Since D2 is compact and C
2 is Hausdorff, by Theorem III.1.9, the mapping h∗ is a homeomor-

phism onto its image if and only if it is 1–1. This is equivalent to showing that h(u) = h(v) implies
u R v.

Suppose that h(u) = h(v); taking coordinates, we must have (1−|u|)u = (1−|v|)v and ud = vd.
The latter implies that |u|d = |v|d, which in turn implies that |u| = |v|. There are now two cases.
CASE 1: Suppose that |u| = |v| < 1. Then |u| = |v| implies 1 − |u| = 1 − |v|, and if we combine
this with the equation for first coordinates we see that u = v. CASE 2: Suppose that |u| = |v| = 1.
In this case h(u) = (0, ud) and h(v) = (0, vd), so if the two image points are equal then 1 = (u/v)d;
therefore if α = u/v, then αd = 1 and u = α v, so that u R v, which is what we wanted to show.

(iii) Follow the hint. We know that z → zd maps D2 to itself, and if z 6= 0 then the equivalence
class of z consists of all numbers of the form α z, where αd = 1; in the exceptional case where z = 0,
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the equivalence class of z is merely {0}. In all cases we know that u ∼ v implies ud = vd, so if
h(z) = zd then u ∼ v implies h(u) = h(v), which means that h = h∗ op, where p : D2 → D2/F is
the quotient projection. The mapping h∗ is onto because h is onto, so by Theorem III.1.9 it is only
necessary to verify that h∗ is 1–1, or equivalently that h(u) = h(v) implies u ∼ v. If u 6= 0, then
v 6= 0 too and we have up = vp; as in (ii), this implies that u = α v for some α such that αd = 1.
On the other hand if u = 0 and h(v) = h(0) = 0, then v = 0 so that u ∼ v in this case too.

V.2 : Sums and cutting and pasting

Additional exercises

1. ( =⇒ ) If X is locally connected then so is every open subset. But each Aα is an open
subset, so each is locally connected.

( ⇐= ) We need to show that for each x ∈ X and each open set U containing x there is an
open subset V ⊂ U such that x ∈ V and V is connected. There is a unique α such that x = iα(a)
for some a ∈ Aα. Let U0 = i−1

α (U). Then by the local connectedness of Aα and the openness of U0

there is an open connected set V0 such that x ∈ V0 ⊂ U0. If V = iα(V0), then V has the required
properties.

2. X is compact if and only if each Aα is compact and there are only finitely many (nonempty)
subsets in the collection.

The ( =⇒ ) implication follows because each Aα is an open and closed subspace of the compact
space X and hence compact, and the only way that the open covering {Aα } of X, which consists
of pairwise disjoint subsets, can have a finite subcovering is if it contains only finitely many subsets.
To prove the reverse implication, one need only use a previous exercise which shows that a finite
union of compact subspaces is compact.

3. Since the exercise asks for details in a sketch to be filled in, we shall begin by reprinting this
sketch: — Let A ⊂ S2 be the set of all points (x, y, z) ∈ S2 such that |z| ≤ 1

2 , and let B be the set
of all points where |z| ≥ 1

2 . If T (x) = −x, then T [A] = A and T [B] = B so that each of A and B
(as well as their intersection) can be viewed as a union of equivalence classes for the equivalence
relation that produces RP

2. By construction B is a disjoint union of two pieces B± consisting of
all points where sign(z) = ± 1, and thus it follows that the image of B in the quotient space is
homeomorphic to B+

∼= D2. Now consider A. There is a homeomorphism h from S1 × [−1, 1] to A
sending (x, y, t) to (α(t)x, α(t)y, 1

2 t) where

α(t) =

√
1 −

t2

4

and by construction h(−v) = −h(v). The image of A in the quotient space is thus the quotient of
S1 × [−1, 1] modulo the equivalence relation u ∼ v ⇐⇒ u = ±v. This quotient space is in turn
homeomorphic to the quotient space of the upper semicircular arc S1

+ (all points with nonnegative
y-coordinate) modulo the equivalence relation generated by setting (−1, 0, t) equivalent to (1, 0,−t),
which yields the Möbius strip. The intersection of this subset in the quotient with the image of B
is just the image of the closed curve on the edge of B+, which also represents the edge curve on
the Möbius strip.

We shall go through the insertions needed at various steps in this argument.
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Let A ⊂ S2 be the set of all points (x, y, z) ∈ S2 such that |z| ≤ 1
2 , and let B be the set of all

points where |z| ≥ 1
2 . If T (x) = −x, then T [A] = A and T (B) = B [etc.]

This is true because if T (v) = w, then the third coordinates of both points have the same
absolute values and of course they satisfy the same inequality relation with respect to 1

2
.

By construction B is a disjoint union of two pieces B± consisting of all points where sign(z) =
± 1,

This is true the third coordinates of all points in B are nonzero.

There is a homeomorphism h from S1× [−1, 1] to A sending (x, y, t) to (α(t)x, α(t)y, 1
2 t) where

α(t)s =

√
1 −

t2

4

One needs to verify that h is 1–1 onto; this is essentially an exercise in algebra. Since we are
dealing with compact Hausdorff spaces, continuous mappings that are 1–1 onto are automatically
homeomorphisms.

This quotient space [S1× [−1, 1] modulo the equivalence relation u ∼ v ⇐⇒ u = ±v] is in turn
homeomorphic to the quotient space of the upper semicircular arc S1

+ (all points with nonnegative
y-coordinate) modulo the equivalence relation generated by setting (−1, 0, t) equivalent to (1, 0,−t),
which yields the Möbius strip.

Let A and B be the respective equivalence relations on S1
+× [−1, 1] and S1× [−1, 1], and let A

and B be the respective quotient spaces. By construction the inclusion S1
+ × [−1, 1] ⊂ S1 × [−1, 1]

passes to a continuous map of quotients, and it is necessary and sufficient to check that this map
is 1–1 and onto. This is similar to a previous exercise. Points in S1 − S1

+ all have negative second
coordinates and are equivalent to unique points with positive second coordinates. This implies
that the mapping from A to B is 1–1 and onto at all points except perhaps those whose second
coordinates are zero. For such points the equivalence relations given by A and B are identical, and
therefore the mapping from A to B is also 1–1 and onto at all remaining points.

4. We can and shall view X as A ∪id B.
Consider the map F0 : AtB → AtB defined by H−1 on A and the identity on B. We claim

that this passes to a unique continuous map of quotients from X to A∪h B; i.e., the map F0 sends
each nonatomic equivalence classes { (c, 1), (c, 2) } for X = A∪id B to a nonatomic equivalence class
of the form { (u, 1), (h(u), 2) } for A ∪h B. Since F0 sends (c, 1) to (h−1(c), 1) and (c, 2) to itself,
we can verify the compatibility of F0 with the equivalence relations by taking u = h−1(c). Passage
to the quotients then yields the desired map F : X → A ∪h B.

To show this map is a homeomorphism, it suffices to define Specifically, start with G0 = F−1
0 ,

so that G0 = H on A and the identity on B. In this case it is necessary to show that a nonatomic
equivalence class of the form { (u, 1), (h(u), 2) } for A∪hB gets sent to a nonatomic equivalence class
of the form { (c, 1), (c, 2) } for X = A ∪id B. Since G0 maps the first set to { (h(u), 1), (h(u), 2) }
this is indeed the case, and therefore G0 also passes to a map of quotients which we shall call G.

Finally we need to verify that F and G are inverses to each other. By construction the maps
F0 and G0 satisfy F ([y]) = [F0(y)] and G([z]) = [G0(z)], where square brackets denote equivalence
classes. Therefore we have

G oF ([y]) = G ([F0(y)]) = [G0 (F0(y))]
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which is equal to [y] because F0 and G0 are inverse to each other. Therefore G oF is the identity
on X. A similar argument shows that F oG is the identity on A ∪h B.

To construct the example where X is not homeomorphic to A ∪h B, we follow the hint and
try to find a homeomorphism of the four point space {± 1} × {1, 2} to itself such that X is not

homeomorphic to A ∪h B is connected; this suffices because we know that X is not connected.
Sketches on paper or physical experimentation with wires or string are helpful in finding the right
formula.

Specifically, the homeomorphism we want is given as follows:
(−1, 1) ∈ A+ −→ (1, 2) ∈ A−

(1, 1) ∈ A+ −→ (1, 1) ∈ A−

(1, 2) ∈ A+ −→ (−1, 1) ∈ A−

(−1, 2) ∈ A+ −→ (−1, 2) ∈ A−

The first of these implies that the images of S1
+ × {2} and S1

− × {1} lie in the same component of
the quotient space, the second of these implies that the images of S1

− × {1} and S1
+ × {1} both lie

in the same component, and the third of these implies that the images of S1
+ × {2} and S1

− × {2}
also lie in the same component. Since the entire space is the union of the images of the connected
subsets S1

± × {1} and S1
± × {2} it follows that A ∪h B is connected.

FOOTNOTE. The argument in the first part of the exercise remains valid if A and B are open
rather than closed subsets.

5. (a) For each j let inj : Xj →
∐

k Xk be the standard injection into the disjoint union, and
let

P :
∐

k

Xk −→
∨

k

(Xk, xk)

be the quotient map defining the wedge. Define Yj to be P o inj [Xj ]. By construction the map
P o inj is continuous and 1–1; we claim it also sends closed subsets of Xj to closed subsets of the
wedge. Suppose that F ⊂ Xj is closed; then P o inj [F ] is closed in the wedge if and only if its
inverse image under P is closed. But this inverse image is the union of the closed subsets inj [F ]
and

∐
k{xk} (which is a finite union of one point subsets that are assumed to be closed). It follows

that Yj is homeomorphic to X + j. The condition on Yk ∩Y` for k 6= ` is an immediate consequence
of the construction.

The assertion that the wedge is Hausdorff if and only if each summand is follows because a
subspace of a Hausdorff space is Hausdorff, and a finite union of closed Hausdorff subspaces is
always Hausdorff (by a previous exercise).

To verify the assertions about compactness, note first that for each j there is a continuous
collapsing map qj from ∨k (Xk, xk) to (Xj , xj), defined by the identity on the image of (Xj , xj)
and by sending everything to the base point on every other summand. If the whole wedge is
compact, then its continuous under qj, which is the image of Xj , must also be compact. Conversely
if the sets Xj are compact for all j, then the (finite!) union of their images, which is the entire
wedge, must be compact.

To verify the assertions about connectedness, note first that for each j there is a continuous
collapsing map qj from ∨k (Xk, xk) to (Xj , xj), defined by the identity on the image of (Xj , xj) and
by sending everything to the base point on every other summand. If the whole wedge is connected,
then its continuous under qj , which is the image of Xj , must also be connected. Conversely if
the sets Xj are connected for all j, then the union of their images, which is the entire wedge,
must be connected because all these images contain the base point. Similar statements hold for
arcwise connectedness and follow by inserting “arcwise” in front of “connected” at every step of
the argument.
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(b) To prove existence, first observe that there is a unique continuous map F̃ :
∐

k Xk → Y

such that inj
o F̃ = Fj for all j. This passes to a unique continuous map F on the quotient space

∨k (Xk, xk) because F̃ is constant on the equivalence classes associated to the quotient projection
P . This constructs the map we want; uniqueness follows because the conditions prescribe the
definition at every point of the wedge.

(c) Strictly speaking, one should verify that the so-called weak topology is indeed a topology
on the wedge. We shall leave this to the reader.

To prove [1], note that ( =⇒ ) is trivial. For the reverse direction, we need to show that if E is
closed in Y then h−1[E] is closed with respect to the so-called weak topology we have defined. The
subset in question is closed with respect to this topology if and only if h−1[E] ∩ ϕ[Xj ] is closed in
ϕ[Xj ] for all j, and since ϕj maps its domain homeomorphically onto its image, the latter is true
if and only if ϕ−1 oh−1[E] is closed in Xj for all j. But these conditions hold because each of the
maps ϕj

oh is continuous. To prove [2], note first that there is a unique set-theoretic map, and then
use [1] to conclude that it is continuous.

(d) For each j let yj ∈ Xj be a point other than xj , and consider the set E of all points yj . This
is a closed subset of the wedge because its intersection with each set ϕ[Xj ] is a one point subset
and hence closed. In fact, every subset of E is also closed by a similar argument (the intersections
with the summands are either empty or contain only one point), so E is a discrete closed subset of
the wedge. Compact spaces do not have infinite discrete closed subspaces, and therefore it follows
that the infinite wedge with the weak topology is not compact.

We shall conclude this document by filling in some details in the final remark in the exercises
for Section V.2. This remark is reprinted here for the sake of convenience:

Remark. If each of the summands in (d) is compact Hausdorff, then there is a natural candidate

for a strong topology on a countably infinite wedge which makes the latter into a compact Hausdorff

space. In some cases this topology can be viewed more geometrically; for example, if each (Xj , xj)
is equal to (S1, 1) and there are countably infinitely many of them, then the space one obtains is the

Hawaiian earring in R
2 given by the union of the circles defined by the equations

(
x −

1

2k

)2

+ + y2 =
1

22k
.

As usual, drawing a picture may be helpful. The kth circle has center (1/2k , 0) and passes through the

origin; the y-axis is the tangent line to each circle at the origin.

SKETCHES OF VERIFICATIONS OF ASSERTIONS IN THIS REMARK.

If we are given an infinite sequence of compact Hausdorff pointed spaces { (Xn, xn) } we can
put a compact Hausdorff topology on their wedge as follows. Let Wk be the wedge of the first k
spaces; then for each k there is a continuous map

qk :
∨

n

(Xn, xn) −→ Wk

(with the so-called weak topology on the wedge) that is the identity on the first k summands and
collapses the remaining ones to the base point. These maps are in turn define a continuous function

q :
∨

n

(Xn, xn) −→
∏

k

Wk
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whose projection onto Wk is qk. This mapping is continuous and 1–1; if its image is closed in the
(compact!) product topology, then this defines a compact Hausdorff topology on the infinite wedge
∨n(Xn, xn).

Here is one way of verifying that the image is closed. For each k let ck : Wk → Wk−1 be the
map that is the identity on the first (k − 1) summands and collapses the last one to a point. Then
we may define a continuous map C on

∏
k≥1 Wk by first projecting onto the product

∏
k≥2 Wk

(forget the first factor) and then forming the map
∏

k≥2 Wk. The image of q turns out to be the
set of all points x in the product such that C(x) = x. Since the product is Hausdorff the image set
is closed in the product and thus compact.

A comment about the compactness of the Hawaiian earring E might be useful. Let Fk be the
union of the circles of radius 2−j that are contained in E, where j ≤ k, together with the closed
disk bounded by the circle of radius 2−(k+1) in E. Then Fk is certainly closed and compact. Since
E is the intersection of all the sets Fk it follows that E is also closed and compact.

11


