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VIII . The fundamental group

VIII.1 : Definitions and basic properties

Problems from Munkres, § 52, pp. 334 − 335

2. We shall start by translating the conclusion into the notation in the course notes. Given a
curve θ, Munkres’ notation θ̂ refers to the curve we call −θ; for a curve defined on [0, 1] we have
−θ(t) = θ(1 − t). So in our terminology the identity to be verified is

−(α + β) = (−β) + (−α) .

Recall that {α+β}(t) = α(2t) if t ≤ 1
2 and {α+β}(t) = β(2t−1) if t ≤ 1

2 . Therefore −{α+β}(t) =
{α + β}(1 − t) is given by

(a) α(2(1 − t)) = α(2 − 2t) if (1 − t) ≤ 1
2 or equivalently if t ≥ 1

2 ,

(b) β(2(1 − t) − 1) = β(1 − 2t) if (1 − t) ≥ 1
2 or equivalently if t ≤ 1

2 .

Similarly, we see that {(−β) + (−α)}(t) is given by

(c) −β(2t) = β(1 − 2t) if t ≤ 1
2
,

(d) −α(2t − 1) = α
(
1 − (2t − 1)

)
= α(2 − 2t) if t ≥ 1

2
.

Therefore we have shown that for each t ∈ [0, 1] the values of −(α + β) and (−β) + (−α) at t are
the same, and hence the two curves are equal.

4. Let i : A → X denote the inclusion map. Since the fundamental group construction defines
a covariant functor, we have r∗ oi∗ = idπ1(A). Therefore if u ∈ π1(A, a0) we have u = r∗(i∗(u)) and
therefore u lies in the image of r∗, which means that r∗ is surjective.

7. (a) In order to prove functional identities, one needs to show that the values of both sides of
the equation at every point s in the domain are the same. We apply this to verify the associativity,
neutral element and inverse identities in Ω(G, 1):

Associativity. For all s we have

{(f ⊗ g) ⊗ h}(s) =
(
f(s) · g(s)

)
· h(s) = f(s) ·

(
g(s) · h(s)

)
= {f ⊗ (g ⊗ h)}(s) .

Neutral element. If C1(t) = 1 for all t, then for all s we have

{f ⊗ C1}(s) = f(s) · 1 = f(s) , {C1 ⊗ f}(s) = 1 · f(s) = f(s) .
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Inverses. If g(t) = f(t)−1 for all t, then for all s we have

{f ⊗ g}(s) = f(s) · g(s) = 1 = C1(s) , {g ⊗ f}(s) = g(s) · f(s) = 1 = C1(s) .

(b) The crucial point to verify is that if f0 and g0 are endpoint preserving homotopic to f1 and
g1 respectively, then f0 ⊗ g0 is endpoint preserving homotopic to f1 ⊗ g1. If we know this, then we
can define a binary operation on π1(G, 1) by noting that there is a well defined binary operation
on the latter with [f ] ⊗ [g] = [f ⊗ g]. The associativity, neutral element and inverse identities will
then follow from the corresponding identities derived in (a).

To prove the statement in the preceding paragraph, note that if H and K are endpoint pre-
serving homotopies from f0 and g0 to f1 and g1 respectively, then H ⊗ K is endpoint preserving
homotopy from f0 ⊗ g0 to f1 ⊗ g1.

(c) Follow the hint. Direct computation yields the identity

f + g = (f + C1) ⊗ (C1 + g)

from which we find that [f ] · [g] = [f + C1] ⊗ [C1 + g] = [f ] ⊗ [g].

(d) For each value of s either {f + C1}(s) or {C1 + g}(s) is equal to 1, so these two curves
commute with respect to the “⊗” operation. Once again applying the reasoning in (c), we find
that [f ] ⊗ [g] = [g] ⊗ [f ] for all [f ] and [g]. The main conclusion of (c) now implies that [f [·[g] =
[f ] ⊗ [g] = [g] ⊗ [f ] = [g] · [f ].

Problems from Hatcher, pp. 38 − 40

10. This is very similar to parts of the preceding exercise. Let iX : (X,x0) → (X×Y, (x0, y0)) be
the slice inclusion sending x to (x, y0), and let iY : (Y, y0) → (X ×Y, (x0, y0)) be the slice inclusion
sending y to (x0, y). The goal is to construct a homotopy from (iX

of)+(iY og) to (iY og)+(iX of).
As is always the case with mappings into products, it is enough to construct the homotopies for
the coordinate projections of these maps onto (X,x0) and (Y, y0). In other words, we only need to
construct homotopies

pX
o

(
(iX of) + (iY og)

)
to pX

o

(
(iY og) + (iX of)

)

pY
o

(
(iX of) + (iY og)

)
to pY

o

(
(iY og) + (iX of)

)

(where pX and pY are coordinate projections), and we shall explain how these may be found using
homotopies we have already constructed (for our puposes, this is “explicit” enough).

Since pX
oiX = idX , pY

oiY = idY , pX
oiY = constant(x0) and pY

oiX = constant(y0), we can
translate the display to conclude that we only need to construct homotopies from f +constant(x0)
to constant(x0) + f and from g + constant(y0) to constant(y0) + g. This can be done by splicing
together the standard homotopies from h + constant to h and from h to constant + h for h = f or
g.

13. As stated, the problem has an almost trivial solution which require NO HYPOTHESES on
the map of fundamental groups or the arcwise connectedness of A. Here is the solution: Given any
curve γ : [0, 1] → X with endpoints in A, the homotopy hs(t) = γ(st) defines a homotopy from
the constant curve with value γ(0) ∈ A to the original curve γ. Presumably the author intended
the following, which we shall prove below: ... iff every path in X with endpoints in A is endpoint

preserving homotopic to a curve in A.
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(=⇒) Suppose that i∗ : π1(A, x0) → π1(X,x0) is onto, and let a0, a1inA. Since A is arcwise
connected, there are continuous curves α0 and α1 joining x0 to a0 and a1 respectively.

We claim that every curve γ : [0, 1] → X such that γ(i) = ai for i = 0, 1 is endpoint preserving
homotopic to a curve of the form (−α0 + β) + α1, where β is a basepoint preserving closed curve
in X. In fact, if we set β equal to (α0 + γ) + (−α1), then we have the identities

[γ] = [C(a0) + γ + C(a1)] = [(−α0) + α0 + γ + (−α1) + α1] = [(−α0 + β) + α1]

when we adopt the convention in the course notes that endpoint preserving homotopy classes of
iterated concatenations do not depend upon where parentheses are inserted. The hypothesis in this
part of the problem is that β is endpoint preserving homotopic to a curve θ whose image lies in A,
and therefore [γ] = [(−α0) + β + α1] is equal to

(−α0 + θ) + α1

, where the image of the representative curve (−α0 + θ) + α1 is contained in A.

(=⇒) This follows immediately, for if γ is a closed curve in X which is endpoint (hence
basepoint) preserving homotopic to a curve θ whose image is in A, then [γ] = i∗([θ]).

Additional exercises

1. Parts of this exercise are similar to parts of Exercise 52.7 in Munkres, for which a solution is
given above.

(i) The first statement to prove is that the map sending (α, β) to α +β is continuous. We can
do this by showing that d(α′+β′, α+β) < ε if d(α′, α) < ε and d(β′, β) < ε. In fact, the maximum
distance between the points {α′ +β′}(s) and {α+β}(s) is the greater of (a) the maximum distance
between the points {α′}(s) and {α}(s), (b) the maximum distance between the points {β ′}(s) and
{β}(s).

We now turn to the homotopy assertions, and we shall use the notation of Proposition VIII.1.3.
Let HR : [0, 1] × [0, 1] → [0, 1] be the straight line homotopy from the identity to hR, and let HL :
[0, 1] × [0, 1] → [0, 1] be the straight line homotopy from the identity to hL. Define corresponding
maps KR,KL : Ω(X,x) × [0, 1] → Ω(X,x) by {KR(γ, t)}(s) = γ oHR(s, t) and {KL(γ, t)}(s) =
γ oHL(s, t). The definitions then imply that KL(γ, 0) = γ ohL = Cx + γ and KL(γ, 1) = γ, and
similarly we know that KR(γ, 0) = γ ohR = γ + Cx and KR(γ, 1) = γ. If γ′ is another element of
Ω(X,x0), then by construction the distance between KR(γ, t) and KR(γ′, t) is equal to the distance
between γ and γ′, and likewise for KR(γ, t) and KR(γ′, t). These imply that KL and KR are
continuous and hence yield homotopies of the types described in the statement of the exercise.

(ii) Follow the hint and imitate the reasoning in Munkres, Exercise 52.7. The results of (i) show
that (Y, e) = (Ω(X,x), Cx) is an H-space as defined following the statement of this exercise. We
shall prove more generally that π1((Y, e) is abelian using the approach for the exercise in Munkres.
Let m : Y × Y → Y denote the continuous binary operation, and define a binary operation “⊗”
on π1(Y, e) sending ([f ], [g]) to the class of the composite f ⊗ g(s) = m

(
f(s), g(s)

)
. We shall

often denote the right hand side by f(s) · g(s) for the sake of simplicity, but when we do so we have
to remember that this construction does not necessarily satisfy associativity or neutral element
identities; all we know is that f is basepoint preservingly homotopic to both f ·Ce and Ce · f . The
latter suffice to yield two weaker identities

[f + g] = [f + C1] ⊗ [C1 + g] , [f + g] = [C1 + g] ⊗ [f + C1]
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and since the right hand sides are equal to [f ]⊗ [g] and [g]⊗ [f ] respectively, it follows that the “⊗”
operation agrees with the usual group operation on the fundamental group, and both operations
are abelian.

(iii) If ε > 0, then there is some δ > 0 such that d(x, x′) < δ implies d( f(x), f(x′) ) < ε. It
follows that if α and β are curves such that d(α, β) < δ, then d(f oα, f oβ) < ε (because the distance
between two curves is the maximum distance between their values at points of the domain).

(iv) The second part follows from the first because continuous mappings from one compact
metric space to another are always uniformly continuous, so everything reduces to proving the
first assertion in the conclusion. For n ≥ 2, define πn(X) = π1(Ω

n−1(X,x),basepoint) as in the
statement of the exercise. By (ii) we know this is an abelian group. By (iii) and induction we
know that a basepoint preserving uniformly continuous mapping f induces a map with the same
properties, say Ωn−1(f), from Ωn−1(X,x) to Ωn−1(Y, y), and this construction is functorial because
it is given by composition of functions. Define f∗ : πn(X,x) → πn(Y, y) to be the homomorphism
of fundamental groups induced by Ωn−1(f).

Note. Hatcher and most other books covering homotopy theory define πn differently, but eventually
one almost always finds a proof that their construction(s) is/are equivalent to the one given here.

2. We claim that basepoint preserving maps from (S0, 1) to (X,x) are the same as maps from
{−1} to X and basepoint preserving homotopies are the same as homotopies of such mappings
{−1} → X. The first part is true because the basepoint of S0 must go to the basepoint of X, but
there are no constraints on where the second point can go. To see the statement on homotopies,
note that the restriction of a homotopy to {1} × [0, 1] must be constant but the restriction to
{−1} × [0, 1] can be an arbitrary continuous mapping from [0, 1] into X.

VIII.2 : An important special case

Problems from Munkres, § 58, pp. 366 − 367

2. (a) Infinite cyclic.

(c) Infinite cyclic.

(d) Infinite cyclic.

(f) Infinite cyclic.

(g) Infinite cyclic.

(h) Trivial.

(i) Infinite cyclic.

(j) Infinite cyclic.

9. (a) This was not included because our definition does not involve any choices of an initial

point on the circle.

(b) As in the statement of the exercise, let ω(t) = exp 2π i t, and let t0 ∈ R be such that
p(t0) = h oω(0), where p : R → S1 is the usual map p(t) = exp 2π i t. Let α be the unique path
lifting of h oω starting at t0. Then deg (h) is the unique integer d(h) such that α(1) = t0 + d(h) .
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Now let H : S1× [0, 1] → S1 be a homotopy from h to k, and let L : [0, 1]× [0, 1] → R be the unique
lifting of H such that L(0, 0) = t0 and p oL(s, t) = H(p(s), t). By the uniqueness of path lifings we
know that α(s) = L(s, 0) and the curve L(s, 1) is a lifting β of k. Furthermore, since L(1, t) and
L(0, t) are both liftings of the curve H|{1}× [0, 1]. it follows that there is some integer ∆ such that
L(1, t) = L(0, t)+∆ for all t. In particular, we have L(1, 1) = L(0, 1)+∆ and L(1, 0) = L(0, 0)+∆.
Now L(s, 0) = α(s) by the uniqueness of path liftings, and therefore ∆ = deg (h). On the other
hand, L(s, 1) is a lifting of k(s) = H(s, 1), and therefore it also follows that ∆ = deg (k). In words,
we have shown that (freely) homotopic maps from S1 to itself have the same degree.

(c) This one is probably easier to prove using the functoriality properties of the fundamental
group. The proof of the main theorem in this section immediately yields the following result:

CLAIM. If f is a basepoint preserving continuous mappings from S1 to itself (with say
f(1) = 1), then the self-homomorphism f∗ on π1(S

1, 1) ∼= Z is multiplication by deg (f).

Proof of the claim. Since the class [ω] generates π1(S
1, 1), it is enough to prove that

f∗([ω]) = deg (f) · [ω], and we can do this using the Path Lifting Property because the
image ∂(f) of f∗([ω]) = [f oω] in Z is given by taking a lifting θ of f oω starting at 0 ∈ R

and setting ∂(f) equal to θ(1). This coincides with the definition of degree for the mapping
f .

Before proceeding, we note that the claim yields the conclusion of the exercise if h and k are
basepoint preserving, for in that case we have

deg(h ok) · [ω]) = (h ok)∗([ω]) = (h∗
ok∗)([ω]) = h∗

(
deg(k) · [ω]

)
=

deg(k) · h∗([ω]) = deg(k) · deg(h) · [ω]

and since [ω] ∈ π1(S1, 1) ∼= Z has infinite order it follows that deg(h ok) = deg(h) · deg(k).

In order to apply the preceding discussion to h and k, we have to replace them with (freely)
homotopic mappings which ARE basepoint preserving. The easiest way to do this is to choose a
and b such that p(a) = h(1) and p(b) = k(1) and define homotopies by H(z, t) = h(z) · p(ta)−1 and
K(z, t) = k(z) · p(tb)−1; it then follows that H0 = h and H1 is basepoint preserving, and similarly
K0 = k and K1 is basepoint preserving. Applying (ii) and recalling that H1

oK1 is homotopic to
h ok , we find that

deg(h ok) = deg(H1
oK1) = deg(H1) · deg(H1) = deg(h) · deg(k)

which is what we wanted to prove.

Note. The tools developed in 205B yield a simpler proof which generalizes to a notion of degree
for continuous self maps of Sn when n ≥ 2.

(d) The unique lifting α of a constant map f is a constant map, so α(1) = α(0) implies that
the degree is zero. — For the identity, we know that ω is a unique lift, and here the degree is
ω(1) − ω(0) = 1. — For zn where n is an integer, we know that a unique lifting is given by
ωn(t) = nt, and in this case ωn(1) − ωn(0) = n is the degree; this applies to each of the final two
cases in the exercise.

(e) Suppose that h and k have the same degree, and let H1 and K1 be basepoint preserving
maps which are freely homotopic to h and k respectively. Since h ' H1 and k ' K1, it suffices to
show that if h and k have the same degree (so by (i) the same is true for H1 and K1), then H1

and K1 are homotopic. But the latter follows directly from the proof of the main result, for if the
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degrees are equal then ∂(H1) = ∂(K1), and hence the unique liftings of H1 and K1 starting at 0 are
endpoint preserving homotopic. We can then compose this homotopy with p to obtain a homotopy
from H1 to K1, and since homotopy of maps is an equivalence relation it will follow that h ' k.

Problems from Hatcher, pp. 38 − 40

3. (=⇒) Suppose that X is arcwise connected and π1(X,x0) is abelian. If α and β are two
continuous curves joining x0 to x1 ∈ X, we want to prove that α∗ = β∗. — The desired conclusion
is equivalent to proving that (α+(−β))∗ induces the identity on π1(X,x0) for all α and β, and if we
make the substitution γ = α +(−β) this translates into proving that for each closed curve γ which
starts and ends at x0 the automorphism γ∗ — which we have shown is given by γ∗(u) = [γ]−1 u [γ]
— is the identity. This identity holds if and only if π1(X,x0) is abelian, so α∗ = β∗ in this case.

(=⇒) Suppose now that we have α∗ = β∗ for all paths α and β from x0 to x1. By the same
reasoning as in the first part, it follows that γ∗(u) = [γ]−1 u [γ] is the identity for all closed curves
γ and u ∈ π1(X,x0). In other words, we have u = v−1uv for all u and v in the fundamental group.
But this is true if and only if π1(X,x0) is abelian.

16. If A ⊂ X and a retraction r : X → A exists, then the induced map in fundamental groups
π1(A) → π1(X) is 1–1 and the induced map r∗ in fundamental groups is onto, so it suffices to
prove that either π1(A) → π1(X) is not 1–1 or π1(A) is not isomorphic to a homomorphic image
of π1(X).

(a) If X = R
3 and A ∼= S1 then π1(X) is trivial but π1(A) ∼= Z. Since a nontrivial group

cannot be isomorphic to a homeomorphic image of a trivial group, there cannot be a retraction.

(b) This is a little informal, in part because the inclusion A → X is only described by means of an
unannotated drawing, but it can be justified if one describes the inclusion A ⊂ X explicitly; this turns
out to be possible, but at this stage it would take several paragraphs to explain everything in full detail.
In this case both π1(A) and π1(X) are infinite cyclic, and if B ⊂ X = S1×D2 is equal to S1×{0},
then the inclusion of A ∼= S1 in X is homotopic to the map S1 → B ∼= S1 given by something
like p of(t), where f : [0, 1] → R is the closed curve given by f(t) = (1 + h) sin t for some small
h > 0. By convexity f is homotopic to a constant curve in R, so p of is homotopic to a constant
curve in B, and hence the mapping A → B is null homotopic. But this means that the composite
π1(A) → π1(B) ∼= π1(X) is trivial. Since π1(A) and π1(X) are infinite cyclic, this means that the
map π1(A) → π1(X) is not 1–1, and we have noted that in such cases a retraction cannot exist.

17. The assignment modifies the question to ask for infinitely many homotopy classes of retrac-
tions for the slice inclusion j1 : S1 → S1 × S1 sending z to (z, 1). At the end of the exercise we
shall explain how one can extract a solution to the exercise as it is stated in Hatcher.

Given an integer n, let rn : S1 × S1 → S1 be the map sending (z, w) to z wn. It follows
that for each n we have rn

oj1 = id. To prove that rn and rm are not homotopic if m 6= n, let
j2 : S1 → S1 × S1 be the other slice inclusion j2(z) = (1, z). Then the degree of rn

oj2 is equal to
n, and therefore the homotopy classes of the mappings rn and rm are distinct if m 6= n.

Solution for the problem as stated in Hatcher. In this case S1∨S1 is identified with the subspace

S1 × {1} ∪ {1} × S1 ⊂ S1 × S1

and the slice inclusions j1, j2 factor through maps i1, i2 from S1 to S1 ∨ S1. Therefore if r′n =
rn|S

1 ∨ S1 we have r′n
oi1 = id and deg (r′n

oi2) = n.
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Additional exercises

0. This was done already as a step in the solution to Munkres, Exercise 58.9 (q.v.).

1. Follow the hint. Given continuous mappings f, g : S1 → S1, with product h(z), let α, β :
[0, 1] → R be liftings and let γ be their algebraic sum (if we write this symbolically, it will conflict
with the use of “+” for concatenation); as suggested by the hint, the curve γ is a lifting of h. By
definition the degree of h is equal to γ(1) − γ(0), and the latter is equal to

α(1) + β(1) − α(0) − β(0) =
(
α(1) − α(0)

)
+

(
β(1) − β(0)

)
= deg (f) + deg (g)

which is what we wanted to prove.

2. (i) It is probably best to start by describing Π(X) more explicitly. Its objects are the points
of X, and a morphism from x0 to x1 is an endpoint preserving homotopy class of curves from x0

to x1. The identity morphism for x is just the homotopy class of the constant curve at x, and if
α and β are curves joining x0 to x1 and x1 to x2 respectively, then the formal composite [β] o [α]
is merely [α + β] (note the order reversal!). The morphisms from x to itself then correspond to
elements of π1(X,x) (with reversed multiplication!), and [α]−1 = [−α] by the results of Sections
VIII1 and VIII.2.

Functoriality can now be seen fairly easily. On objects, each point x ∈ X goes to f(x) ∈ Y ,
and the homotopy class of a curve α joining x0 to x1 goes to the homotopy class f∗([α]) of f oα.
The results of this and the previous section imply that this does not depend on which α we choose
to represent an endpoint preserving homotopy class. Since f oα is constant if α is constant, it
follows that the identity morphism for x is sent to the identity morphism for f(x), and the chain
of identities

[f oβ] [f oα] = [f o(α + β)] = f∗([α + β]) = f∗([β][α])

shows that the construction preserves composition of morphisms.

3. Before starting, we recall the construction of Jk : π1(T
k,1) → Z

k: Let pk : R
k → T k be the

Cartesian kth power map p × · · · × p (k factors) from R
k to T k. Let 1 ∈ T k be the point whose

coordinates are all equal to the unit element of S1.

If γ is a basepoint preserving closed curve in T k which starts and ends at 1, the we can apply
the Path Lifting and Covering Homotopy Properties to each coordinatefunction of γ; this yields a
unique lifting of γ to a curve Γ : [0, 1] → R

k such that Γ(0) = 0, and Γ(1) ∈ Z
n because p oΓ(1) = 1.

As in the proof of the main result, Γ(1) only depends upon the basepoint preserving homotopy class
of γ, and hence the map γ → Γ(1) defines a map Jk : π1(T

k,1) → Z
k; the argument proving the

main result of this section also shows that Jk is a group isomorphism. The inverse map is given by
sending (d1, · · · , dk) to the homotopy class of the curve (p(d1t), · · · , p(dkt)), where p : R → S1 is
the usual map.

(i) If (a, b) ∈ Z
2, then m∗

oJ−1
2 sends (a, b) to the curve p(at) · p(bt) = p((a + b)t), and J−1

1

takes the latter curve to a + b ∈ Z
2.

(ii) Suppose that f is given as in the exercise. For each j between 1 and k let sj : S1 → T k

denote the slice inclusion onto the jth slice (all coordinates are 1 except possibly the j th one). Then
the images of the homomorphisms sj∗ generate pi1(T

k,1), so it is enough to compute the degree
of each map f osj . The latter is the map sending z to zcj , and therefore the degree is equal to cj .
This immediately yields the conclusion of part (ii).

4. (i) Since we are mapping into a product, it is enough to prove this for projection onto the
factors, and we have already done this in the second part of the preceding exercise.
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(ii) If ΦA is a homeomorphism, or even homotopic to a homeomorphism, then the induced
homomorphism ΦA∗ of π1(T

k,1) ∼= Z
k, which corresponds to left multiplication by A on Z

k,
must be an automorphism, and therefore detA must be equal to ± 1. Conversely, if detA = ± 1
and B = A−1, then by Cramer’s Rule B has integral entries and hence we can construct ΦB.
The definitions of the maps imply that ΦAB = ΦA

oΦB and similarly if B and A are reversed;
furthermore, if A is the identity matrix I then it follows that ΦI is the identity mapping. These
observations combine to imply that ΦB is inverse to ΦA.

(iii) The first part follows because an arbitrary self-homomorphism (endomorphism) of the
group π1(T

k,1) ∼= Z
k is given by some k × k matrix A with integral entries, and we have shown

that ΦA∗ corresponds to left multiplication by A. The second part follows because if this matrix
A is 1–1 and onto then ΦA is a basepoint preserving homeomorphism from T k to itself.

VIII.3 : Covering spaces

Problems from Munkres, § 53, p. 341

For these exercises, we do NOT assume the Default Hypothesis.

1. If p is given as in the exercise, then for each x ∈ X the whole space X is an evenly covered
open neighborhood of x in X.

2. We know that p ∗ −1[U ] is homeomorphic to U × F for some discrete space F . Since U is
connected, this means that the sheets U ×{y} are the connected components of U × F , and under
the homeomorphism they correspond to the connected components of p ∗ −1[U ].

4. Let z ∈ Z, and let U be an open neighborhood of z ∈ Z which is evenly covered; specifically,
let r−1[U ] be the union of the pairwise disjoint open subsets U1, · · · , Un such that r maps each
Uj homeomorphically onto U , and let yj ∈ Uj be the unique point such that r(yj) = z. Since q
is a covering space projection, for each j there is an open neighborhood Vj of yj in Y which is
evenly covered. Intersecting Vj with Uj if necessary, we might as well assume that Vj ⊂ U (an
open subset of an openly covered open set is also evenly covered!). Let W = ∩j r[Vj ]. Then
by construction z = r(yj) (for each j) lies in W , and this set is open in Z because r is an open
mapping. Furthermore, W is evenly covered by the union of the pairwise disjoint subsets Wj . Now
let Wj = r−1[W ] ∩ Vj , so that yj ∈ Wj and Wj is also evenly covered. Therefore, for all j the
inverse image q−1[Wj ] is homeomorphic to Wj × Fj , where Fj is discrete, such that the restriction
of q to q−1[Wj ] corresponds to projection onto Wj .

For each j let rj : Wj → W denote the homeomorphism determined by r. Since p = r oq, it
follows that

p−1[W ] = q−1
[
r−1[W ]

]
= q−1




⋃

j

Wj


 ∼=

∐

j

Wj × Fj
∼= W ×


∐

j

Fj




where we use the homeomorphisms Wj
∼= W at the last step. This implies that the open neigh-

borhood W of z is evenly covered with respect to p, and the latter means that p is also a covering
space projection.
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6. (a) Let p : X → Y be a covering space projection. This part of the exercise involves proving
that if Y has a stated topological property, then so does X. There are several distinct properties,
and we shall verify the assertions about them separately. Note that the priorities on the parts of
this exercise vary depending upon the specific property.

Hausdorff. Let x1 6= x2 in X. There are two cases depending upon whether or not p(x1) =
p(x2). If p(x1) 6= p(x2), then since Y is Hausdorff there are disjoint open neighborhoods U1

and U2 of p(x1) and p(x2) in Y , and their inverse images p−1[U1] and p−1[U2] are disjoint open
neighborhoods of x1 and x2 in X. On the other hand, if p(x1) = p(x2), let W be an evenly covered
open neighborhood of this point. Then p−1[W ] is an open set homeomorphic to a disjoint union
of copies of W . Since x1 6= x2, one of these copies contains x1 and another contains x2, and these
two copies of W in X are disjoint open neighborhoods of the two points.

Regular. Let x ∈ X. It suffices to prove the regularity condition for a set of open neighborhoods
V of x such that every open neighborhood of X contains a subneighborhood in V, for if x ∈ W
open and x ∈ V ⊂ W with V ∈ V, then x ∈ U ⊂ U ⊂ V implies the same inclusions with W
replacing V .

In view of the preceding discussion, let x ∈ V , where V is an open neighborhood of x such
that p[V ] = W is evenly covered and V is one of the sheets. Since Y is regular, there is an open
neighborhood U of p(x) such that p(x) ∈ U ⊂ U ⊂ W . Let U1 = p−1[U ] ∩ V be the sheet over U
which is contained in V . If we can prove that the closure U1 of U1 in X is contained in V , then the
defining condition for regularity will hold at the point x, and since x was chosen arbitrarily this
will imply that X is regular.

It will suffice to prove that p−1
[
U

]
∩ V , which contains U1, is closed in X because we would

then have U1 ⊂ p−1
[
U

]
∩ V ⊂ V . By construction and continuity we know that p−1

[
U

]
is closed

in X and it is contained in the evenly covered open subset p−1[W ]. If V ∗ denotes the union of all
sheets in p−1[W ] except X, then V ∗ is open and hence X − V ∗ is closed in X; with this notation
we can rewrite the inclusion in the preceding sentence in the form p−1

[
U

]
⊂ V ∪V ∗, and it follows

that

p−1
[
U

]
∩ V = p−1

[
U

]
∩ (X − V ∗)

and since the right hand side is an intersection of two closed subsets of X, it follows that the left
hand side is also a closed subset of X, which is what we needed to complete the proof.

Completely regular. By the preceding discussion we know that X is regular, and as in the
preceding discussion it suffices to prove that if V is an open neighborhood of x such that p[V ] = W
is evenly covered and V is one of the sheets. Let U be an open subneighborhood such that
x ∈ U ⊂ U ⊂ V , so that U ′ = p[U ] and V ′ = p[V ] are open neighborhoods of p(x) such that
p(x) ∈ U ′ ⊂ U ′ ⊂ V ′. Since a subspace of a completely regular space is regular, there is a
continuous function g : V ′ → [0, 1] such that g(p(x)) = 0 and g = 1 on V ′ − U ′; the composite g op
satisfies similar properties: The value of g op at x is zero and g op = 1 on V −U . If we define a new
function f : Xto[0, 1] such that f |U = g op|U and f |X − U = 0, then these functions agree on the
overlapping closed subset U −U , and therefore f defines a continuous function on X which is 1 at
x and 0 off U .

Locally compact Hausdorff. We already know that X is Hausdorff, so it is only necessary to
show that every x ∈ X has some open neighborhood whose closure is compact. As before, let V
be an open neighborhood of x such that p[V ] = W is evenly covered and V is one of the sheets.
Since Y is locally compact, it follows that there is some open neighborhood U of p(x) such that
U ⊂ V and U is compact. Let U1 = p−1[U ] ∩ V be the sheet over U which is contained in V ,
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and let F = p−1
[
U

]
∩ V . Since p|V is a homeomorphism onto an open subset, it follows that F

is homeomorphic to U and hence is compact. Therefore we have found an open neighborhood U1

of x and a compact subset F ⊂ X such that x ∈ U1 ⊂ F ⊂ V . Since X is compact we know that
F is closed in X, and therefore it follows that U1 is also compact. As before, we started with an
arbitrary x ∈ X, so the argument implies that X is locally compact near every point and hence is
a locally compact (Hausdorff) space.

(b) We shall first prove this when Y is Hausdorff (in which case X is also Hausdorff by part (a).
Let p : X → Y be a covering space projection such that Y is compact and there are only

finitely many sheets at each point of Y . We shall prove that X is a union of finitely many compact
subsets. Let y ∈ Y , and let Vy be an open neighborhood of y which is evenly covered. Since
a locally compact Hausdorff space is regular, there is some subneighborhood Wy of Vy such that
Wy ⊂ Vy (and Wy is compact). The family W of all sets Wy is an open covering of Y , so there is
a finite subcovering {Wy1

, · · · ,Wyk
}. Since the covering has finitely many sheets, each of the sets

p−1
[
Wyj

]
is also compact, and since these form a finite closed covering of X it follows that X is

also compact.

Here is a proof when Y is not necessarily Hausdorff.
Let U be an open covering of X. For each y ∈ Y , let Vy be an evenly covered open subset,

and let Vy,1, · · · Vy,k(y) denote the sheets over Vy (we know there are only finitely many). If
xj ∈ Vy,j is the unique point such that p(xj) = y, then there is an open subneighborhood Ωy,j of
xj which is contained in some open set Uα in the open covering U . Since p is an open mapping,
the set Wy = ∩j p [Ωy,j ] is an evenly covered open neighborhood of y which is contained in Vy. If
Wy,j = p−1[Wy] ∩ Vy,j , then p maps this set homeomorphically onto the open neighborhood Wy.

Since Y is compact, the open covering W of Y by the open subsets Wy has a finite subcovering
consisting of sets Wz, where z lies in some finite subset Z ⊂ Y . The sheets of the inverse images
p−1[Wz] then form an open covering of X such that each set in this open covering is contained
in some Uα which belongs to U . Therefore if for each Wz,j we choose some Uα(z,j) such that
Wz,j ⊂ Uα(z,j), then the open sets Uα(z,j) form a finite subcovering of U .

Problem from Hatcher, pp. 79 − 82

2. Assume that we are given covering space projections p1 : E1 → B1 and p2 : E2 → B2; we
need to prove that p1 × p2 is also a covering space projection.

Let (x1, x2) ∈ B1 ×B2. Then the hypotheses imply that for i = 1, 2 there is an evenly covered
open neighborhood Ui of Xi; i.e., there are discrete spaces Ai and Bi together with homeomorphisms
hi : p−1

i [Ui] → Ui×Ai such that proj(Ui) ohi is the restriction of pi to p−1
i [Ui]. We claim that U1×U2

is an evenly covered neighborhood of (x1, x2) in B1×B2. This is true because the homeomorphism

H : (p1×p2)
−1[U1 ×U2] = p−1

1 [U1]×p−1
2 [U2] −→ U1×A1 ×U2×A2

∼= (U1×U2)× (A1 ×A2)

(where the last map switches the second and third factors) is such that proj(U1 × U2) oH is the
restriction of p1 × p2 to (p1 × p2)

−1[U1 × U2].
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Additional exercises

1. (i) Let U be an open subset of B, and consider the following commutative diagram, which is
derived from the exercise by considering various restriction mappings:

p−1[U ]
ΦU−−−−−→ f−1 [ϕ[U ] ]

yp
yfϕ[U ]

U
ϕU

−−−−−→ ϕ[U ]

Let y ∈ Y , set x equal to ϕ−1(y), and let U be an evenly covered open neighborhood of x, so that
there is a homeomorphism h : p−1[U ] → U ×A satisfying the defining identity. Then the composite

h′ = (ϕU × id) oh oΦ1

U

is a homeomorphism from f−1 [ϕ[U ] ] to ϕ[U ] × A such that fϕ[U ] is h′ followed by coordinate
projection onto ϕ[U ]. Therefore ϕ[U ] is an evenly covered open neighborhood of y.

(ii) Let x ∈ X, and choose Uα in U such that x ∈ Uα. Since qα is a covering space projection,
we know that there is some open neighborhood V ⊂ Uα of x such that V is evenly covered by qα,
and since qα has the same values as p at all points (but a different domain and codomain) it follows
that V is also evenly covered by p.

2. Given x ∈ X we can find open neighborhoods U1 and U2 of x which are evenly covered by p1

and p2, and by local connectedness there is a connected subneighborhood U ⊂ U1 ∩ U2; it follows
that U is evenly covered with respect to both p1 and p2. If U = {Uγ | γ ∈ Γ} is an open covering
of E2 by open subsets which are connected and evenly covered by p1 and p2, then by part (ii) of
Exercise 1 it will suffice to show that the restricted maps

p−1
1 [Uγ ] = p−1

[
p−1
2 [Uγ ]

]
−→ p−1

2 [Uγ ]

determined by p are all covering space projections.

If U is connected and evenly covered by p1 and p2, let Let h1 : p−1
1 [U ] → U × A and h2 :

p−1
2 [U ] → U × B be homeomorphisms (where A and B are discrete spaces) such that proj(U) ohi

is the restriction of pi, and let q : U × A → U × B be the map unique continuous mapping from
p−1
1 [U ] = p−1

[
p−1
2 [U ]

]
to p−1

2 [U ] such that p
(
h−1

1 (u, a)
)

= h−1
2 ( q(u, a) ). By continuity, for each

a ∈ A the map q sends the connected subset U × {a} ⊂ U × A into some connected component
U × {b(a)} ⊂ U × B, and q is onto because p is onto. Since the composites

U × {a} −→ p−1
1 [U ] −→ U, U × {b} −→ p−1

2 [U ] −→ U

are homeomorphisms, it follows that q must map U × {a} homeomorphically onto U × {b(a)};
denote the corresponding homeomorphism from U to itself by qa. If we compose h with the union
of the homeomorphisms ϕ = ∪a qa : U × A → U × A and replace h with the composite ϕ oh,
then we obtain a new map q′ analogous to q but satisfying the condition that q maps U × {a} to
U × {b(a)} to the identity; note that q′ is onto because q is onto. It follows that q′ is a covering
space projection, and by part (i) of Exercise 1 it also follows that the map

p−1
1 [U ] = p−1

[
p−1
2 [U ]

]
−→ p−1

2 [U ]
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determined by p is also a covering space projection.

If we apply the reasoning of the preceding paragraph to the open covering of E2 by the sets
p−1
2 [Uγ ], where Uγ belongs to the previously described open covering U , we see that each of the

maps

p−1
1 [Uγ ] = p−1

[
p−1
2 [Uγ ]

]
−→ p−1

2 [Uγ ]

is a covering space projection, and as noted above this suffices to prove that p itself is a covering
space projection.

Note. Here is an example where p is not onto: Let X be an arbitrary nonempty space. Take
p : X → X q X to be inclusion into the first summand, and take p2 : X q X → X to be the
map which is the identity on each summand. There is a variation of this exercise in which one
replaces the surjectivity hypothesis on p by an assumption that E2 is connected; the relationship
with Exercise 2 is that if E2 is connected then one can prove that p is onto.

3. (i) Let y ∈ Y , let U be an evenly covered open neighborhood of f(x), and let V be an open
neighborhood of x such that f [V ] ⊂ U . We claim that V is evenly covered in Y ×X E. The
definitions imply that the inverse image of V is the subspace of V × E defined by f(v) = p(e),
and the inverse image is also the subspace of V × p−1[U ] defined by the same equation. If h is the
homeomorphism p−1[U ] → U × A which exists by the assumption that U is evenly covered, then
under this homeomorphism the inverse image of V corresponds to the set of all points (v, u, a) in
V × U × A such that f(v) = u; i.e, the inverse image is given by the product of A with the graph
of f |U . Since the graph is homeomorphic to U , it follows that the inverse image is homeomorphic
to U via coordinate projection; one can check directly that all these maps are compatible with the
appropriate projections onto U , and this shows that U is evenly covered.

For the second part, if a lifting ϕ exists, then the image of the map sending y to (y, ϕ(y)) is
contained in Y ×X E and hence determines a map s : Y → Y ×X E; by definition the composite of
s with projection onto Y is the identity. Conversely, if there is a map s : Y → Y ×X E such that
p(Y,f)s = 1Y , then the composite of s with j : Y ×X E ⊂ E satisfies p oj os = f , and therefore j os
is a lifting of f .

(ii) If f is a subspace inclusion then Y ×X E is just the set of all points (y, e) in Y ×p−1[Y ] such
that p(e) = y. This maps homeomorphically to p−1[Y ] by projection onto the second factor, and
an explicit inverse is given by the map sending e to (p(e), e). Both of these maps are compatible
with respect to the various projections onto Y .

4. Let x ∈ X and let U be an evenly covered open neighborhood of x. Since X is totally
disconnected there is an open subneighborhood V ⊂ U such that V is open and closed in X. By
continuity p−1[V ] is open and closed in E.

If y ∈ Y , let p(y) = x, so that x has an evenly covered open neighborhood V which is also
closed in X. Now let W be the sheet over V which contains y. We claim that W is open and closed
in Y . Openness follows because W is a sheet over an evenly covered open subset of X. To prove
that W is closed, let W ′ be the union of all the other sheets over V , so that W ′ is open and E−W ′

is closed. Then W = p−1[V ]∩ (X −W ′) shows that W is an intersection of two closed subsets and
hence W is closed in Y .

5. (i) More generally, if B is a base for the topology of X and E → X is a covering space
projection, then the subset B′ of all evenly covered open subsets of B is also a base because every
evenly covered open set is also a union of basic open subsets. Therefore if X is second countable,
then there is a countable base B of X by evenly covered open subsets.
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Let A be the family of all open subsets W ⊂ E which are sheets over evenly covered open
subsets V ⊂ X such that V ∈ B. We claim that A is a base for the topology on E. Since the
number of sheets over each V is countable by the countability assumption and the number of open
sets in B is countable, it follows that A is a countable family. Therefore we need only show that A
is a base for the topology.

Let C be the family of open subsets in E such that W ∈ C if and only if W is a sheet over an
evenly covered open subset V ⊂ X. Then C is a base for the topology on E, so it will suffice to
show that every subset in C is a union of open subsets in A. Let W ∈ C as above, and assume it
is a sheet over V . Then we can write V = ∪j Uj as a countable union of open sets Uj ∈ B, and
it follows that W is the union of the open subsets Nj = p−1[Uj ] ∩ W . By definition the sets Nj

belong to A, so we have shown that A forms a base for the topology of E.

(ii) Follow the hint. By a previously proved exercise in Munkres we know that E is T3, and
by the first part of this exercise it is also second countable. Therefore the Urysohn Metrization
Theorem implies that E is metrizable.

VIII.5 : Simply connected spaces

Additional exercises

1. (i) We need to show that g · x = x for some x only if g = 1. Let (u, v) denote a point
of S2 × S3, and suppose that g · (u, v) = (u, v); i.e., g · u = u and g · v = v. If g ∈ Cn then
g · (u, v) = (u, g · v), and the second coordinate is equal to v if and only if g = 1. On the other
hand, if g 6∈ Cn then g · (u, v) = (−u, v) 6= (u, v), so that g · (u, v) = (u, v) implies that g must be
equal to 1.

(ii) The preceding result yields a free action of D(2n) on the simply connected space S 2 ×S3,
and by the results in this section of the notes the fundamental group of the quotient space Xn =
S2 × S3/D(2n) has a fundamental group isomorphic to D(2n).

(iii) Let ∆ : D(2n) → Z2 be the homomorphism defined in the exercise, and identify Z2

with ± 1 as usual. Then the coordinate projection p : S2 × S3 → S2 has the property that
p(g · (u, v) ) = (∆(g) · u), and this implies that p passes to a map q from Xn to RP

2. Let γ be
a great circle curve in S2 which joins a basepoint z to its antipodal point −z, let v0 ∈ S3, take
β(t) = (γ(t), v0) ∈ S2 × S3, and let ρ : S2 × S3 → X be the quotient projection. Then ρ oγ is a
closed durve in X, and its image q oρ oγ generates the fundamental group of RP

2. Therefore the
map from π1(X) to π1() is nontrivial. Further analysis would show that the kernel of this map in
fundamental groups is just Cn, but this was not asked for in the exercise.

2. If the inclusion S1 ⊂ RP
n were a retract, then it would induce a monomorphism of

fundamental groups. Since π1(S
1) ∼= Z and π1(RP

n) is finite for n ≥ 2, this cannot happen.

3. (i) Under the given conditions, the result from this section imply that the map p∗;π1(X) →
π1(RP

n × RP
n) ∼= Z

2 × Z2 is injective and the number of sheets in the covering is the index of the
image of p∗. If there is only one sheet, then this map must be a homeomorphism (it is 1–1, onto,
continuous and open). Otherwise the number of sheets is the index of a subgroup of a group of order
4, and as such this number must be finite and even. (ii) If E is a connected space covering space
of X satisfying the default hypotheses and π1(X) is finite of odd order, then π1(E) is isomorphic
to a subgroup of π1(X) as in the first part of this exercise, but now the index of the subgroup
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must divide the odd number |π1(X)| and hence the index, which equals the number of sheets in
the covering, must be (finite and) odd. In particular, the index cannot be equal to 2.

VIII.6 : Homotopy of paths and line integrals

Additional exercises

1. Recall the definition of the winding number integral: If p(z) is never zero on a circle CR of
radius R about the origin and Γ(p,R) be the closed curve given by p(exp(R · 2π i t)) for 0 ≤ t ≤ 1,
then the winding number integral is equal to

∫

Γ(p,R)

x dy − y dx

x2 + y2

and its value is an integral multiple of 2π. By the results of this section, the integral factor is equal
to the degree of the following composite

S1 R×

−−−−−→ CR
p

−−−−−→ C − {0}
u

−−−−−→ S1

where R× denotes multiplication by R and u sends z to |z|−1 · z.

The preceding sentence implies that if the winding number is not zero then the displayed map
is not homotopic to a constant in C − {0} and hence that Γ(p,R) does not extend to a continuous
map from D2 into C − {0}. Now p(r · v) is a continuous extension of Γ(p,R) to a map D2 → C,
and by the preceding sentence we know that its image cannot be contained in C − {0}. Therefore
its image must contain the point 0; in other words there must be some z0 such that |z| < R and
p(z0) = 0.

2. The underlying idea is to show that the winding number is defined for p + q and it is equal
to the winding number of p, which by hypothesis is nonzero.

First of all, the condition |q| < |p| for |z| ≤ R implies that |p + q| ≥ |p| − |q| > 0 for |z| = R,
and therefore the winding number of p+q can be defined. To prove the winding numbers are equal,
it is only necessary to show that Γ(p,R) and Γ(p + q,R) are homotopic as maps into C−{0}. One
obvious idea is to consider the straight line homotopy p + t q where 0 ≤ t ≤ 1 and show that its
image lies in C = {0}. The verification of this statement is a slight embellishment on what was
already shown: |p + tq| ≥ |p| − t|q| ≥ |p| − |q| > 0.

3. We know that the value of the integral only depends upon the free homotopy class of γ,
and since there are only countably many free homotopy classes in [S1, U ] it follows that there are
only countably many possible values for the integral. Furthermore, since the line integral of a
concatenated curve is the sum of the line integrals of the two pieces, it follows that the line integral
of f defines a homomorphism S(f) from π1(U) to the additive complex numbers, with the value of
S(f) only depending upon the image of a class in π1(U) in [S1, U ].

If the line integral has only finitely many values, then S(f) has a finite image, and since S(f)
is a homomorphism it follows that every element in the image has finite order. However, the only
elment of finite additive order in C is 0, and therefore it follows that the image of S(f) must be
{0} and there is only one possible value for the line integral.
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