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IX. Computing fundamental groups

IX.1 : Free groups

Additional exercises

1. For the sake of definiteness, assume that x and y are free generators for F . If H has index 2
in F , then H is a normal subgroup and F/H ∼= Z2. Therefore every such subgroup is the kernel of
a surjection from F to Z2. CLAIM 1: This is a 1–1 correspondence.

We can check this directly. There are three nontrivial homomorphisms from F into Z2, and
they are completely determined by the values of a homomorphism on the generators. Consider the
effect of each example on the set S = {x, xy, y}. For the homomorphism sending (x, y) to (1, 0)
the intersection of S with the kernel is {x}, for the homomorphism sending (x, y) to (0, 1) the the
intersection of S with the kernel is {y}, and for the homomorphism sending (x, y) to (1, 1) the the
intersection of S with the kernel is empty.

Therefore there are exactly three subgroups of index 2 in F , one of which is normally generated
by x and y2, another of which is normally generated by y and x2, and the last of which is normally
generated by x−1y and x2 (or y−1x and x2, or xy and x2, etc.).

2. We shall verify that F/H satisfies the appropriate Universal Mapping Property with free
generators corresponding to the elements of X − Y . Let G be a group, let j : X → F identify X
with a subset of F , and let h : X − Y → G be a map of sets. Extend h to a mapping h0 : X → Y
by setting h(y) = 1 if y ∈ Y . Since F is free on X, there is a homomorphism η0 : F → G such
that η0

oj(x) = h0(x) for all x ∈ X. Since y ∈ Y implies h0(y) = 1, the kernel of η0 contains the
normal subgroup H, and if π : F → F/H is the quotient map then there is a unique homomorphism
η : F/H → G such that η oπ = η0.

Before proving that F/H has the Universal Mapping Property for X − Y , we need to check
that the map π oj : X → F/H is 1–1. Perhaps the easiest way to do this is to let A be the free
group on X − Y and take the homomorphism F → A which sends X − Y to these free generators
and sends Y to {1}. Since the map X −Y → F → F/H → A is 1–1, it follows that X −Y → F/H
is also 1–1, confirming what we expected.

To complete the proof of the Universal Mapping Property, identify X − Y with a subset of
F/H via the map sending x to j ′(x) = π oj(x), so that η oj′(x) = η0

oj(x) = h0(x) for all x ∈ X−Y .
Therefore F/H has the universal mapping property for X − Y .

3. (i) Let F ′
n ⊂ Fn be the commutator subgroup; then the quotient is isomorphic to the free

abelian group An
∼= Zn on n generators. If T : Fn → Fn is an automorphism and h : Fn → An is

the quotient projection as in the statement of the exercise, then the kernel of h oT must contain the
commutator subgroup F ′

n = [Fn, Fn] because the image of the homomorphism is abelian. Therefore
there is a unique homomorphism θ(T ) : An → An such that h oT = θ(T ) oh.
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Suppose now that we are given two automorphisms T1 and T2. By the uniqueness statement
proved in the preceding paragraph, it is enough to show that h oT1

oT2 = θ(T1) oθ(T2) oh. This
follows because h oT1

oT2 = α(T1) oh oT2 = α(T1) oα(T2) oh.

(ii) The statement in the hint is true because h o idFn
= h = idAn

oh. Therefore if S = T−1 we
have

idAn
= θ(idFn

) = θ(S oT ) = θ(S) oθ(T )

and by interchanging the roles of S and T we also have idAn
= θ(T ) oθ(S). Therefore θ(T ) is an

automorphism, and predictably its inverse is θ(S).

(iii) Again for definiteness, let x and y denote the generators of F2 which project down to the
elements (1, 0) and (0, 1) in A2

∼= Z2. Following the hint, we shall find automorphisms of F2 which
induce θ on A2 for choices of θ corresponding to each one of the three given generators. To avoid
space-consuming displays of 2 × 2 matrices we shall refer to the displayed matrices, in order from
left to right, as the diagonal generator, the transposition generator, and the shear generator. For
the diagonal generator, take the self-homomorphism T of F2 which sends x to x−1 and y to itself;
such a homomorphism exists because F2 is free, and it is an automorphism because T oT = id (it
is only necessary to check this on the free generators), so that T is equal to its own inverse. For
the transposition generator, take the self-homomorphism T which interchanges x and y; once again
T oT = id implies that T is its own inverse. Finally, for the shear generator, take the homomorphism
T sending x to itself and y to xy. For this example we claim that the inverse is the homomorphism
sending x to itself and y to x−1y. Once again, to prove that S oT and T oS are the identities, it
is enough to do so on the standard set of free generators. Clearly we have S oT (x) = x = T oS(x)
since S(x) = T (x) = x, and we also have

S oT (y) = S(xy) = S(x)S(y) = x · (x−1y) = y

T oS(y) = T (x−1y) = T (x−1)T (y) = x−1 · (xy) = y

and therefore we know that S = T−1.

4. (i) Take the map from Fn−1 to G with sends the free generator xi ∈ Fn−1 to gi ∈ G. The
extension of this map to a homomorphism is onto, and therefore G is isomorphic to a quotient of
Fn−1.

(ii) In any group G, if g = g1 then either g = 1 or else g2 = 1. The latter cannot happen in an
odd order group unless G = 1, so this means that the nontrivial elements of G can be decomposed
into 1

2
(|G| − 1) pairs of the form {gi, hi = g−1

i }, where 1 ≤ i ≤ k and |G| = 2k + 1.

In this case take the map from Fk to G with sends the free generator xi ∈ Fk to gi ∈ G. The
extension of this map to a homomorphism is onto, and therefore G is isomorphic to a quotient of
Fk.

IX.2 : Sums and pushouts of groups

Problems from Munkres, § 68, p. 421

2. (a) Let 1 6= xi ∈ Gi for i = 1, 2; then x1x2x
−1
1 x−1

2 is a reduced word, and by Step 4 in the
proof of Munkres, Theorem 68.2 we know that this element is not the identity in G1 ∗G2. But this
means that x1x2 6= x2x1 whenever x1 and x2 are nontrivial elements of G1 and G2 respectively.
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(b) If x is a reduced word of even length, write it in the form a1b1 · · · akbk where each aj lies
in one of the groups Gi and each bj lies in the other group. It follows that for each n > 0 that
xn corresponds to the reduced word a1b1 · · · ankbnk where the sequences satisfy the periodicity
conditions aj = aj+k and bj = bj+k for j ≤ nk − k. Since this is also a nontrivial word, it follows
from the same reasoning as before that xn 6= 1 in the free product. Therefore x has infinite order.

Suppose now that we have a reduced word x of odd length ≥ 3 (this was not part of the

problem as stated in Munkres, but clearly it is indispensable because a reduced word of length 1
cannot be conjugate to anything shorter). In analogy with the preceding paragraph, write x in
the form b0a1b1 · · · akbk where aj and bj are as before. We can easily find a shorter word which
is conjugate to the given one because b−1

0 xb0 is equal to a1b1 · · · ak(bkb0). There are now two
possibilities. If bkb0 6= 1, then we have shown that x is conjugate to an element corresponding to a
reduced word of even length 2k. If bkb0 = 1, then we have shown that x is conjugate to an element
corresponding to a reduced word of odd length 2k − 1.

(c) By part (b) and induction, every nontrivial word is either conjugate to a word whose length
is either an even number or 1 (look at the shortest word in the conjugacy class, and note that a
nontrivial word cannot be conjugate to the empty word). If the word x is conjugate to a word y
of even length, then the orders of x and y are equal, and since y has infinite order it follows that
the same holds for x. On the other hand, if x is conjugate to a word y of length 1, we know that
y must correspond to a nontrivial element of G1 or G2, and if x has finite order then y must also
have the same finite order.

3. The easiest way to solve this exercise might be to look at the images of everything in the direct
product G1 × G2. The Universal Mapping Property for free products guarantees the existence of
a homomorphism θ : G1 ∗ G2 → G1 × G2 such that θ oi1(a) = (a, 1) and θ oi2(b) = (1, b), where
it denotes the standard injection of Gt into G1 ∩ G2. The problem does not require a proof that
cG1c

−1 is a subgroup, but this follows quickly from the fact that the latter is the image of G1 under
the conjugation automorphism of G1 ∗G2 sending x to cxc−1.

Suppose that a ∈ G1 is such that cac−1 ∈ G2 It then follows that θ(a) ∈ G1 × {1} and
θ(c)θ(a)θ(c)−1 ∈ {1} × G2. CLAIM: θ(c)θ(a)θ(c)−1 ∈ G1 × {1}, and this element corresponds to
a conjugate of a in G1. — If this is true, then θ(c)θ(a)θ(c)−1 belongs to (G1 × {1}) ∩ ({1} ×G2),
which is the trivial group, and furthermore a is conjugate to this element in G1. In particular, a
is conjugate in G1 to the trivial element, and this implies that a = 1. To summarize, the claim
implies that if cac−1 ∈ G2 then a = 1 and therefore also cac−1 = 1.

To prove the assertions regarding θ(c)θ(a)θ(c)−1, write c = u1v1 · · · ukvk where uj ∈ G1×{1}
and vj ∈ {1} ×G2. If c 6= 1 we can do this using either a reduced word of even length or taking a
reduced word of odd length and setting u1 = 1 (if the word starts and ends with something from
G2) or vk = 1 (if the word starts and ends with something from G1). Since the images of G1 and
G2 commute with each other, an inductive argument shows that

θ(c) θ(a)θ(c)−1 = θ(u1v1 · · · ukvk) θ(a)θ(u1v1 · · · ukvk)−1 =

θ(u1v1 · · · uk−1vk−1) θ(ukau
−1

k )θ(u1v1 · · · uk−1vk−1)
−1 = · · · = θ(u1 · · · uk a u

−1

k · · · u−1

k )

where the expression in the last term is an element of G1 which is conjugate (in G1) to a. This is
the claim in the preceding paragraph.
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Problems from Munkres, § 69, p. 425

1. To simplify the notation, if H is a group, then Ab(H) will denote the quotient H/[H,H],
where [H,H] is the commutator subgroup (which is normal in H). We shall also denote G1 ∗ G2

by G as in the statement of the exercise.

Starting with the abelinization homomorphisms αi : Gi → Ab(Gi), we can define a homomor-
phism θ : G → Ab(G1) ⊕Ab(G2) whose restriction to G1 ⊂ G is the map sending a to (a, 0) and
whose restriction to G2 ⊂ G is the map sending b to (0, b). By construction θ is onto, and since the
codomain is an abelian group the kernel of θ must contain the commutator subgroup. Therefore θ
factors as a composite G → Ab(G) → Ab(G1) ⊕ Ab(G2), where the first arrow is abelianization
and the second will be denoted by ϕ.

For the same general reasons, the composites Gi → G = G1 ∗G2 → Ab(G) have factorizations
Gi → Ab(Gi) → Ab(G), and the induced maps of abelianizations will be denoted by Ji. Therefore
we can define a homomorphism

ψ : Ab(G1) ⊕Ab(G2) −→ Ab(G)

such that ψ(u, v) = J1(u) + J2(v). By construction the composites

Gi → Ab(Gi) → Ab(G) → Ab(Gi) = Gi → G→ Gi → Ab(Gi)

are the abelianization mappings, and therefore the composites Ab(Gi) → Ab(G) → Ab(Gi) are
identity mappings. Similarly, if i 6= j then the triviality of the composites Gi → G → Gj implies
that the abelianized mappings Ab(Gi) → Ab(G) → Ab(Gj) are zero homomorphisms. If we
combine these with the definitions of ϕ and ψ, we see that ϕ oψ is the identity on Ab(G1)⊕Ab(G2).
We claim these maps are isomorphisms, and to prove this it will suffice to show that ψ is onto.
However, this follows quickly because we know that G is generated by the images of G1 and G2,
which implies that Ab(G) is generated by the images of Ab(G1) and Ab(G2).

3. For the sake of definiteness, we shall assume that m ≥ n (it will be clear that the case m ≤ n
can be handled similarly).

(a) If G1 and G2 are abelian groups, then Exercise 1 implies that Ab(G1 ∗G2) ∼= G1 ⊕G2. If
we specialize to the case where G1 = Zm and G2 = Zn, this implies that Ab(G1 ∗ G2) is a finite
group of order mn.

(b) Follow the hint. By Exercise 68.2 in Munkres, the only elements of finite order in G1 ∗G2

are those which are conjugate to elements in either G1 or G2, and thus if g ∈ Zm ∗ Zn has finite
order, this order must divide either m or n. Since we are assuming that m ≥ n, the largest possible
order is m, and in fact this order is realized by the generator of Zm.

(c) If G = Zm ∗ Zn, then |Ab(G)| = mn implies that mn is uniquely determined by G, and
by (b) we know that m is uniquely determined by G. Therefore n = (mn)/m is also uniquely
determined by G.

4. The goal of the problem is to find finite abelian groups G1, G2, H1, H2 such that |G1| 6= |H1|
and |G2| 6= |H2| such that G1 × G2

∼= H1 ×H2, and the hint is to use the abstract version of the
Chinese Remainder Theorem: Za × Zb

∼= Zab if a and b are relatively prime. — The latter can
be found in nearly every upper level undergraduate textbook on abstract algebra or elementary
number theory, so we shall not prove it here.
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Since 2, 3, 5 are pairwise relatively prime the Chinese Remainder Theorem and (2 ·3) ·5 = 30 =
2 · (3 · 5) imply that

Z30
∼= Z6 × Z5 , Z30

∼= Z2 × Z15

so we get the desired examples if we take G1 = Z6, G2 = Z5, H1 = Z2, and H2 = Z15.

Additional exercises

1. We shall repeatedly use the fact that a free product of two groups ∗i Li is uniquely character-
ized up to isomorphism by the fact that homomorphisms from ∗i Li to another group M correspond
bijectively to homomorphisms from the summands Li into M , and the correspondence is given by
restricting to the subgroups Li.

For (G ∗ H) ∗ K, the preceding paragraph means that homomorphisms from this group to
some other group M are in 1–1 correspondence with homomorphisms from G ∗H and K into M .
However, homomorphisms from G ∗H into M in 1–1 correspondence with homomorphisms from G
into M and from H into M . Combining these, we see that homomorphisms from (G ∗H) ∗K into
M are in 1–1 correspondence with homomorphisms G → M , H → M and K → M . Since this is
the defining condition for a free product of the three groups G, H and K it follows that (G∗H)∗K
is in fact a free product of these three groups. Similarly, homomorphisms from G ∗ (H ∗K) into
some other group M are in 1–1 correspondence with homomorphisms from G and H ∗K into M ,
and since homomorphisms from H ∗K into M in 1–1 correspondence with homomorphisms from
H into M and from K into M , we see that homomorphisms from G ∗ (H ∗K) into M are in 1–1
correspondence with homomorphisms G → M , H → M and K → M ; as before, this means that
G ∗ (H ∗K) is in fact a free product of G, H and K.

Finally, homomorphisms from both G ∗ H and H ∗ G into an arbitrary group H correspond
bijectively to homomorphisms G→M and H →M , and this yields an isomorphism between G∗H
and H ∗G.

2. (i) Follow the hint and note that K ∗K ∼= K because K ∗K is a free group on ℵ0 + ℵ0 = ℵ0

generators if K is a free group on ℵ0 generators. If H1 is finite but nontrivial and H2 = H1 ∗K,
then H1 is finite but H2 is infinite. On the other hand, we have

H2 ∗K ∼= (H1 ∗K) ∗K ∼= H1 ∗ (K ∗K) ∼= H1 ∗K

which is what we wanted to prove.

(ii) The underlying ideas are the same, but here we have K ×K = K ⊕K is isomorphic to K
because K ⊕K is a free abelian group on ℵ0 generators if K is. If H1 is finite but nontrivial and
H2 = H1 ∗ ×K, then H1 is finite but H2 is infinite. On the other hand, we have

H2 ×K ∼= (H1 ×K) ×K ∼= H1 × (K ×K) ∼= H1 ×K

which is what we wanted to prove.

(iii) Once again, this is the same basic idea, but now we are working with topological spaces.
An explicit isometry from Y × Y to Y is given as follows: Let {ej} denote the set of standard unit
vectors in Y , and take the linear isomorphism from Y × Y to Y which sends (ej ,0) to e2j−1 and
(0, ej) to e2j−1. This is clealy an invertible linear transformation, and if one imposes the metrics
associated to the usual dot products (so that the unit vectors are orthonormal and Y × {0} is
orthogonal to {0}×Y ), then this linear isomorphism is an isometry of inner product spaces, which
implies among other things that Y × Y is homeomorphic to Y .
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Let X1 be a compact metric space, and let X2 = X1 × Y . Then X1 is not homeomorphic to
X2 but X1 × Y is homeomorphic to X2 × Y because we have X2 × Y = X1 × Y × Y ∼= X1 × Y .

3. As before the proof that h × h is the identity reduces to showing that h × h maps the free
generators x and y to them selves. Since h(x) = y and h(y) = x, this follows immediately.

Suppose now that h(w) = w for some nontrivial reduced word w in x and y. If w begins with a
power of x then h(w) begins with a power of y and vice versa. By the unique factorization property
for nontrivial reduced words, it follows that h(w) cannot be equal to w.

Note. In contrast, the induced automorphism θ(h) of Z2 sends (1, 1) to itself.

IX.3 : The Seifert – van Kampen Theorem

Problems from Munkres, § 70, p. 433

1. By the Seifert-van Kampen Theorem it will suffice to show that

π1(U ∩ V, p) i1∗−−−−−→ π1(U, p)




y

i2∗





y

π1(V, p) −−−−−→ π1(U, p)/N1 ∗ π1(V, p)/N2

is a pushout diagram if i1∗ and i2∗ are trivial homomorphisms, where the maps from π1(U, p) and
π1(V, p) to the respective quotients π1(U, p)/N1 and π1(V, p)/N2 followed by the usual injections
J1 and J2 into the free product. Denote the quotient projections π1(U, p) → π1(U, p)/N1 and
π1(V, p) → π1(V, p)/N2 by q1 and q2 respectively.

Suppose that we are given homomorphisms A : π1(U, p) → G and B : π1(V, p) → G such
that A oi1∗ = B oi2∗. Since i1∗ and i2∗ are trivial it follows that we have factorizations through
the respective quotients; i.e., we have A = A′ oq1 and B = B′ oq2 for uniquely determined ho-
momorphisms A′ and B′. By the Universal Mapping Property for free products, there is a
unique homomorphism C from the free product into G whose restrictions to oJ1 and C oJ2 to
π1(U, p)/N1 and π1(V, p)/N2 are equal to A′ and B′ respectively, and therefore we also have
C o(J1

oq1) = A′ oq1 = A and C o(J2
oq2) = B′ oq2 = B. To complete the proof, we need to show

that if D : π1(U, p)/N1 ∗ π1(V, p)/N2 is an arbitrary homomorphism such that D o(J1
oq1) = A and

D o(J2
oq2)B, then D = C. If D satisfies these conditions then we have D oJ1

oq1 = C oJ1
oq1 and

D oJ2
oq2 = C oJ2

oq2; since q1 and q2 are onto, the given equations imply that D oJ1 = C oJ1 and
D oJ2 = C oJ2. We can now use the uniqueness condition in the Universal Mapping Property for
free products to conclude that D = C. This completes the proof that the diagram at the beginning
of this solution is a pushout.

3. (a) If G1 has a finite generator set X1 with a finite relation set R1 and G2 has a finite
generator set X2 with a finite relation set R2, then G1 ∗G2 has a finite generator set X1 qX2 with
a finite relation set R1 qR2,

(b) Follow the hint, but work more generally with a pushout

K
i1−−−−−→ H1





y

i2





y

j1

G2

j2−−−−−→ G
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where K is finitely generated and H1 and H2 are finitely presented.

The construction of pushouts in Section IX.2 shows that G is isomorphic to the quotient of
Γ = G1 ∗G2 by the normal subgroup N which is generated by all elements of the form i−1

1 (k) i2(k),
where k runs through all the elements of G. CLAIM: If k1, · · · , kr generate K, then N is also the

smallest normal subgroup containing the finite set S = {i−1
1 (kt) i2(kt) | 1 ≤ t ≤ r}.

If the claim is true, we can complete the solution as follows: By Exercise 1 we know that
G1 ∗ G2 is finitely presented, and by the claim we know that N is finitely normally generated, so
if G1 ∗ G2 is presented with finite generating set X and finite relation set R, then we obtain the
quotient by expanding R to a set which also includes a finite family of words in the generators
which map to the elements in the set S.

We now prove the claim. Let N0 be the subgroup normally generated by S, so that N0 ⊂ N .
To prove the reverse inclusion, consider the map of quotient groups π : Γ/N0 → Γ/N which sends
each coset of N0 to the coset N which contains it, and let ρ : G→ G/N0 be the usual quotient space
projection. By definition, N0 is normally generated by the elements i−1

1 (kt) i2(kt), and therefore
ρ oi1(kt) = ρ oi2(kt) for all t. Since ρ, i1 and i2 are homomorphisms and the elements kt generate
K, it follows that ρ oi1(k) = ρ o i2(k) for all k ∈ K. But this means that the normal subgroup
N0 contains all elements of the form i−1

1 (k) i2(k) where k ∈ K, and since these elements normally
generate N it follows that all of N0 is contained in N .

Additional exercises

1. (i) For this part of the exercise, in the pushout diagram

π1(U ∩ V, p) i1∗−−−−−→ π1(U, p)




y

i2∗





y

j1∗

π1(V, p)
j2∗−−−−−→ π1(X, p)

we know that π1(U, p) is trivial and π1(V, p) is abelian. It will suffice to prove that the map
π1(V, p) → π1(X, p) is onto. We know that π1(X, p) is generated by the images of π1(U, p) and
π1(V, p) and since the image of the first group must be trivial it follows that π1(V, p) generates
π1(X, p), which means that π1(V, p) → π1(X, p) is onto.

(ii) Let X be the Figure Eight Space which is a union of two closed subspaces C1 ∪ C2 such
that each is homeomorphic to S1 and C1 ∩ C2 consists only of the basepoint p. Choose points
qi ∈ Ci − {p}, and let U1 and U2 be X − {q2} and X − {q1} respectively (note the switch in
subscripts — this is not a misprint). Then Ci is a strong deformation retract of Ui and U1 ∩ U2 is
contractible, so that the pushout diagram associated to π1(X = U1 ∪ U2 is given as follows:

{0} ∼= π1(U ∩ V, p) i1∗−−−−−→ π1(U, p) ∼= Z




y

i2∗





y

j1∗

Z ∼= π1(V, p)
j2∗−−−−−→ π1(X, p) ∼= F2

In this example the fundamental groups of U and V are abelian but the fundamental group of X
is not.
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2. (i) Once again we know that π1(X) is generated by the images of π1(U) and π1(V ). Since
π1(U ∩V ) maps onto both of the latter groups, it follows that all the generators for π1(X) actually
lift back to π1(U ∩ V ).

(ii) As in (i) if A and B denote generating sets for π1(U) and π1(V ) respectively and A′ and
B′ denote their images in π1(X), then A′ ∪B′ generates π1(X). But if A and B are finite, then so
is A′ ∪B′.

3. We begin with a general statement. Suppose that we have a group G presented as a quotient
F/N where F is freely generated by X and N is normally generated by relations R ⊂ F . Then
Ab(G) is isomorphic to F/N [F, F ], which is isomorphic to

(F/[F, F ])/(N [F, F ]/[F, F ])

in which N [F, F ]/[F, F ] is the image of N ⊂ F → F/[F, F ].

For the example in this exercise, the preceding observation shows that the abelianization
Ab(G) is the quotient of Z2 modulo the subgroup generated by the single abelianized relation
(3,−2) because the abelianizations of the other two relations are trivial. One easy way of seeing
that the quotient is infinite cyclic is to observe that the homomorphism Z2 → Z sending (x, y) to
2x+ 3y is onto and its kernel is the cyclic subgroup generated by (3,−2).

(ii) Let ρ : G → G/N be the quotient group projection. Since xy−1 ∈ N it follows that
ρ(x) = ρ(y). By definition we know that x3 = y2, so that ρ(x)3 = ρ(y)2. If we combine the
preceding two sentences we find that ρ(x)3 = ρ(x)2, which means that ρ(x) = 1 and hence also
that ρ(y) = ρ(x) = 1; i.e., we have x, y ∈ N . Since x and y generate G, this means that N = G.

4. By the Seifert-van Kampen Theorem, it will suffice to prove the following algebraic result
about pushout diagrams of groups: If we are given an onto homomorphism i1 : K → H1 and an
isomorphism i2 : K → H2, then the following square is a pushout diagram:

K
i1−−−−−→ H1





y

i2





yid

H1

i1i−1

2−−−−−→ H1

This square commutes because both composites from K to H1 are equal to i1.

As usual, we shall prove the given square is a pushout by verifying that it has the Universal
Mapping Property. So let f1 : H1 →M and f2 : H2 →M satisfy f1

oi1 = f2 oi2. We need to find a
unique map h : H1 →M such that h oji = fi, where j1 is the identity and j2 = i1 oi−1

2 . If we take
h = f1, then h oj1 = h o id = f1 and h oj2 = h o i1 oi−1

2 = f1 oi−1
2 = f2 oi2 oi−1

2 = f2, so there is a map
from H1 to M with the right properties. To show that a map with the right properties is unique,
note that if k oji = fi for i = 1, 2 then k = k o id = k oj1 = f1, so that k = h.

5. Consider the associated pushout diagram:

Z × Z
p1−−−−−→ Z





y

p2





y

j1

Z
j2−−−−−→ A

Since p1 and p2 are onto, it follows that the composite Z × Z → A is also onto (see Exercise 2);
note that A is abelian because it is a homomorphic image of Z×Z. Since (1, 0) and (0, 1) are in the
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kernels of p2 and p1 respectively, it follows that both these elements map to zero in A, and since
the two elements in question generate Z × Z, it follows that everything in Z × Z maps to zero in
A. If we combine this with the conclusion of the previous paragraph, we see that A must be the
trivial group.

6. Follow the hint; let U = M−Y and V = M−X. Then U is homeomorphic to Xq [0, 1) with
x ∈ X identified to 0, and V is homeomorphic to (0, 1]qY with 1 identified to y ∈ Y . Both U and V
are open in M , and their intersection is homeomorphic to the open interval (0, 1). Furthermore, X
and Y are strong deformation retracts of U and V respectively. Therefore the Seifert-van Kampen
Theorem implies that the fundamental group of M is the free product of the fundamental groups
of X and Y (we have not been careful about the basepoints because the isomorphism type of the
fundamental groups of the spaces in this exercise are isomorphic for all choices of basepoints).

IX.4 : Examples and computations

Additional exercises

1. (i) One can also model X topologically as the subspace C ⊂ R
3 given by S2 ∪{(0.0)}× [−1, 1].

We shall prove that this space is homeomorphic to the subspace of R4 described in the exercise as
follows: Take the identity map on S2, and map a point of the form (0, 0, t), where −1 ≤ t ≤ 1, to
the point (0, 0, t,

√
1 − t2). One can check directly that this map is continuous and 1–1 onto, so it

is a homeomorphism because X is compact Hausdorff.

(ii) Follow the hint. The space which interests us is S2 ∪A, and D3 ∪A is formed from it by
regularly attaching a 3-cell, so by Proposition 3 IX.4.2 we know that π1(S

2 ∪A) ∼= π1(D
3 ∪A).

(iii) If B ⊂ R3 is the straight line segment described in the exercise which joins the north and
south poles of S2, then a retraction D3 → B is defined by sending (x, y, z) to z; if we also take the
straight line homotopy between these two points (which stays inside D3 by convexity), we obtain
deformation retract data for B ⊂ D3. Now A∩B consists of the two points ± e3, and by an exercise
from Unit VII it follows that B ∪A is a strong deformation retract of D3 ∪A. Since B ∪A is the
union of two closed subspaces homeomorphic to [−1, 1] which meet at their endpoints, the space
A∪B is homeomorphic to S1; for the sake of completeness, we note that an explicit homeomorphism
is given by sending one copy of [−1, 1] to the upper semicircle by the mapping t→ (t,

√
1 − t2) and

sending the other copy of [−1, 1] to the lower semicircle by the mapping t→ (t,−
√

1 − t2).

Finally, the preceding observations combine to yield the fundamental group relationships
π1(S

2 ∪A) ∼= π1(D
3 ∪A) ∼= π1(B ∪A) ∼= π1(S

1) ∼= Z, as asserted in the statement of the exercise.

2. The intersection of D2 × {0} with S2 is equal to S1 × {0}, so if we take A = S2 and B = D2

then we have an example with the properties described in the discussion before the statement of
Proposition IX.4.2. Therefore we can apply this result to conclude that the map of fundamental
groups π1(S

2) → π1(X) is onto. Since π1(S
2) is trivial, it follows that π1(X) must also be trivial.

3. (i) Follow the hint. The data in the problem yield the following commutative diagram, in
which the vertical arrows jk are isomorphisms:

Z → · · · c−1

k Z
⊂−−−−−→ c−1

k+1
Z → · · · Q





y

j1





y

jk





y

jk+1

A1 → · · · Ak
hk−−−−−→ Ak+1 → · · · G
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If we define ϕk : c−1

k Z → G by gk
ojk, then we have the recursive property

ϕk+1|c−1

k Z = gk+1
ojk+1|c−1

k Z = gk+1
ohk

ojk = gk
ojk = ϕk

and therefore we can assemble these mappings to produce a homomorphism ϕ : Q → G. This map
is onto, for each a ∈ G has the form gk(b) for some k and b ∈ Ak, so if jk(b′) = b we have ϕk(b′) = a.
In particular, this implies that G is abelian, so we shall use 0 to denote the neutral element in G.
To see that ϕ is 1–1, suppose that x ∈ Q maps to 0, and choose k such that x ∈ c−1

k Z. Then
jk(x) ∈ Ak maps to 0 in G, and therefore there is some M ≥ 0 such that jk(x) maps to 0 in Ak+M .
But the map Ak → Ak+M is equivalent to a nonzero map Z → Z, so if jk(x) maps to 0 in some
Ak+M then we must have jk(x) = 0. Since jk is an isomorphism we must have x = 0. Therefore
ϕ : Q → G is an isomorphism.

(ii) The mapping j[d] is 1–1 because the composite of j[d] with projection onto the D2 factor
is the standard inclusion of S1 in D2, and the map j[d]∗ in fundamental groups corresponds to
multiplication by d because the composite of j[d] with projection onto the S 1 factor has degree d
and this coordinate projection map induces an isomorphism π1(S

1 ×D2) → π1(S
1).

(iii) A more concrete approach to constructing E is to describe it as a subspace of R5 =
C × C × R; more precisely, we shall realize each Sk as a subset of C

2 × [k, k + 1] such that the
continuous mapping Sk → [k + 1] corresponds to the last coordinate. Consider the subspace Tk of
C2 × [k, k + 1] consisting of S1 × D2 × {k + 1} together with the image of S1 × [0, 1] under the
continuous mapping θk defined by

θk(z, t) = (tzdk + (1 − t)z, tz, t+ k) .

We claim that θk is 1–1, and from this it follows that the standard quotient map from Sk to Tk

is a homeomorphism onto its image. So suppose that θk(z, t) = θk(z′, t′). Equating the third
coordinates, we see that t + k = t′ + k, so that t = t′. Now equating the second coordinates, we
see that tz = tz′ so that either t = 0 (and hence t′ = 0 or else z = z′; in the second case we are
finished, so assume that t = 0 and look at the first coordinates. When t = 0 the first coordinate
equation reduces to z = z′, so we have shown that (z, t) = (z ′, t′) must always hold. — Continuing,
we see that the union ∪j≤k Tk is homeomorphic to Ek, and if we set T = ∪k Tk we have a 1–1
onto continuous mapping E → T . Projection onto the final coordinate in R5 = C×C ×R yields a
continuous mapping from T to [0,∞) such that the composite E → T → [0,∞) has all the right
properties. Furthermore, this mapping sends the inverse image of [0, k) homeomorphically to the
inverse image of [0, k) for all k, and from this one can prove that the map E → T is actually a
homeomorphism (but this will not be needed to carry out the computations).

We now need to verify the assertion about the maps in fundamental groups associated to the
inclusions Ek → Ek+1. To start, we claim that for each k the inclusion S1 × {0} × {k + 1} ⊂ Sk is
a deformation retract. Since we know that the inclusion S1 ×{0}× {k+1} ⊂ S1 ×D2 ×{k+ 1} is
a deformation retract, it will suffice to show that S1 ×D2 ×{k+ 1} ⊂ Sk is a deformation retract.
This follows because Sk = F1 ∪ F1, where F1 = S1 × D2 × {k + 1} and F2 is homeomorphic to
S1 × [0, 1] such that S1 × {1} corresponds to F1 ∩ F2. We can now proceed by induction on j to
show that the inclusion

S1 × {0} × {k + 1} ⊂
k

⋃

i=j

Ei

is a deformation retract for j = k, k − 1, · · · , 1. Furthermore, it also follows that Sk+1 ⊂ Ek+1 is
a deformation retract.
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The algebraic implication of the preceding paragraph is that the homomorphism π1(Ek) →
π1(Ek+1) is equivalent to the homomorphism π1(S

1 × {0} × {k + 1}) → π1(Sk+1) induced by
inclusion. Since the composite of this inclusion with the retraction Ek+1 → S1 × {0} × {k + 2}
has degree d, it follows that all the homomorphisms of fundamental groups in this paragraph are
equivalent to multiplication by dk on Z.

Note. Some of the mappings constructed in (iii) do not preserve basepoints particularly well,
but this will not cause problems because in all cases the spaces are homotopy equivalent to S 1.
This means that their fundamental groups are abelian and there are unique change of basepoint
isomorphisms.

(iv) Each subset Sk is compact, and since Ek is a quotient of a finite union of subsets homeo-
morphic to S1, · · · , Sk, it follows that Ek is also compact. Furthermore, if K ⊂ E is compact then
its image in [0,∞) will also be compact, and since this image is contained in some closed interval
[0,M ] it follows that K ⊂ EM for some M . The statements about the topology of E all follow
from the fact that E is homeomorphic to T (but we shall not need these in the next step, which is
the last one).

(v) We have shown that the diagram of fundamental group maps is the same as the algebraic
diagram considered in (i), so by (i) it is only necessary to check that it satisfies properties (2) and
(3) in (i). These follow from the Compact Supports Property for fundamental groups (Proposition
VIII.1.12) and the fact that every compact subset of E is contained in some Ek.

(vi) Everything will go through if we modify the definition of the integer sequence dk; specif-
ically, if we are only interested in fractions which are monomials in S we can take dk to be the
product of the first k primes in S if |S| ≥ k and taking dk to be the product of all the primes in S
if |S| < k. If we now define ck as before to be d1 · · · dk−1 for the new sequence {dk}, then S−1Z

will be the union of the sets c−1

k Z.
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