
Isometries of figures in Euclidean spaces

Reinhard Schultz

These notes discuss some facts about the metric geometry of Euclidean spaces that are closely
related to the notion of congruence in elementary (= high school level) Euclidean geometry.

Congruence and isometries

Congruence is a fundamental concept in elementary geometry. However, problems arise when
one tries to give a definition of this concept that is both mathematically accurate and compre-
hensive enough to cover all the cases one wants to consider (e.g., straight line segments, angles,
triangles, parallelograms, circles, ...). Intuitively, the idea is that two figures should be congruent
if there is a rigid motion that sends one to the other. However, this requires a reasonable definition
of rigid motion, which is somewhat beyond the scope of an elementary course. One can attempt
to circumvent this by defining congruence for special types of figures like line segments (distances
between the end points are equal), angles (same measurement), triangles (the vertices match up in
such a way that the sides, or line segments joining corresponding vertices, are congruent and the
corresponding vertex angles are congruent), parallelograms (similar with four vertices rather than
three) and circles (congruent radius segments). However, at this point one can give a mathemat-
ically precise and comprehensive definition and show that it reduces to the familiar definitions of
elementary geometry.

The discussion here indicates one further important fact about Euclidean geometry; namely,
vector methods are an extremely powerful tool for analyzing geometric problems. Calculus and
physics books frequently have sections in which vectors are used to prove classical theorems in
Euclidean geometry; for example, the fact that the diagonals of a parallelogram bisect each other
or the three lines joining the vertices of a triangle to the midpoints of their opposite sides all meet
at a single point. In fact, vector algebra not only allows one to write down slick proofs of classical
theorems in Euclidean geometry, but it also allows one to handle problems that are either extremely
difficult or virtually impossible to attack by other methods.

Definition. Let E be a Euclidean space (= a finite-dimensional real inner product space), and
let A, B ⊂ E. The subsets A and B are said to be congruent if there is a 1–1 correspondence
f : A → B that is an isometry with respect to the standard metric. Specifically, if f : A → B is
the 1–1 correspondence then we have

|f(x) − f(y)| = |x − y|

for all x, y ∈ A. If A and B are congruent one often writes A ∼= B in the classical tradition.

Since inverses and composites of isometries are isometries (and the identity is an isometry), it
follows that congruence is an equivalence relation.

Eventually we shall explain why this definition is equivalent to the definitions suggested for
the special cases. But first it is useful to consider another possible definition for congruence.
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Definition. Let E be a Euclidean space, and let A, B ⊂ E. The subsets A and B are said to
be ambiently congruent if there is a 1–1 correspondence Φ from E to itself that is an isometry and
sends A to B (i.e., Φ[A] = B).

Clearly ambiently congruent subsets are congruent, and we shall prove a converse to this in
Section 4 below.

1. Global Euclidean isometries and similarities

We shall begin with the characterization of isometries of a finite-dimensional Euclidean space
that is often given in linear algebra textbooks.

PROPOSITION. If E is a finte-dimensional Euclidean space and F is an isometry from E to
itself, then F may be expressed in the form F (x) = b+A(x) where b ∈ E is some fixed vector and
A is an orthogonal linear tranformation of E (i.e., in matrix form we have that TA = A=1 where
TA denotes the transpose of A).

Notes. It is an elementary exercise to verify that the composite of two isometries is an isometry
(and the inverse of an isometry is an isometry). If A is orthogonal, then it is elementary to prove
that F (x) = b+A(x) is an isometry, and in fact this is done in most if not all undergraduate linear
algebra texts. On the other hand, if A = I then the map above reduces to a translation of the
form F (x) = b + x, and such maps are isometries because they satisfy the even stronger identity

F
(
x − y

)
= x − y .

Therefore every map of the form F (x) = b + A(x), where b ∈ E is some fixed vector and A is
an orthogonal linear tranformation of E, is an isometry of E. Therefore the proposition gives a
complete characterization of all isometries of E.

Sketch of proof. This argument is often given in linear algebra texts, and if this is not done
then hints are frequently given in the exercises, so we shall merely indicate the basic steps.

First of all, the set of all isometries of E is a group (sometimes called the Galileo group of E). It
contains both the subgroups of orthogonal matrices and the subgroup of translations (G(x) = x+c
for some fixed vector c), which is isomorphic as an additive group to E with the vector addition
operation. Given b ∈ E let Sb be translation by b, so that A = S−F (0)

oF is an isometry from E
to itself satisfying G(0) = 0. If we can show that G is linear, then it will follow that G is given by
an orthogonal matrix and the proof will be complete.

Since G is an isometry it follows that

∣∣G(x) − G(y)
∣∣2 =

∣∣x− y
∣∣2

and since G(0) = 0 it also follows that g is length preserving. If we combine these special cases
with the general formula displayed above we conclude that 〈G(x), G(y)〉 = 〈x,y〉 for all x, y ∈ E.
In particular, it follows that G sends orthonormal bases to orthonormal bases. Let {u1, · · · ,un}
be an orthonormal basis; then we have

x =

n∑

i=1

〈x,ui〉 · ui
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and likewise we have

G(x) =

n∑

i=1

〈G(x), G(ui)〉 · G(ui) .

Since G preserves inner products we know that

〈x,ui〉 = 〈G(x), G(ui)〉 · G(ui)

for all i, and this implies that G is a linear transformation.

Similarities

In Euclidean geometry the notion of similarity is nearly as important as congruence. Informally,
it may be viewed as congruence modified to allow magnification or reduction of distances by a
uniform scale factor. Formally, one may proceed as follows.

Definition. Let E be a Euclidean space (= a finite-dimensional real inner product space), and let
A, B ⊂ E. The subsets A and B are said to be similar if there is a 1–1 correspondence f : A → B

and a constant r > 0 such that

|f(x) − f(y)| = r · |x − y|

for all x, y ∈ A. The number r is unique if A and B contain more than one point (why?), and it
is called the ratio of similitude for f ; the mapping f itself is generally called a similarity. More
generally, the definition is also meaningful for metric spaces, but we shall not need this level of
abstraction here.

If A and B are similar one often writes A ∼ B in the classical tradition, and when it is useful to
keep track of the ratio of similitude we write A ∼r B. The following elementary observations show
that similarity is an equivalence relation and that congruence is a stronger relation than similarity.

(1) For all A and B, A ∼= B ⇐⇒ A ∼1 B.

(2) In particular, for all A we have A ∼1 A.

(3) For all A and B, A ∼r B =⇒ B ∼1/r A (use the inverse map).

(4) For all A, B and C, A ∼r B and B ∼s C =⇒ A ∼rs C (use the composite of the
similarities from A to B and from B to C).

To see that similarity is strictly weaker than congruence, it is only necessary to consider an
arbitrary subset A of a Euclidean space E such that A has more than one point and to let B = r ·A
be the set of all points of the form r · a for some a ∈ A, where r is an arbitrary positive real
number not equal to +1. The mapping f(x) = r · x is then a similarity from A to B with ratio of
similitude r > 1. In particular, if A has exactly two points, then one has this similarity but there
is no isometry from A to B (why?). Of course, it is possible for A and B to be both isometric and
similar with a ratio of similitude 6= 1; for example, if we let A = E above, then we also have B = E.

ELEMENTARY OBSERVATION. If E is a finte-dimensional Euclidean space and S is a
similarity from E to itself with ratio of similitude r, then S may be expressed in the form S(x) =
r · F (x) where F is an isometry of E.
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If we combine this with the description of isometries in terms of translations and orthogonal
linear transformations, we see that s may be expressed in the form S(x) = b + r · A(x) where
b ∈ E and A is an orthogonal linear tranformation of E.

SIMILARITIES AND ANGLE MEASUREMENTS. If we are given three vectors a, b, c such
that b − a is not a scalar multiple of c − a, then the classical geometrical measure of the angle
6 abc is completely determined by the inner product structure using the familiar formula

cos
(
6 abc

)
=

(b − a) · (c − a)

|b − a| · |c − a|
.

The following result will be particularly important for our purposes:

PROPOSITION. Let T be a similarity from the Euclidean space E to itself with ratio of
similitude r, and let a, b and c be points of E such that b−a is not a scalar multiple of c−a. Then
T (b) − T (a) is not a scalar multiple of T (c) − T (a), and the cosines of 6 abc and 6 T (a)T (b)T (c)
are equal.

Proof. Every similarity can be expressed as a composite T = T1
oT2

oT3 where T3 is a linear
isometry, T2 is multiplication by a positive constant and T3 is a translation. It suffices to show that
each Ti preserves angle cosines and that for each i the vector Ti(b)− Ti(a) is not a scalar multiple
of Ti(c) − Ti(a).

For linear isometries these are basic facts about orthogonal transformations that are established
in virtually every linear algebra text. In the case of multiplication by a positive constant r 6= 0 the
condition on T (b)−T (a) and T (c)−T (a) follows because T is an invertible linear transformation,
and the preservation of angles is a consequence of the following chain of identities, in which T

denotes multiplication by r:

cos
(
6 T (a)T (b)T (c)

)
=

r (b − a) · r (c − a)

|r (b − a)| · |r (c − a)|
=

r2 (b − a) · (c − a)

r2 |b − a| |c − a|
=

(b − a) · (c − a)

|b − a| |c − a|
= cos ( 6 abc) .

Therefore it only remains to check the identity in the conclusion if T is a translation, say T (x) =
x + p for some fixed vector p ∈ E. Now if T is a translation we have the previously mentioned
identity

T
(
x − y

)
= x − y

which immediately implies that T (b)− T (a) is not a scalar multiple of T (c) − T (a). Furthermore,
we also have

cos
(
6 T (a)T (b)T (c)

)
=

(
T (b) − T (a)

)
·
(
T (c) − T (a)

)

|T (b) − T (a)| · |T (c) − T (a)|
=

(b − a) · (c − a)

|b − a| |c − a|
= cos ( 6 abc)

which implies that the translation T preserves angles. Thus we have shown that an arbitrary
similarity T0 is a composite of similarities that preserve angles, and therefore T0 itself must also
preserve angles.
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FIXED POINTS. Given a mapping T from a set X to itself, one says that p ∈ X is a
fixed point for T if T (p) = p. For example, if X is a vector space and T is a linear transformation,
then the zero vector is a fixed point, and a nonzero vector is a fixed point if and only if +1 is an
eigenvalue of T and the vector itself is an eigenvector for this eigenvalue. Some isometries have
fixed points while others do not. Of course an isometry that comes from an orthogonal linear
transformation will have at least the origin as a fixed point, and in fact if +1 is an eigenvalue then
the set of fixed points will be the eigenspace for this eigenvalue. On the other hand, a translation
map of the form T (v) = v + c0 for some c0 6= 0 will NEVER have a fixed point. In view of these
considerations, the following results on fixed points of non-isometric similarities may be somewhat
unexpected:

PROPER SIMILARITY FIXED POINT THEOREM. If S is a similarity from the Eu-
clidean space E to itself with ratio of similitude r 6= 1, then S has a unique fixed point.

The term “proper similarity” is meant to suggest that S is a similarity but not an isometry.

Proof. We have already noted that S(x) = r A(x)+b where A is given by an orthogonal matrix.
By this formula, the equation S(x) = x is equivalent to the equation x = r A(x)+b, which in turn
is equivalent to [

I − r A
]
(x) = b .

The assertion that S has a unique fixed point is equivalent to the assertion that the displayed linear
equation has a unique solution. The latter will happen if I − r A is invertible, or equivalently if
det(I − r A) 6= 0, and this is equivalent to saying that r−1 is not an eigenvalue of A. But if A

is orthogonal this means that |A(v)| = |v| for all v and hence the only possible eigenvalues are
± 1; on the other hand, by construction we have r > 0 and r 6= 1, and therefore all of the desired
conclusions follow.

2. Concepts from affine geometry

The following material is generally not discussed very much or very systematically in under-
graduate texts, but it contains the basic setting that mathematicians frequently use to study certain
geometrical problems using linear algebra. One of the best references at the undergraduate text-
book level is the chapter of Birkhoff and MacLane, Survey of Modern Algebra; on linear groups
(the differences among the various editions are relatively minor). We shall merely summarize the
main points and refer the reader to that book for more details.

Although a broadly based discussion of affine geometry is beyond the scope of these notes,
a few remarks on the terminology might be informative. The subject itself have emerged during
the eighteenth century in order to describe an equivalence relation on geometrical figures that was
weaker than similarity but still indicated that the figures had some properties in common (hence
could be viewed as having some sort of “affinity” to each other that falls short of being a similarity
in the mathematical sense).

Everything in this section can be done in an arbitrary vector space V over a field of scalars
in which 1 + 1 6= 0, so that one can define 1

2 to be the additive inverse of 1 + 1, but of course the
initial most basic examples are the Euclidean spaces R

n, where the real numbers are the scalars.

Definition. A subset M ⊂ V is said to be an affine subspace of V if whenever x and y lie in M

the entire line
xy = { z ∈ V

∣∣ z = tx + (1 − t)y, some t }
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is contained in M . If we are working over the real numbers and 0 < t < 1, then z is the point that
divides the segment joining x to y in the ratio t : (1 − t), and more generally if t 6∈ [0, 1] one often
says that z divides the points externally by this ratio (as opposed to internal division in the more
familiar cases).

The following result is proved in Birkhoff and MacLane:

THEOREM. If M is an affine subspace of V , then there is a unique vector subspace W ⊂ V and
a (usually non-unique) vector u such that M consists of all points expressible in the form u + w
for some w ∈ W . Conversely, every set u + W of this form is an affine subspace.

If the point z divides the segment xy in the ratio t : (1 − t), then physically z represents the
center of gravity for a system of two weights, one at each of x and y, with t units at x and (1 − t)
units at x; if we allow negative weights (for example, a helium baloon at one point) then this makes
sense for all real numbers t. If one multiplies both weights by a fixed constant then the center of
gravity does not change, and for this reason there is no real loss of generality to choose our unit of
weight so that the sums of the weights at both points add up to 1.

This extends directly to weights at finitely many points. Given a finite set of points

A = { v0, · · · ,vm } ⊂ V

and scalars { t0, · · · , tm such that
∑

i ti = 1, the centroid of the points vi with weights ti is the
point

∑
i ti vi.

A proof of the following result is described in Birkhoff and MacLane:

PROPOSITION. Let f : V → V be an affine transformation of the form f(v) = T (v)+u for
some invertible linear transformation T and vector u, and assume that f maps the (m + 1) points
v0, · · · ,vm ∈ V to (m + 1) distinct points of V . If x is the centroid of the points vi with respect
to the weights ti, then f(x) is the centroid of the points f(vi) with respect to the weights ti.

Definition. Given vi as above, the vector x is said to be an affine combination of the vectors vi

if

x =

m∑

i=0

ti vi

where the sum of the scalars ti is equal to 1.

The following is a rewording of another result from Birkhoff and MacLane:

PROPOSITION. Given the points vi as above, the set of all affine combinations of these vectors
forms an affine subspace M called the affine span of M , and every affine subspace M ′ that contains
all the points vi also contains the affine subspace M .

THEOREM. Given a finite set of points A = { v0, · · · ,vm } ⊂ V , the following are equivalent:
(i) The vectors vi − v0 are linearly independent for 1 ≤ i ≤ m.
(ii) Every vector in the affine span of A has a unique expansion as an affine combination of

the vectors in A.

Definition. If either (hence both) of these conditions hold we shall say that A is affinely
independent, and if neither holds we shall say that A is affinely dependent.

If A is affinely independent and x lies in the affine span of A, then the unique coefficients ti

such that x =
∑

i ti vi are called the barycentric coordinates of x with respect to A. Any subset of
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m coordinates will uniquely determine the remaining coordinate because the sum of the barycentric
coordinates is equal to 1.

The exercises at the end of the section on affine geometry in Birkhoff and MacLane are excellent
illustrations of how one can and does use linear algebra in order to study geometric problems. The
reader is strongly encouraged to look at these exercises and to work as many as possible.

3. Isometries of finite sets

In this section we shall prove a few basic facts about isometries for finite sets, inducing some
special cases of the Isometry Extension Theorem. We shall use these results in the next section to
prove the full versions of the Isometry and Similarity Extension Theorems.

It is not difficult to see that a set of three collinear points in the Euclidean space E cannot be
isometric to a set of three noncollinear points. One can see this informally as follows: If the three
points are collinear, then one can label them as p1, p2 and p3 such that

|p3 − p1| = |p3 − p2| + |p2 − p1|

but if they are not collinear then the left hand side is stricly less than the right for all possible
relabelings of the three points (this is the classical version of the Triangle Inequality from elementary
geometry). Likewise, experience with noncoplanar objects shows that they cannot be flattened into
a plane without stretching or shrinking some distances. The first result of this section gives the
underlying mathematical reason for these “intuitively obvious” facts and their higher dimensional
analogs.

ISOMETRIES AND AFFINE INDEPENDENCE. Let A = {a0, · · · ,am } and B =
{b0, · · · ,bm } be isometric subsets of some Euclidean space E. Then A is affinely independent if
and only if B is.

Proof. Given two finite sets X and Y such that Y = X +w for some vector w, the results of the
previous section show that Y is affinely independent if and only if Y is. Let A′ and B′ be obtained
from A and B by the translations sending 0 to −a0 and −b0 respectively. Then A is affinely
independent if and only if A′ is, and B is affinely independent if and only if B ′ is. Therefore it
suffices to prove the result when the first vector in each set is the zero vector, and by the definition
of affine independence this in turn reduces to showing that the set A′ −{0} is linearly independent
if and only if B′ − {0} is. To simplify notation let us call these sets X = {x1, · · · ,xm } and
Y = {y1, · · · ,ym }.

Let GX be the m × m matrix whose

gi,j(X) = 〈xi, xj〉

(i.e., the Gram matrix of the given set of vectors), and define GY similarly. We claim that these
two matrices are equal if X ∪ {0} and Y ∪ {0} are mapped isometrically by a correspondence T

sending 0 to itself and xi to yi for i ≥ 1. If i = j = k this follows because

gk,k(X) = |xk|
2 = |xk − 0|2 = |T (xk) − 0|2 = |yk − 0|2 = |yk|

2 = gk,k(Y )

and in general this follows because

gi,j(X) = 〈xi, xj〉 = −
1

2

(
|xi − xj |

2 − |xi|
2 − |xj |

2
)

=
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−
1

2

(
|yi − yj |

2 − |yi|
2 − |yj |

2
)

with the latter following from the previously obtained equation gk,k(X) = gk,k(Y ) and the fact
that T is an isometry satisfying T (xi) = yi.

Since GX and GY are equal, one is invertible if and only if the other is, and therefore it will
suffice to show that the Gram matrix is invertible if and only if the given set of nonzero vectors is
linearly independent.

Suppose first that X is linearly dependent. Then some vector x` in the set is a linear combi-
nation of the others, say

x` =
∑

i6=`

cixi .

If we let gi denote the ith row of the Gram matrix for X, then the bilinearity properties of the
inner product imply a similar equation

g` =
∑

i6=`

cigi

and therefore the rows of GX are linearly dependent so that GX is not invertible.

On the other hand, suppose that X is linearly independent, and let V be the span of X; by
hypothesis V is m-dimensional. Let U = {u1, · · · ,um } be an orthonormal basis for V , and write
the vectors of X as linear combinations of the vectors in U :

xj =

m∑

i=1

pi.j ui

Since Xand U form a basis for the same subspace, it follows that the matrix of coefficients P = ( pi.j )
is invertible (of course, its inverse is the matrix of coefficients for expressing the vectors in U as
linear combinations of the vectors in X). Direct computation shows that the Gram matrix GX

is equal to TP · P where TP denotes the transpose of P . Since P is invertible, its product with
its transpose is also invertible, and therefore we have shown that GX is invertible if X is linearly
independent.

Here is a useful consequence that reflects the motivation at the beginning of this section:

COROLLARY. If A and B are isometric subsets of some Euclidean space E and α and β are
maximal affinely independent subsets of A and B respectively, then α and β have the same numbers
of elements.

Proof. Given a subset S ⊂ E, let Aff (S) denote the set of all vectors expressible as (finite) affine
combinations of the vectors in S. It is then an elementary exercise to verify that

Aff
(
Aff (S)

)
= Aff (S)

(an affine combination of affine combinations is an affine combination). In particular, Aff (S) is a
flat subset in the sense of Section 2, and therefore Aff (S) has the form x + WS where x ∈ S is
arbitrary and WS depends only upon S and not on x.

Suppose now that M is a maximal affinely independent subset of S, and assume that M

has m + 1 elements. Then Aff (M) has the form x′ + WM where dimWM = m. We claim that
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Aff (M) = Aff (S); if so, then WM = WS and hence dimWS = m, which implies that the number
of vectors in a maximal affinely independent subset is the same for all possible choices.

It follows immediately that Aff (M) ⊂ Aff (S). To prove the converse, we begin by showing
that S ⊂ Aff (M). Suppose that x ∈ S − M . Then the set M ∪ {x} must be affinely dependent
and therefore there is a relation of the form

c−1 x +
∑

i≥0

ci vi = 0

where each vi lies in M , the coefficients cj are not all zero, and
∑

j cj = 0. If c−1 were zero then
the set M would be affinely indepdendent, so c−1 6= 0. Therefore we may solve the equation above
to express x as a linear comination of the vectors vi, and for each i the coefficient turns out to be

ci∑
i≥0 ci

so that the sum of the coefficients is equal to 1. Therefore we know that S ⊂ Aff (M), and by the
first paragraph of the proof we have

Aff (S) ⊂ Aff
(
Aff (M)

)
= Aff (M)

which is what we wanted to prove.

We now apply this to the situation described in the corollary. The preceding argument shows
that if p and q denote the numbers of elements in α and β respectively, then every maximal
affinely independent subset of A contains exactly p elements and likewise every maximal affinely
independent subset of B contains exactly q elements. Therefore it suffices to show that B contains a
maximal affinely independent subset with exactly p elements. By the result on isometries and affine
independence, if T is an isometry and α ⊂ A is affinely independent, then T (α) ⊂ B is also affinely
independent. To see that it is a maximal such subset, suppose that β ⊂ B is a maximal affinely
independent subset that contains T (α). Since T −1 is also an isometry, it follows that T −1(β) ⊂ A

is an affinely independent subset of A containing α. By the maximality of the latter it follows that
T−1(β) = α and hence that β = T (α). Therefore T (α) is a maximal affinely independent subset of
B with exactly p elements, and accordingly we must have p = q as required.

The next result is an important special case of the main result on extending isometries.

PROPOSITION. Let E be an m-dimensional Euclidean space, and let A = {a0, · · · ,am }
and B = {b0, · · · ,bm } be isometric affinely independent subsets of E. Then there is a unique
isometry T from E to itself such that T (ai) = bi for all i.

Proof. We start with essentially the same arguments used at the beginning of the proof of the
previous result. Using translations we can reduce the proof to the special case where a0 = b0 = 0,
and since a linear isometry sends the zero vector to itself it suffices to prove that if A ′ and B′

are the translations of A and B sending 0 to −a0 and −b0 respectively, then there is a unique
isometry sending the ordered list of vectors in A′ to the corresponding ordered list of vectors in
B′. Since isometries sending the zero vector to itself are orthogonal linear transformations and
the nonzero vectors in A′ and B′ are bases for E, it suffices to prove that there is a (necessarily
unique) orthogonal linear transformation from E to itself sending the ordered basis A ′ − {0} to
B′−{0}. As in the previous proof, to simplify notation let us call these bases X = {x1, · · · ,xm }
and Y = {y1, · · · ,ym }.
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General considerations from linear algebra imply that there is a unique invertible linear trans-
formation T such that T (xi) = yi for all i. We need to prove that T is an isometry under the
hypotheses on A and B (and their reformulations to conditions on X and Y ).

As in the previous proof, if GX and GY are the so-called Gram matrices defined by the formulas

gi,j(X) = 〈xi, xj〉 , gi,j(Y ) = 〈yi, yj〉

then one can check that GX = GY using the fact that T maps X ∪ {0} isometrically to Y ∪ {0}.
Therefore the proof reduces to verifyint the following assertion:

LEMMA. Let E be a Euclidean space, let X = {x1, · · · ,xm } and Y = {y1, · · · ,ym } be
ordered bases for E whose Gram matrices are equal, and suppose that T is a linear transformation
from T to itself such that T (xi) = yi for all i (recall that the latter implies invertibility). Then T

is orthogonal.

Proof. This is an elementary but inelegant computation. Let p and q be arbitrary vectors in E,
and write them as linear combinations

p =
m∑

i=1

si xi , q =
m∑

j=1

tj xj .

Therefore the inner product 〈p, q〉 is equal to

∑

i,j

si tj 〈xi, xj〉

and the inner product 〈T (p), T (q)〉 is equal to the corresponding expression in which each term
of the form xk is replaced by the corresponding vector yk. Since the condition on T implies that
〈xi, xj〉 is equal to 〈yi, yj〉 for all i and j, this means that 〈p, q〉 and 〈T (p), T (q)〉 are equal, which
in turn implies that T is an orthogonal linear transformation.

COMPLEMENT. If in the preceding result we alter the hypothesis on the dimension of E to
dimE ≥ m, the existence portion of the conclusion remains valid.

Sketch of proof. As before, it suffices to establish the case where the isometry sends 0 to itself,
so we shall limit our attention to this case and leave the general case to the reader as an exercise.

Let V be the span of the linearly independent set X and let W be the span of the linearly
independent set Y such that X ∪ {0} is congruent to Y ∪ {0} by an isometry sending 0 to itself.
Then the dimensions of V and W are equal, and similarly the dimensions of their orthogonal
complements V ⊥ and W⊥ are equal. The methods of the preceding result yield an invertible
orthogonal linear transformation from V to W sending X to Y , and we may extend this to an
orthogonal linear transformation from E to itself by choosing ordered orthonormal bases for V ⊥

and W⊥ and stipulating that the linear transformation send the ordered basis for the former to the
ordered basis for the latter. This yields an invertible linear transformation from E to itself, and it
is orthogonal because it preserves inner products on both V and V ⊥.

Note. If dimV < dimE in the preceding result, then the choices of orthonormal bases for
V ⊥ and W⊥ are not unique, and therefore the extension to an isometry will not be unique.

Finally, the following sharpening of the first result is also important in the proof of the main
result in Section 4:
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ISOMETRIES AND BARYCENTRIC COORDINATES. Let E be an m-dimensional Eu-
clidean space, and let A = {a0, · · · ,am } and B = {b0, · · · ,bm } be ordered affinely independent
subsets of E, and let p and q be points of E such that A ∪ {p } and B ∪ {q } are isometric by
an isometry T sending ai to bi for all i and sending p to q. Then the barycentric coordinates of p
with respect to A are equal to the barycentric coordinates of q with respect to B.

Proof. Once again the argument begins with a reduction to the case where a0 = b0 = 0; this is
true because if SA and SB denote translation by −a0 and −b0 respectively, then the barycentric
coordinates of SA(p) with respect to SA(A) are equal to to those of p with respect to A, and the
barycentric coordinates of SB(q) with respect to SB(B) are equal to to those of q with respect to
B.

Once again, to simplify notation we denote the ordered bases A′ − {0} and B′ − {0} by
X = {x1, · · · ,xm } and Y = {y1, · · · ,ym } respectively. If U is the unique linear transformation
sending xi to yi for each i, then the previous results of this section imply that U is an isometry,
and the proof of the proposition reduces to verifying that q = U(p).

Since |p|2 = |q|2, |xi|
2 = |yi|

2 for all i and |p − xi|
2 = |q − yi|

2 for all i, it follows from the
bilinearity properties of inner products that

〈p, xi〉 = 〈q, yi〉

for all i. On the other hand, since U is an orthogonal transformation it also follows that

〈p, xi〉 = 〈U(p), yi〉

for all i. Therefore it suffices to show that two vectors in E are equal if their inner products with
each basis vector yi are equal .

Let E = { e1, · · · , em } be an orthonormal basis for E, so that

v =
m∑

i=0

〈v, ei〉 ei

for all V ∈ E. Since Y and E are both orthonormal bases, it follows that each vector in E can be
expressed as a linear combination of the vectors in Y , and therefore one may write each function
〈v, ei〉 explicitly as a linear combination of the inner product functions 〈v, xj〉. Therefore, if we
have two vectors q and r such that

〈r, yj〉 = 〈q, yj〉

for all j, the we also have
〈r, ei〉 = 〈q, ei〉

for all i, and by the formula at the beginning of this paragraph it follows that q = r. By the
remarks in the previous paragraph, the condition on inner products holds if r = U(p). Therefore
we have shown that q = U(p) and accordingly that the barycentric coordinates of p with respect
to A are equal to the barycentric coordinates of q to B.
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Extensions to similarities

All of the results above extend to similarities. Specifically, suppose that the hypothesis involv-
ing an isometry in each result above is replaced by a hypothesis involving a similarity with ratio of
similitude r > 0. If M denotes the invertible linear transformation of E to itself corresponding to
multiplication by r−1, then two subsets A and B in E are similar with ratio of similitude r if and
only if A and M(B) are isometric, and a set of vectors X is affinely or linearly independent if and
only if either of the sets M± 1(X) is affinely or linearly independent respectively. Furthermore, the
mappings M± 1 preserve barycentric coordinates. Details of verifying the extensions of each result
to similarities are left to the reader as an exercise.

4. Extensions of isometries and similarities

We are now ready to prove the main result:

ISOMETRY EXTENSION THEOREM. Let E be a Euclidean space, let A, B ⊂ E, and
let T : A → B be an isometry. Then there is a global isometry Φ from E to itself such that T

is the restriction of Φ to A. Furthermore, if A contains a maximal affinely independent subset of
dimE + 1 vectors, then Φ is the unique extension of T .

There is a corresponding result for similarities; formulation of the statement and proof of this
result will be left to the reader as an exercise.

Proof. We shall follow the strategy of Section 3, considering the special case where T (0) = 0
and showing that the general case follows from the latter. However, it will be more convenient to
reverse the order of these steps and to begin with the special case.

Let A0 be a maximal affinely independent subset of A containing 0, and let V be the span
of A0. By maximality it follows that every point of A is a linear combination of vectors in A0

and therefore A ⊂ V . Furthermore, the affine independence of A0 implies that X0 = A0 − {0} is
linearly independent and hence forms a basis for V .

By the results of Section 3 we also know that B0 = T [A0] is a maximal affinely independent
subset of B containing 0. If W is the span of B0, it follows that B ⊂ W and Y0 = B0 − {0} forms
a basis for W . Therefore the results of Section 3 also imply the existence of an orthogonal linear
transformation Φ on E such that Φ = T on X0. The final steps in the proof of the special case are to
prove that Φ = t on all of A and that the extension is unique if A is a maximal affinely independent
subset of E (so that A spans E). Uniqueness follows quickly because two linear transformations
that agree on A must agree everywhere since A is a spanning set. To verify that Φ = T on A,
we shall use the result on isometries and barycentric coordinates from Section 3. According to the
latter, if a ∈ A and we write

a = c0 0 +

m∑

i=1

ci xi

where
∑

i≥0 si = 1, then

T (a) = c0 0 +
m∑

i=1

ci yi =
m∑

i=1

ci T (xi) =
m∑

i=1

ci Φ(xi) = Φ(a)

(since Φ is linear), so that Φ = T on A.
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We turn now to the general case. Let v ∈ A and w ∈ B be such that T (v) = w, and for an

arbitrary vector z ∈ E let Sz denote translation by z. Then the composite T̂ = S−w
oT oSv is an

isometry from S−v[A] to S−w[B] sending 0 to itself, and therefore T̂ extendes to an orthogonal

linear transformation Φ̂ on E. Furthermore this extension is uniqu if the linear span of S−v[A]
is equal to E, which is equivalent to saying that A contains an affinely independent subset with
dimE+ 1 vectors. If we set Φ equal to Sw

oΦ̂ oS−v, it follows that Φ is an isometry of E such that
Φ = T on A. Finally, suppose that Ψ is an arbitrary isometry of E such that Ψ = T on A. Then
both Φ̂ and S−w

oΨ̂ oSv are orthogonal transformations with the same values on a spanning subset
of E and hence they are equal. Since the composite Sz

oS−z is the identity for all z, we therefore
have

Ψ = Id oΨ oId =
(
Sw

oS−w

)
oΨ̂ o

(
Sv

oS−v

)
=

Sw
o

(
S−w

oΨ̂ oSv

)
oS−v = Sw

oΦ̂ oS−v = Φ

and it follows that Φ must be unique.

5. Isometries, similarities and classical geometry

In this section we shall indicate how the standard notions of congruence and similarity in
elementary geometry reduce to special cases of isometry and similarity in the sense of these notes.

TO BE COMPLETED
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