
Supplement to Chapter 10 of Sutherland, 
 

Introduction to Metric and Topological Spaces (Second Edition) 

 
Nonrectangular open sets in product spaces 

 
The following example illustrates the insertion in boldface type near the bottom of page 101 in 
Surtherland; namely, open sets in a Cartesian product are generally unions of  very large 
families of rectangular open subsets. 
 

If we are given an open disk in the plane of the form   x
2
 + y

2
  <  r

2
   then it is fairly easy to 

describe this set as a union of rectangular open sets; for example, if we are given a point  (u, v)  
in the (open) first quadrant of its boundary circle and we let  W(u, v)  be the rectangular region 
(– u, u) × (– v, v), then the disk is the union of the sets  W(u, v).   
 

 
 

In fact, it is possible to express the open disk as a union of a countably infinite sequence of 
rectangular open sets (see Munkres, Topology (Second Edition), pages 190 – 191 and 194).  
However, we claim that it is not possible to express the open disk as a  finite  union of 
rectangular open sets.    This probably looks obvious from the drawing, but we really have to 
give a rigorous proof to establish this and thus we shall do so here. 
 

The first step in proving the assertion in the preceding paragraph is to derive the following fact 
about boundaries of unions of subsets  A, B  in a metric or topological space  X: 
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[ Proof.  The first equality is just Exercise 6.23(b) on page 75 of Sutherland, the 
second follows from Proposition 6.13 on page 64 of Sutherland, the third equality 

follows from the distributivity of unions over intersections, the set – theoretic 

containment follows from the obvious inclusions  X – (A ∪∪∪∪ B)  ⊂⊂⊂⊂  X – A, X – B 

and Proposition 6.11(b) on page 63 of Sutherland, and the final equality — just 
like the first — follows from Exercise 6.23(b) on page 75 of Sutherland.] 

 
If we apply the displayed containment relation repeatedly, we see that the boundary of a finite 
union of rectangular open subsets is contained in the union of the boundaries of the 
individual rectangular open subsets.   In particular, it follows that the boundary of such a 
finite union is contained in a finite union of vertical and horizontal lines.   
 



To see that an open disk of the form  x
2
 + y

2
  <  r

2
  cannot be a finite union of rectangles, note 

first that its boundary set is the circle with equation x
2
 + y

2
  =  r

2
, and in particular the boundary 

must be infinite.  Next, note that the intersection of this boundary with an arbitrary horizontal or 
vertical line  x  =  a  or  y  =  b  must contain at most two points.  If the disk were a finite union of 
rectangular open sets, then since the boundary would be contained in a finite union of vertical 
and horizontal lines it would follow that at least one of these lines would contain infinitely many 
boundary points of the open disk.  This yields a contradiction, the source of which is the 
assumption that the open disk is a finite union of rectangular open sets.  Therefore the disk 
cannot be a finite union of this sort, proving our assertion. 



Further results

The preceding discussion does not quite prove that the open unit disk in R
2 cannot be written

as a finite union of basic open sets in the product topology, so we shall now explain how one can
retrieve this stronger result from the preceding discussion. The key step is the following observation.

LEMMA. Let Ω be the open disk of radius r centered at the origin in R
2, and suppose that U

and V are basic open subsets in R such that U × V ⊂ Ω. Then there are open intervals U ′ ⊃ U

and V ′ ⊃ V such that U ′ × V ′ ⊂ Ω.

By the lemma, we see that if Ω were a finite union of basic product open subsets in R
2, then it

would also be a union of finitely many rectangular open subsets given by the product of two open
intervals. The arguement on the preceding two pages shows this cannot happen, so we have our
conclusion:

THEOREM. The open disk Ω cannot be written as a finite union of open sets ∪i Ui × Vi where

Ui and Vi are both open in R.

We shall use the results on connected spaces from Unit III in the course notes to shorten the
proof of the theorem, which was stated in Section II.4 of the course notes.

Proof of the Lemma. Since Ω is bounded it follows that both U and V are bounded, so let
a = g.l.b.(U), b = l.u.b.(U), c = g.l.b.(V ), and d = l.u.b.(V ). Then a and b are frontier points
of the open set U (they cannot lie in U because they are lower and upper bounds and U is open),
and similarly c and d are frontier points of the open set V . Therefore {a, b}×{c, d} is contained in
the closure of U × V , which must be contained in the closure of Ω, which is a closed disk of radius
r. By convexity it follows that [a, b]× [c, d] ⊂ Ω . The latter in turn implies that (a, b)× (c, d) ⊂ Ω,
for the boundary of the closed solid rectangular region can only meet the boundary circle of radius
r at the corner points (and these points also might not lie on the circle). Therefore we have shown
that the conclusion of the lemma holds if we take U ′ − (a, b) and V ′ = (c, d).

One might also speculate whether Ω can only be written as an uncountable union of basic
product open subsets, but it turns out that one can write Ω as a countably infinite union of open
rectangles (ak, bk)× (ck, dk). This follows from a property of Ω called second countability which is
discussed in Section VI.1 of the course notes.
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