
Standard forms for writing numbers 
 
 
In order to relate the abstract mathematical descriptions of familiar number systems to 
the everyday descriptions of numbers by decimal expansions and similar means, it is 
necessary to verify that objects the mathematically constructed number systems can be 
written in the standard forms and that these forms have the expected properties.  The 
purpose of this document is to carry out the details of such verifications. 
 
Not surprisingly, our discussion will be based upon the standard axiomatic description of 
the real number system, which is discussed in the file(s) 

 
http://math.ucr.edu/~res/math205A/realnumbers.doc 
http://math.ucr.edu/~res/math205A/realnumbers.pdf 
http://math.ucr.edu/~res/math205A/realnumbers.ps 

 
http://math.ucr.edu/~res/math205A/uniqreals.doc 
http://math.ucr.edu/~res/math205A/uniqreals.pdf 
http://math.ucr.edu/~res/math205A/uniqreals.ps 

 
in the course directory.  The basic properties may be summarized as follows: 
 

1. The real numbers form an ordered field, and it is complete with 
respect to the ordering. 

 
2. The subset of natural numbers, which is the smallest subset 

that contains 0 and 1 and is closed under addition, is well – 
ordered; i.e., every nonempty subset contains a (unique) least 
element. 

 
We shall summarize some consequences of these properties that are important for our 
purposes. 
 
Archimedean Law.  If a and b are positive real numbers, then there is a positive integer 
n such that n a   >   b. 
 
By the well – ordering of the positive integers, there is a (unique) minimal value of n for 
which this holds. 
 
Infinite series convergence criterion.  If { an } is a sequence of nonnegative terms 
such that the partial sums sn   =   a1   +  …  +   an   is bounded by some constant K that 
does not depend on n, then the infinite series  a1   +   a2     +  …  +   an     +  …   
converges (to a finite nonnegative value).  
 
In fact, the sum of the infinite series is the least upper bound of the partial sums sn.  The 
most fundamental example of this sort is the classical geometric series with terms an   =   
r  n – 1, and in this case we know the sum is equal to 1 / (1 – r). 
 
One of the most elementary facts about a positive real number x is that it can be written 
as the sum [x]  +  ( x ) of a nonnegative integer [x] and a nonnegative real number ( x ) 



that is strictly less than one, and this decomposition is unique.  The integer [x] is often 
called the greatest integer function of x or the characteristic of x, and the remaining 
number ( x ) is often called the fractional part or mantissa of x.   The characteristic – 
mantissa terminology dates back to the original tables of base 10 logarithms published 
by H. Briggs (1561 – 1630); the literal meaning of the Latin root word mantisa is 
“makeweight,” and it denotes something small that is placed onto a scale to bring the 
weight up to a desired value.  We shall derive the decomposition of a nonnegative real 
number into a characteristic and mantissa from the axiomatic properties of the real 
numbers. 
 
Theorem.  Let r  be an arbitrary nonnegative real number.  Then there is a unique 
decomposition of r as a sum n  +  s  where n is a nonnegative integer and 0  

�
  s  <  1. 

 
Proof.  By the Archimedean Law there is a nonnegative integer m such that m  >  r, and 
since the nonnegative integers are well – ordered there is a minimum such integer .  
Since r is nonnegative it follows that m1 cannot be zero and hence must also be positive.  
Therefore m1 – 1 is also nonnegative and by the minimality of the positive integer m1 we 
must have  m1 – 1  ≤≤   r.  . If we take n  =  m1 – 1 and s  =  r – n then we have r  =  n  +  
s where n and s have the desired properties.  Suppose that we also have r  =  q  +  v  
where q is a nonnegative integer and 0   ≤≤   q   <  1.   By hypothesis we have   
 

q    ≤≤    r    <    q + 1 
 
and the right hand inequality implies n + 1   ≤≤   q + 1, or equivalently n  ≤≤   q.  The 
equation  r  =  n  +  s   =  q  +  v can therefore be rewritten in the form  
 

0   ≤≤    q – n   =   s – v 
 
and since ( i )  s – v   ≤≤    s  <  1  and ( ii )  q – n  is an integer, it follows that n  =  q and 
s  =  v. 
 

Base N expansions for natural numbers 

We shall make extensive use of the Long Division Property of natural numbers:   
 
Division Theorem.  Given two natural numbers a and b with b   >   1, there are unique 
natural numbers q and r such that a   =   b q  +  r, where 0   <   r   <   b – 1. 
 
The numbers q and r are often called the integral quotient and remainder respectively. 
 
Here is the standard result on base  N or N – adic expansions of positive integers.  In 
the standard case when N  =  10,  this yields the standard way of writing a nonnegative 
integer in terms of the usual Hindu – Arabic numerals, while if n  =  2 or 8 or 16 this 
yields the binary or octal or hexadecimal expansion respectively. 
 
Theorem.  Let k be a positive integer, and let N   >   1 be another positive integer.  Then 
there are unique integers  aj  such that   0   ≤≤   aj   ≤≤   N – 1 and  
 

k    =    a0   +  a1 N   +   …   +  a m Nm 



 
for a suitable nonnegative integer m. 
 
In the course of proving this result it will be useful to know the following: 
 
Lemma.    Suppose that integers N, k, and aj  are given as above.  Then we have 
 

a0   +  a1 N   +   …   +  a m Nm    ≤≤    N m + 1. 
 
Proof of Lemma.    Since aj   ≤≤   N – 1 for each j we have   
 

aj N
j   ≤≤   (N – 1) Nj    =   N j + 1  –  N j 

 
and therefore we have the inequality 
 

a0   +  a1 N   +   …   +  am Nm    ≤≤    N – 1   +  (N 2 – N)   +   …   +  (N  m + 1 – Nm)    =  
 

N m + 1  –  1   <    N m + 1. 
 
 
 
Proof of Theorem.   It is always possible to find an exponent q such that 2 q  >  k, and 
since k  >  2 it follows that we also have   N q   >   2 q   >   k.  Let [ Sm ] be the statement 
of the statement that every positive integer less than   N m + 1   has a unique expression 
as above.  If  m  =  0 then the result follows immediately from the long division theorem, 
for then k    =    a0.    Suppose now that [ Sp – 1 ] is true and consider the statement [ Sp ].  
If k   <   N p + 1  then we can use long division to write k uniquely in the form  
 

k    =    k0   +  ap N
 p 

 
where  a p    >   0 and  0   ≤≤   k0   <   N p.   We claim that ap   <   N .  If this were false then 
we would have k    >    ap N

 p    >    N N p   =   N p + 1 and this contradicts the assumption 
that k   <    N p + 1.     
 
By induction we know that k0  has a unique expression as a sum  
 

k0    =    a0   +  a1 N   +   …   +  a  p - 1 N
 p - 1 

 
for suitable aj.  This proves existence.  To prove uniqueness, suppose that we have   
 
 

k    =    a0   +  a1 N   +   …   +  a  p  N
 p       =    b0   +  b1 N   +   …   +  b  p  N

 p . 
 

 
Denote all but the last terms of these sums by  A  =  a0   +  a1 N   +   …   +  a  p – 1  N

 p – 1 
and  B  =    b0   +  b1 N   +   …   +  b  p – 1  N

 p – 1.  Then 0  ≤≤  A , B  ≤≤   N p – 1 by the 
lemma, and therefore by the uniqueness of the long division expansion of k it follows that 
a p  =  b p    and   A   =   B.    By the induction hypothesis the latter implies that  a j  =  b j    
for all j  <  p.  Therefore we have also shown uniqueness. 
 



Decimal expansions for real numbers 

 

As noted in the online document(s) realnumbers. ∗∗,  a mathematically sound definition 
of the real numbers should yield the usual decimal expansions for base 10 as well as the 
corresponding expansions for other choices of the base N.   We shall verify this here and 
show that decimal expansions have several properties that are well – known from our 
everyday experience in working with decimals. 
 
Although decimal expansions of real numbers are extremely useful for computational 
purposes, they are not particularly convenient for theoretical or conceptual purposes.  
For example, although every nonzero real number should have a reciprocal, describing 
this reciprocal completely and explicitly by infinite decimal expansions is awkward and 
generally unrealistic.  Another difficulty is that decimal expansions are not necessarily 
unique; for example, the relation  
 

1 . 0    =    0 . 9999999 … 
 
reflects the classical geometric series formula 
 

a / (1 – r )    =     a   +   a r    +  a r
 2  + …   +  a  r

 k  + … 
 
when a   =  9 / 10 and r   =   1 / 10.  A third issue, which is mentioned in the document(s) 

realnumbers.∗∗ ,  is whether one gets an equivalent number system if one switches from 
base 10 arithmetic to some other base.  It is natural to expect that the answer to this 
question is yes, but any attempt to establish this directly runs into all sorts of difficulties 
almost immediately.  This is not purely a theoretical problem; the use of digital 
computers to carry out numerical computations implicitly assumes that one can work 
with real numbers equally well using infinite expansions with base 2 (or base 8 or 16 as 
in many computer codes, or even base 60 as in ancient Babylonian mathematics).  One 
test of the usefulness of the abstract approach to real numbers is whether it yields such 
consequences. 
 
A natural starting point is to verify that infinite decimal expansions always yield real 
numbers. 
 
Decimal Expansion Theorem.   Every infinite series of real numbers having the form  
  

  aN10 N  +  a 
N–110 N – 1  +  …  +  a0  +  b110 – 1  +  b210 – 2  +  …  +   bk 10 – k  + … 

 
(with  0    ≤≤    ai ,  bj    ≤≤   9) 

 
is convergent.   Conversely, every positive real number is the sum of an infinite series of 
this type where the coefficients of the powers of 10 are integers satisfying the basic 
inequalities  0    ≤≤    ai ,  bj    ≤≤   9.   
 
As noted above, there are two ways of writing 1 as an infinite series of this type, so such 
a representation is not unique, but there is only one way of expressing a number as such 
a sum for which infinitely many coefficients are nonzero.  Of course, we eventually want 
to prove this generates all ambiguities in decimal expansions; this will be done later.  



 
PROOF OF THE DECIMAL EXPANSION THEOREM.  The proof of this result splits 
naturally into two parts, one for each implication direction.   
 
Formal infinite decimal expansions determine real numbers:   If one can show this 
for positive decimal expansions, it will follow easily for negative ones as well, so we shall 
restrict attention to the positive case.   Consider the formal expression given above:  
  

  ( aN10N   +   aN–110N – 1  + … + a0   +   b110– 1  +  b210– 2  +  …  +  bk10– k  +  … ) 
 
For each integer p  >  0, define s p to be the sum of all terms in this expression up to and 
including b p10 – p and let  S be the set of all such numbers s p .  Then the set S has an 
upper bound, and in fact we claim that 10N + 1 is an upper bound for S.  To see this, 
observe that  aN 10 N  +  aN–110 N – 1  +  …   +  a0      ≤ ≤    10 N + 1  – 1 by a previous lemma 
and  
 
b110 – 1  +   b210 – 2  + … +  bk10 – k  + …     ≤   ≤   9 (10 – 1  +   10 – 2  + … +  10 – k  + … )  =  1  
 
and the assertion about an upper bound follows immediately from this.  The least upper 
bound r for S turns out to be the limit of the sequence of partial sums { s p } . 
 
Real numbers determine infinite decimal expansions:   Given (say) a positive real 
number r, the basic idea is to find a sequence of finite decimal fractions { s p } such that 
for every value of  p the number sp  is expressible as a fraction whose denominator is 
given by 10 p and  
 

s p      ≤  ≤     r    <   s p   + 10 – p. 
 
More precisely, suppose that we already have s p and we want to find the next term.  By 
construction 10 p s p  is a positive integer and   10 p s p     ≤  ≤     10 p r    <   10 p s p + 1, so that    
 

10 p+ 1 s p      ≤≤      10 p+ 1 r    <   10 p+ 1 s p + 10. 
 
Choose b p+ 1 to be the largest integer such that  
 

b p+ 1   ≤≤   10 p+ 1 r  –  10 p+ 1 s p. 
 

The right hand side is positive so this means that bp+ 1   ≥≥   0.  On the other hand, the 
previous inequalities also show that  b p + 1   <  10 and since b p+ 1    is an integer this 
implies  b p+ 1   ≤≤   9. If we now take s p+ 1 =  10 s p  +  b p+ 1    then it will follow that  
 

s p+ 1    ≤≤   r   <   s p+ 1  +  10 – (p +  1). 
 

To see that the sequence converges, note that it corresponds to the infinite series 
 

s p    +   ΣΣ p  (b p + 1 10 –  p), 
 

which converges by a comparison with the modified geometric series s p  + ΣΣ p 10 (1– p). 
 



Scientific notation.  The standard results on writing positive real numbers in scientific 
notation follow immediately from the preceding considerations. 

Theorem.  Every positive real number has a unique expansion of the form a ⋅⋅10 M, 
where 1  ≤   ≤   a      <      10 and M is an integer.  

As is always the case for unique existence results, the proof splits into two parts. 
 
Existence.  If x has the decimal expansion 
 
  a N ⋅⋅10 N  +  a 

N–1 ⋅⋅10 N – 1  +  …  +  a 0  +  b 1 ⋅⋅10 – 1  +  b 2 ⋅⋅10 – 2  +  …  +   b k  ⋅⋅10 – k  + … 
 

(with  0    ≤≤    a i ,  b j    ≤≤   9) 
 

then x ⋅⋅10 – N  lies in the interval [1, 10) by construction.  
 
Uniqueness.  Suppose that we can write x as a ⋅⋅ 10 M and b ⋅⋅ 10 N.  Then by the 
conditions on the coefficients, we know that x  ∈∈  [10 M, 10 M + 1)  ∩∩  [10 N, 10 N + 1).  Since 
the half open intervals [10 M, 10 M + 1)  and  [10 N, 10 N + 1) are disjoint unless M  =  N, it 
follows that the latter must hold.  Therefore the equations x  =  a ⋅⋅10 M  =  b ⋅⋅10 N and M  
=  N imply a  =  b. 
 

Decimal expansions of rational numbers 

In working with decimals one eventually notices that the decimal expansions for rational 
numbers have the following special property: 

Eventual Periodicity Property.  Let r be a rational number such that 0   <   r   <   1, and 
let  

r    =    b110 – 1  +  b210 – 2   +   …   +  bk10 – k  +  … 

be a decimal expansion.  Then the sequence { bk } is eventually periodic ; i.e.,  there 
are positive integers M and Q such that b k  =   b k + Q for all k  >  M. 

Proof.   Let a / b  be a rational number between 0 and 1, where a and b are integers 
satisfying 0   <   a   <   b.  Define sequences of numbers rn and xn recursively, beginning 
with r0   =   a  and  x0   =   0.  Given rn and xn express the product 10 r n by long division 
in the form 10 r n   =  b x n + 1  +  r n + 1 where x n + 1  ≥≥  0 and  0   ≤≤    r n + 1   <   b .  
 
CLAIMS:   
 

1. Both of these numbers only depend upon r n . 
2. We have xn + 1   <  10. 

 
The first part is immediate from the definition in terms of long division, and to see the 
second note that x n + 1  ≥≥   10 would imply 10 rn   ≥≥  10 b, which contradicts the 
fundamental remainder condition rn   <   b. 



 
Since rn can only take integral values between 0 and b – 1, it follows that there are some 
numbers Q and m such that rm   =   rm + Q.   
 
CLAIM:   r k   =   r k + Q   for all  k  ≥≥   m. 
 
We already know this for p   =   m, so assume it is true for p   ≤≤    k.  Now each term in 
the sequence r n depends only on the previous term, and hence the relation rk   =   r k + Q   
implies r k + 1   =   r k + Q + 1.  Therefore the claim is true by finite induction. 
 
CONVERSELY, suppose that the statement in the claim holds for the decimal expansion 
of some number, and choose m and Q as above.  Let s be given by the first m – 1 terms 
in the decimal expansion of y, and let  t  be the sum of the next  Q  terms.  It then follows 
that y is equal to s   +   t (1 + 10 – Q  + 10 – 2Q  + 10 – 3Q  + … ).  Now s, t and the 
geometric series in parentheses are all rational numbers, and therefore it follows that y 
is also a rational number.  Therefore we have the following result: 
 
Theorem.   A real number between 0 and 1 has a decimal expansion that is eventually 
periodic if and only if it is a rational number. 
 
It is easy to find examples illustrating the theorem: 
 

1 / 3   =     0.333333333333333333333333333333333333 … 
 

1 / 6   =     0.166666666666666666666666666666666666 … 
 

1 / 7   =     0.142857142857142857142857142857142857 … 
 

1 / 11   =   0.010101010101010101010101010101010101 … 
 

1 / 12   =   0.083333333333333333333333333333333333 … 
 

1 / 13   =   0.076923076923076923076923076923076923 … 
 

1 / 17   =   0.058823529411764705882352941176470588 … 
 

1 / 18   =   0.055555555555555555555555555555555555 … 
 

1 / 19   =   0.052631578947368421052631578947368421 … 
 

1 / 23   =   0.043478260869565217391304347826087695 … 
 

1 / 27   =   0.037037037037037037037037037037037037 … 
 

1 / 29   =   0.034482758620689655172413793103448275 … 
 

1 / 31   =   0.032258064516129032258064516129032258 … 
 

1 / 34   =   0.029411764705882352941176470588235294 … 
 

1 / 37   =   0.027027027027027027027027027027027027 … 



 
 
Note that the minimal period lengths in these examples are 1, 1, 6, 2, 1, 6, 16, 1, 18, 22, 
3, 28, 15, 16 and 3.  One is naturally led to the following question: 
 
Given a fraction a / b between 0 and 1, what determines the (minimal) period length Q? 
 
To illustrate the ideas, we shall restrict attention to the special case where a / b  =  1 / p, 
where p is a prime not equal to 2 or 5 (the two prime divisors of 10).  In this case the 
methods of abstract algebra yield the following result: 
 
Theorem.  If p  ≠≠  2, 5 is a prime, then the least period Q is for the decimal expansion of 
1 / p is equal to the multiplicative order of 10 in the (finite cyclic) group of multiplicative 
units for the integers mod p. 
 
We shall not verify this result here, but the proof is not difficult. 
 
Corollary.  The least period Q divides p – 1. 
 
The corollary follows because the order of the group of units is equal to p – 1 and the 
order of an element in a finite group always divides the order of the group. 
 
One is now led to ask when the period is actually equal to this maximum possible value.  
Our examples show this is true for the primes 7, 19, 23 and 29 but not for the primes 11, 
13, 31 or 37.   
 
More generally, one can define a primitive root of unity in the integers mod p to be an 
integer a mod p such that a is not divisible by p and the multiplicative order of the class 
of a in the integers mod p is precisely p – 1.  Since the group of units is cyclic, such 
primitive roots always exist, and one can use the concept of primitive root to rephrase 
the question about maximum periods for decimal expansions in the following terms: 
 
For which primes p is 10 a primitive root of unity mod p? 
 
A simple answer to this question does not seem to exist.  In the nineteen twenties E. 
Artin (1898 – 1962) stated the following conjecture: 
 
Every integer a   > 1 is a primitive root of unity mod p for infinitely many primes p. 
 
This means that 10 should be the primitive root for infinitely many primes p, and hence 
there should be infinitely many full – period primes.  Quantitatively, the conjecture 
amounts to showing that about 37% of all primes asymptotically have 10 as primitive 
root.  The percentage is really an approximation to Artin’s constant  
 

 
 
 
where pk denotes the kth prime.  Further information about this number and related 
topics appears in the following online reference: 



 
http://mathworld.wolfram.com/ArtinsConstant.html 

 
 

Uniqueness of decimal expansions 

 

The criterion for two decimal expressions to be equal is well understood. 

Theorem.   Suppose that we are given two decimal expansions that yield the same real 
number: 

aN10 N + a 
N–110 N – 1 + … +  a0  +  b110 – 1 + b210 – 2 + … +  bk 10 – k  + …   =   

 
cN10 N + c 

N–110 N – 1 + … +  c0  + d110 – 1 + d210 – 2 + … +  dk 10 – k  + … 

Then aj   =   cj for all j, and one of the following is also true: 

1. For each k we have bk  =  dk. 
2. There is an L  >  0  such that bk  =  dk for every k  <  L but 

b L + 1  =  d L  + 1,  while bk  =  0 for all  k  >  L and dk  =  9 
for all  k  >  L. 

3. There is an L  >  0  such that bk  =  dk for every k  <  L but  
d L + 1  =  b L  + 1,  while dk  =  0 for all  k  >  L and bk  =  9 
for all  k  >  L (the opposite of the previous possibility). 

If x and y are given by the respective decimal expansions above, then x   =   y   implies 
the greatest integer functions satisfy [x]   =   [y],  which in turn implies that a j   =   cj j for 
all j.  Furthermore, we then also have ( x )   =   ( y ) and accordingly the proof reduces to 
showing the result for numbers that are between 0 and 1.     

The following special uniqueness result will be helpful at one point in the general proof. 

Lemma.  For each positive integer k let t k be an integer between 0 and 9.  Then we 
have 

1   =   t110–1 + t210–2 + … +  tk10–k  + …  

if and only if  tk   =   9  for all k. 

Proof.   Let t be the summation on the right hand side.  If tk   =   9 for all k then t  =  1 by 
the geometric series formula.  Conversely, if tm   <   9 for a specific value of m then 

t110–1 + t210–2 +  … +  tk10–k  +  …   <   u110–1  +  u210–2  + …  +  uk10–k  +  … 



where uk  =   9 for k ≠≠  m and   um   ≤≤   8.  The latter implies that the right hand side is less 
than or equal to 1 – 10 – m, which is strictly less than 1. 

Theorem.  If we are given two decimal expansions 

x   =   x110–1  +  x210–2  +  …  +   xk10–k   +  …  

y   =   y110–1  +  y210–2  +  …  +   yk10–k   +  …  

then x  =  y if and only if one of the following is true: 

1. For all positive integers k we have xk   =   yk . 
2. There is some positive integer M such that [ i ] xk   =   yk   for all  

k   <   M,  [ ii ]  xM    =    yM   +  1, [ iii ]  xk   =   0  for  k   >   M,  
and [ iv ]  yk   =   9  for  k   >   M. 

3. A corresponding statement holds in which the roles of xk   and  
yk   are interchanged: There is some positive integer M such 
that [ i ] xk   =   yk   for all  k   <   M,  [ ii ]  yM    =    xM   +  1, [ iii ]  
yk   =   0  for  k   >   M,  and [ iv ]  xk   =   9  for  k   >   M. 

 

Proof.   Suppose that the first alternative does not happen, and let  L be the first positive 
integer such that  xL   ≠≠   yL .  Without loss of generality, we may as well assume that  the 
inequality is xL   >   xL    (if the inequality points in the opposite direction, then one can 
apply the same argument reversing the roles of xk and xk throughout).  Let z be given by 
the first L – 1 terms of either x or y (these are equal). 

CASE 1.  Suppose that xL   ≥≥    yL  +  2.  Note that yL   ≤≤   7 is true in this case.   We then 
have  

y   ≤≤   z  + 10 – L yL  +  9 ×× 10 – L (10–1 + 10–2 + … +  10–k  + …  )   =   z + 10 – L ( yL +1 )    <   

z  + 10 – L ( xL )    ≤≤   z  + 10 – L ( xL +   xL + 110–1 + xL + 210–2 + … +  xL + k10–k  + … )   =   x.  

Therefore x  >  y  if we have xL   ≥≥    yL  +  2.   

CASE 2.  Suppose that xL   =  yL  +  1, and let  w  =  10 – L yL, so that  xL   =   w  + 10 – L. 
We may then write 

x    =    z  +  (w   +  10 – L)   +  10 – L u     and     y    =    z   +   w   +  10 – L v 

where by construction u and v satisfy 0   ≤≤  u,  v   ≤≤   1.  If x  =  y  then the displayed 
equations imply that  10 – L  +  10 – L u    =  10 – L v.  The only way such an equation can 
hold is if u   =   0  and v   =   1.    The first of these implies that the decimal expansion 
coefficients for the sum  

0     =     u     =      xL + 110–1  +  xL + 210–2  +  …  +   xL + k10–k  + … 



must satisfy x k = 0 for all k   >   L, and by the lemma the second of these can only 
happen if the decimal expansion coefficients for the sum  

1     =     v     =     yL + 110–1 + yL + 210–2 + … +  yL + k10–k  + … 

satisfy y k   =   9 for all k   >   L.  Therefore the second alternative holds in Case 2. 

Conversely, the standard geometric series argument shows that two numbers with 
decimal expansions given by the second or third alternatives must be equal.   Of course, 
the two numbers are equal if the first alternative holds, so this completes the proof of the 
theorem.  

One can reformulate the preceding into a strict uniqueness result as follows: 

Theorem.  Every positive real number has a unique decimal expansion of the form 

  aN10N   +   aN–110N – 1  +  …  + a0   +   b110– 1  +  b210– 2  +  …  +  bk10– k  +  …  
 
such that b k is nonzero for infinitely many choices of k. 
This follows immediately from the preceding results on different ways of expressing the 
same real number in decimal form; there is more than one way of writing a number in 
decimal form if and only if it is an integer plus a finite decimal fraction, and in this case 
there is only one other way of doing so and all but finitely many digits of the alternate 
expansion are equal to 9. 
 
EXAMPLE.  We can use the preceding result to define real valued functions on an 
interval in terms of decimal expansions.  In particular, if we express an arbitrary real 
number x  ∈∈  (0, 1] as an infinite decimal  
 

x   =   0 . b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 … 
 

where infinitely many digits b k  are nonzero, then we may define a function f from (0, 1] 
to itself by the formula 
 

f (x)   =   0 . b 1 0 b 2 0 b 3 0 b 4 0 b 5 0 b 6 0 b 7 0 b 8 0 b 9 0 … 
 
and if we extend this function by setting f (0)  =  0  then we obtain a strictly increasing 
function on the closed unit interval (verify that the function is strictly increasing!).  Note 
that this function has a jump discontinuity at every finite decimal fraction. 
 
Since every nondecreasing real valued function on a closed interval is Riemann 
integrable, we know that f can be integrated.  It turns out that the value of this integral is 
a fairly simple rational number; finding the precise value is left as an exercise for the 
reader (this is a good illustration of the use of Riemann sums – a natural strategy is to 
partition the unit interval into pieces whose endpoints are finite decimal fractions with at 
most n nonzero terms and to see what happens to the Riemann sums as n increases). 


