The d_p metrics on the Cartesian plane

At the end of <u>http://math.ucr.edu/~res/math145A-2013/product-metrics.pdf</u> we noted that there is a continuous family of metrics d_p for \mathbb{R}^2 which are defined for all p satisfying $1 \le p \le \infty$. These metrics have the property that $d_q \le d_p$ for $p \le q$, they are continuous in p when pis finite, and d_{∞} is the limit of d_p as $p \to \infty$. It follows that if $p \le q$ then the unit disk with respect to the d_p metric is contained in the unit disk with respect to the d_q metric.

In the drawing below, several d_p unit disks in \mathbb{R}^2 are indicated by a range of colors. The d_1 disk is the yellow square in the middle, the $d_{3/2}$ disk is the union of the yellow square with the adjoining coral regions, the d_2 disk is the union of the $d_{3/2}$ disk with the adjoining light blue regions, and so on; the d_{∞} disk, which is the limiting object, is the large square containing everything.

(Adapted from http://www.math.ntnu.no/seminarer/perler/2004-2005.html)

Here is a link to another picture of these unit disks:

http://yaniv.leviathanonline.com/blog/math/out-of-the-norm/

Finally, here is a link to the 3 – dimensional unit disks for the analogous d_p metric on \mathbb{R}^3 : <u>http://www.viz.tamu.edu/faculty/ergun/research/implicitmodeling/abstracts/sm99/index.html</u>