The d_{p} metrics on the Cartesian plane

At the end of http://math.ucr.edu/~res/math145A-2013/product-metrics.pdf we noted that there is a continuous family of metrics d_{p} for \mathbb{R}^{2} which are defined for all p satisfying $\mathbf{1} \leq p \leq \infty$. These metrics have the property that $\mathbf{d}_{\mathbf{q}} \leq \mathbf{d}_{\mathbf{p}}$ for $\mathbf{p} \leq \mathbf{q}$, they are continuous in \mathbf{p} when \mathbf{p} is finite, and \mathbf{d}_{∞} is the limit of $\mathbf{d}_{\mathbf{p}}$ as $\mathbf{p} \rightarrow \infty$. It follows that if $\mathbf{p} \leq \mathbf{q}$ then the unit disk with respect to the $\mathbf{d}_{\mathbf{p}}$ metric is contained in the unit disk with respect to the $\mathbf{d}_{\mathbf{q}}$ metric.
In the drawing below, several $\mathbf{d}_{\mathbf{p}}$ unit disks in \mathbb{R}^{2} are indicated by a range of colors. The \mathbf{d}_{1} disk is the yellow square in the middle, the $d_{3 / 2}$ disk is the union of the yellow square with the adjoining coral regions, the \mathbf{d}_{2} disk is the union of the $\mathbf{d}_{3 / 2}$ disk with the adjoining light blue regions, and so on; the \mathbf{d}_{∞} disk, which is the limiting object, is the large square containing everything.

(Adapted from http://www.math.ntnu.no/seminarer/perler/2004-2005.html)
Here is a link to another picture of these unit disks:
http://yaniv.leviathanonline.com/blog/math/out-of-the-norm/
Finally, here is a link to the 3 - dimensional unit disks for the analogous d_{p} metric on \mathbb{R}^{3} :
http://www.viz.tamu.edu/faculty/ergun/research/implicitmodeling/abstracts/sm99/index.html

