
The Real Number System 

 
 

  Preliminaries 

Given the fundamental importance of the real numbers in mathematics, it is important for 

mathematicians to have a logically sound description of the real number system.  In particular, 

the adoption of set theory as the basic language for mathematics means that the real numbers 

need to be described formally in terms of set theory.  As indicated in Munkres, two ways of 

approaching this are as follows: 

 

I. One can assume the existence of the real numbers as a mathematical system with certain 

so-called “undefined concepts” and axioms. 

II. One can construct the real numbers explicitly from other objects in set theory; e.g., the 

natural numbers. 

 

From a strictly theoretical viewpoint the second alternative has an important advantage; it 

dramatically simplifies the total number of assumptions that are needed to set up a logical 

framework for mathematics.  However, it has a major disadvantage for our purposes because it 

requires a considerable amount of effort to carry out and justify the necessary constructions, and 

the work itself does not shed a great deal of light on the basic topics of this course.  Therefore, as 

in Munkres we shall choose the first alternative.  A reader who is interested in the details of the 

“minimalist” approach to the real number system can find the details in several references (to be 

listed here).    

 

  The Axioms for the Real Numbers 

Addition and multiplication are examples of  binary operations.  We need to describe such 

objects explicitly before going any further. 

 

Definition:  Given a set S, a binary operation on S is a function & from S ×××× S to S.  If x and 

y belong to S and & is a binary operation we generally write x & y for &(x, y). 

 

The so-called “undefined entities” for the real number system are  

• (real) numbers,   

• addition of real numbers,   

• multiplication of real numbers,  

• linear ordering of real numbers.   



Formally, these are given by a nonempty set R (whose elements are the real numbers), a binary 

operation + representing addition on R, a binary operation ×××× or  ·  representing multiplication 

on R, and a partial ordering  < on R.  Following standard mathematical practice we shall often 

denote a ×××× b or  a · b  simply by a b   

 

 

 

 
GROUP I: ALGEBRAIC EQUALITY AXIOMS  

 

 

 

A-1:  

(Associative Laws)  For all  a, b, c  ∈∈∈∈ R  we have (a + b) + c  =  a + (b + c) and 

(ab) c  =  a (bc).   
A-2:  

(Commutative Laws)  For all  a, b  ∈∈∈∈ R  we have a + b  =  b + a  and  a b  =  b a.   
 

A-3:  

(Additive and Multiplicative Identities)  There exist unique and distinct numbers 0 and 1 

in  R  such that  a  +  0 =  a  and a · 1  =  a  for all  a  ∈∈∈∈ R.   
 

A-4:  

(Additive and Multiplicative Inverses)  For each  a  ∈∈∈∈ R  there exists a unique b  ∈∈∈∈ R 

such that a + b  =  0, and for each  a  ∈∈∈∈ R  with a  ≠≠≠≠  0  there exists a unique c  ∈∈∈∈ R 

such that c  ≠≠≠≠  0 and  a · c   =  1.  

 
A-5:  

(Distributive Law)  For all  a, b, c  ∈∈∈∈ R  we have   a · (b + c)  =  ab + ac.  

 
A-6:  

(Multiplication by Zero)  For each  a  ∈∈∈∈ R  we have a · 0   =  0.  
 

 

 

GROUP II:  INEQUALITY AXIOMS  

 

B-1:  

(Equals added to unequals)  If   a, b  ∈∈∈∈ R  satisfy  a  >  b  then for all  c  ∈∈∈∈ R we 

have a + c  >  b + c. 



 

B-2:  

(Unquals multiplied by positive equals)  If   a, b  ∈∈∈∈ R  satisfy  a  >  b  and  c >  0 

then we have a · c  >  b · c. 
 

 

GROUP III: COMPLETENESS AXIOM   

 

C-1:  

Let  S be a nonempty subset of R that has an upper bound; i.e., there is a real number a 

such that x  ≤≤≤≤  a for all  x ∈∈∈∈ S.  Then  S has a least  upper bound;  i.e., there is a real 

number b such that b  ≤≤≤≤  a  for every upper bound  a  of the set S.  
 

 

Property A-6 is not stated explicitly in Munkres, but it is a logical consequence of the other four 

Algebraic Equality Axioms; we have included it here because it is so basic and would have to be 

taken as an axiom if it were not a formal consequence of the other properties. 

 

Some standard concepts (negative numbers, subtraction, reciprocals, quotients, positive numbers, 

etc.) are discussed on page 31 of Munkres, and a few consequences are also listed on pages 31 

and 32.  Numerous other elementary consequences like the “paradoxical” identity  

 

(–1) · (–1)   =  + 1 

 

can be found in most undergraduate textbooks for abstract algebra.  We shall mention a few 

additional consequences here and explain the relation between the real numbers and the positive 

integers from our perspective.  In a subsequent section we shall show that there is essentially 

only one system (up to a reasonable notion of equivalence known as isomorphism) that satisfies 

the axioms for the real numbers. 

 

Squares of nonzero numbers are positive:   If  r is a nonzero real number,  then r
 2  

is positive.   
 

Finding n-th roots of positive real numbers:   If  r is a positive real number and n is a positive 

integer, then there is a unique positive real number x such that x
 n  

=  r.   
 

The preceding two observations imply that a nonzero real number is positive if and only if it is 

the square of another (nonzero) real number.  This algebraic property plays a key role in 

showing that the axioms for the real numbers are algebraically rigid;  i.e., the only one-to-one 

correspondence h of the real numbers with itself such that  

 

h(a + b) =  h(a) + h(b),     h(a · b) =  h(a) · h(b) 
 



(i.e., an automorphism) is the identity.  We shall prove this in the section on the uniqueness of 

the real numbers up to isomorphism.  In contrast, the conjugation map for complex numbers 

sending a  +  b i  to  a  –  b i  (where  a, b  ∈∈∈∈ R and i 
2
 = – 1)  is an automorphism of 

complex numbers that is not equal to the identity. 

 

Real numbers and infinite decimal expressions:   Every positive real number is the sum of an 

infinite series of the form  
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where each  ai and  bj  is an integer between 0 and 9, and every positive real number has a 

unique expression of this form such that bj  is positive for which infinitely many values of j.  
Conversely, every infinite series of the form is convergent. 

 
Of course, real numbers are generally viewed from a practical standpoint as quantities 

expressible by such “infinite decimal” expansions, so this result essentially justifies the usual 

sorts of manipulations that one performs in order to compute with real numbers.  However, 

although such representations of real numbers are absolutely necessary for computational 

purposes, they are not particularly convenient for theoretical or conceptual purposes.  For 

example, describing the reciprocal of a positive real number (even a positive integer!) explicitly 

by means of infinite decimal expansions is at best awkward and at worst unrealistic.  Another 

difficulty is that these expansions are not necessarily unique; for example, the relation  

 

1.0  =  0.9999999… 

 
reflects the classical geometric series formula; the representations become unique if one insists 

that infinitely many terms to the right of the decimal point must be nonzero, but this generates 

further conceptual problems.  A third issue is whether one gets the same number system if one 

switches from base 10 arithmetic to some other base.  It is natural to expect that the answer to 

this question is yes, but any attempt to establish this directly runs into all sorts of difficulties 

almost immediately.  This is not purely a theoretical problem; the use of digital computers to 

carry out numerical computations implicitly assumes that one can work with real numbers 

equally well using infinite base 2 (or base 8 or 16) analogs of decimal (base 10) expansions.  

This discussion strongly suggests that the formal mathematical description of real numbers 

should be expressed in a manner that does not depend upon a computational base.   The 

axiomatic description in Munkres and these notes provides a characterization of this sort. 

 

Density of the rational numbers:   If   a, b  ∈∈∈∈ R  satisfy  a  >  b  then there is a rational 

number  r such that  a  >  r  >  b.   

 
Rational numbers and integers are defined on page 32 of Munkres.  In particular, if  b  =  0 then 

one can choose  r  to be the reciprocal of a positive integer (write the positive rational number  r  

as a quotient of two positive integers m/n ;  if  s  is equal to 1/n  then we clearly have the 



inequalities  a  >  r  ≥≥≥≥   s  >  0).   

 

Integral Archimedean property:   If   a  ∈∈∈∈ R  then there is a nonnegative integer  k such that  

k  >  a .   

Specifically, if  a  <  0 then one can take  k = 0,  and if  a >  0 then 1/a  >  0 and by the 

discussion in the preceding paragraph we can find a positive integer k such that 1/a  > 1/k .  

Taking reciprocals, one obtains the desired inequality k  >  a .    
 

 

 

Intervals in the Real Number System 

 

 

We shall use standard notation from calculus and real variables courses to denote various open, 

closed and half open intervals: 

 

 

The closed interval  [a, b] consists of all real numbers x such that  a  ≤≤≤≤  x  ≤≤≤≤  b.. 
 

The open interval  (a, b) consists of all real numbers x such that  a  <  x  <  b.. 
 

The half-open interval  (a, b] consists of all real numbers x such that  a  <  x  ≤≤≤≤  b.. 
 

The half-open interval  [a, b) consists of all real numbers x such that  a  ≤≤≤≤  x  <  b.. 
 

 

In the second and third cases we shall replace a by – ∞∞∞∞ to denote the sets of real numbers 

satisfying  x  <  b  and  x  ≤≤≤≤  b  respectively,  and in the second and fourth cases we shall 

replace b  by + ∞∞∞∞ to denote the sets of real numbers satisfying  a  <  x  and  a  ≤≤≤≤  x 

respectively.  If we use both conventions in the second case, this expresses R as the “interval”  

(– ∞∞∞∞, + ∞∞∞∞). 

 

Reminder.   Although one can manipulate  – ∞∞∞∞ and + ∞∞∞∞ in many contexts as if they were 

real numbers, these objects do not belong to the real number system and there are also contexts 

in which one cannot manipulate them as if they were real numbers (for example, the product of  

0 and  + ∞∞∞∞  cannot be defined, and likewise for the sum of  – ∞∞∞∞ and + ∞∞∞∞). 

 

 

 



The Real Numbers and the Natural Numbers 

 

We had previously postulated the existence of the natural numbers N in terms of the Peano 

Axioms.  In Section 4 of Munkres the existence of the natural numbers is formulated as a 

consequence of the postulate that there is a system satisfying the axioms for the real numbers.  

We shall take a slightly different approach, showing that N can be viewed as a subset of  R in a 

natural way.   In particular, there is a unique map e : N  →→→→ R such that  

 

e(0) = 0  and  e(σσσσ(n) ) = e(n) + 1 

 

for all n ∈∈∈∈ N .  Specifically, this map can be defined recursively by the given formulas.  

 

 

Arithmetic operations and the successor function.    The following elementary identities will be 

needed in the uniqueness proof for the real numbers; they hold for all  m, n ∈∈∈∈ N :   

 

e(m) + e(σσσσ(n) ) =  e(m) + e(n) + 1 

 

e(m) · e(σσσσ(n) ) =  e(m) · e(n) + e(m) 

 

One can also use minor variants of these identities to define addition and multiplication on N 

abstractly in the “minimalist” approach to the real number system. 


