NOTE ON REFLECTIONS

One particularly important class of isometries for \mathbb{R}^{2} is given by plane reflections. Geometrically, such maps may be described as follows: There is a line L (the axis of symmetry) such that every point in L is sent to itself, but if $\mathbf{x} \notin L$ then \mathbf{x} and its image \mathbf{x}^{\prime} are distinct, and the line L is the perpendicular bisector of the segment [$\left.\mathbf{x x}^{\prime}\right]$.

The purpose of this note is to give a formula for such a mapping in terms of linear algebra.
Write $L=\mathbf{q}+V$, where $\mathbf{q} \in L$ and V is a 1 -dimensional vector subspace of \mathbb{R}^{2}, and let $\{\mathbf{v}\}$ be an orthonormal basis for V.

LEMMA. Let A be the linear mapping of \mathbb{R}^{2} given by $A \mathbf{x}=2 \cdot\langle\mathbf{x}, \mathbf{v}\rangle \mathbf{v}-\mathbf{x}$. Then $A \mathbf{x}=\mathbf{x}$ if $\mathbf{x} \in V$ and $A \mathbf{x}=-\mathbf{x}$ if \mathbf{x} is perpendicular to \mathbf{v}.

Proof. Before starting, we note that linearity is an immediate consequence of the definition and properties of the inner product \langle,$\rangle .$

If $\mathbf{x} \in V$, then $\mathbf{x}=c \mathbf{v}$ for some scalar c, and

$$
\begin{gathered}
A \mathbf{x}=A(c \mathbf{v})=c(A \mathbf{v})= \\
c(2\langle\mathbf{v}, \mathbf{v}\rangle-\mathbf{v})=c(2 \cdot \mathbf{v}-\mathbf{v})=c \mathbf{v}=\mathbf{x}
\end{gathered}
$$

On the other hand, if \mathbf{x} is perpendicular to V, then $\langle\mathbf{x}, \mathbf{v}\rangle=0$ and therefore we have $A \mathbf{x}=-\mathbf{x}$.

The preceding lemma leads directly to an purely algebraic formula for the reflection map that we have described in geometric terms.

PROPOSITION. Let $L=\mathbf{q}+V$ and A be as above, and let $T(\mathbf{x})=A \mathbf{x}+(\mathbf{q}-A \mathbf{q})$. Then the following hold:
(i) $T(\mathbf{x})=\mathbf{x}$ if $\mathbf{x} \in L$.
(ii) For all $\mathbf{x} \notin L$ we have $T(\mathbf{x}) \neq \mathbf{x}$.
(iii) If $\mathbf{x} \notin L$ then the line joining $T(\mathbf{x})$ and \mathbf{x} meets L at the midpoint of the segment $[\mathbf{x} T(\mathbf{x})]$, and the lines L and $\mathbf{x} T(\mathbf{x})$ are perpendicular.

Since T has the geometrical propeties of the reflection map in the previous discussion, it follows that T must be the reflection map we described above.

Proof. (i) If $\mathbf{x} \in L$ then $\mathbf{x}=\mathbf{q}+b \mathbf{v}$ for some scalar b. Then we have

$$
\begin{gathered}
T(\mathbf{x})=T(\mathbf{q}+b \mathbf{v})=A(\mathbf{q}+b \mathbf{v})+\mathbf{q}-A \mathbf{q}= \\
A \mathbf{q}+b A \mathbf{v}+\mathbf{q}-A \mathbf{q}=b(A \mathbf{v})+q
\end{gathered}
$$

and since $A \mathbf{v}=\mathbf{v}$ this implies that $T(\mathbf{x})=\mathbf{q}+b \mathbf{v}=\mathbf{x}$.
(ii) If $\mathbf{x} \notin L$ then $\mathbf{x}-\mathbf{q}=\mathbf{y}+\mathbf{z}$ where $\mathbf{y}=b \mathbf{v}$ for some scalar b and \mathbf{z} is a nonzero vector which is perpendicular to V. Therefore we have

$$
\begin{gathered}
T(\mathbf{x})=A(\mathbf{q}+b \mathbf{v}+\mathbf{z})+\mathbf{q}-A \mathbf{q}= \\
A \mathbf{q}+A(b \mathbf{v})+A \mathbf{z}+\mathbf{q}-A \mathbf{q}=A \mathbf{q}+b \mathbf{v}-\mathbf{z}+\mathbf{q}-A \mathbf{q}=\mathbf{q}+b \mathbf{v}-\mathbf{z}
\end{gathered}
$$

It follows that $x-T(\mathbf{x})=2 \cdot \mathbf{z}$ and is nonzero, so that $\mathbf{x} \neq T(\mathbf{x})$.
(iii) Continuing in the setting of the previous part, we see that the line $\mathbf{x} T(\mathbf{x})$ is equal to

$$
\mathbf{x}+\mathbb{R} \cdot(\mathbf{x}-T(\mathbf{x}))=\mathbf{x}+\mathbb{R} \cdot(2 \mathbf{z})=x+\mathbb{R} \cdot \mathbf{z}
$$

(since $\mathbb{R} \cdot(2 \mathbf{z})=\mathbb{R} \cdot \mathbf{z})$, and this line is perpendicular to L because \mathbf{z} is perpendicular to \mathbf{v}. Finally, we have $\frac{1}{2}(\mathbf{x}+T(\mathbf{x}))=\mathbf{q}+b \mathbf{v}$ which is also a point of L, and hence L meets $\mathbf{x} T(\mathbf{x})$ at the midpoint of $[\mathbf{x} T(\mathbf{x})]$.

