
 

 

Details for Example 3 on page 362 of Munkres 
 

In the cited example there is a statement that the Figure Theta space, which is defined 

by  S 

1
 ∪∪∪∪ { 0 }× [– 1,1],  is a strong deformation retract of the complement of two 

points in the plane, say with coordinates (± ½, 0).  The goal here is to provide details 

for the proof for a statement of this type, the main difference being that the subspace in 
Munkres is replaced with   

 

{– 1, 0, 1} × [– ½, ½]  ∪∪∪∪  [– 1,1] × {– ½, ½}. 
 

The existence of such a homeomorphism is motivated by the sequence of drawings 
  

                       
   

and explicit formulas for such a mapping are given at the end of this document.   
 

We begin with sketches of a deformation retract for the modified Example 3 which is 

similar to the construction illustrated in Figure 58.2 on page 362 of Munkres. 
 

 
 

 

      



Details of the construction(s)

At the first step we shrink the closed region |y| ≥ 1

2
to its frontier |y| = 1

2
by a vertical straight

line homotopy. Formally, the retraction takes (x, t) to itself if |y| ≤ 1

2
and to (x, sgn(t) · 1

2
) if |t| ≥ 1

2
,

where sgn(t) is 1 if t > 0 and −1 if t < 0. These definitions agree on the overlapping set where
|t| = 1

2
, and therefore one has a well-defined continuous retraction r1 from R

2 − {p,q} to

E =
[

− 1

2
, 1

2

]

− {p,q} .

If i1 denotes the inclusion of A in R
2 −{p,q}, then the vertical straight line segment joining (x, t)

to r1(x, t) defines a relative homotopy from the identity on R
2 − {p,q} to i1 or1 which is fixed on

A.

We can now define the second retraction from A to

B = [−1, 1] ×
[

− 1

2
, 1

2

]

− {p,q}

similarly: The map sends (x, t) to itself if |x| ≥ q and to (x, 1) if |x| ≤ 1. These definitions agree
on the overlapping subset where |x| = 1, and therefore one has a well-defined continuous retraction
r2 from A to B. In analogy with the preceding discussion, if i2 : B → A denotes the inclusion
mapping, then the straight line homotopy from (x, t) to r2(x, t) defines a relative homotopy from
the identity on B to i2 or2 which is fixed on A.

The drawings for the next step indicate that we want to push out radially from the centers
of the two squares and send everything into the latter in this way. This can be disposed of most
easily by the following digression:

LEMMA. Let a < b be real numbers, and also let C ∈ R. If [a, b] × [a + C, b + C] is a solid

square in R
2 and z is the center point whose coordinates are equal to 1

2
(a + b) and 1

2
(a + b) + C

respectively, Then

Boundary [a, b] × [a + C, b + C] = [a, b] × {a + C, b + C} ∪ {a, b} × [a + C, b + C]

is a strong deformation retract of [a, b] × [a + C, b + C] − {z}.

Proof of Lemma. If [a, b] = [−1, 1] and C = 0 this can be shown simply and explicitly: The
center of the square is then 0, and if |v|0 denotes the norm max{|x|, |y|} on R

2, then the retraction
sends v ∈ [−1, 1] × [−1, 1] − {z} to (|v|0)

−1 · v, and the homotopy is once again a straight line
homotopy from v to (|v|0)

−1 · v which lie inside [−1, 1] × [−1, 1] − {z}.

To prove the general case, let ρ and H be the deformation retraction data for the special
case, let λ : [a, b] → [−1, 1] be a strictly increasing linear homeomorphism from the domain to
the codomain, let λC(t) = λ(t − C), define Λ = λC , and take the data given by the retraction
ρ′(u, v) = Λ−1(ρ(Λ(u, v)) and the homotopy H ′ given by H ′(u, v; t) = Λ−1(H(Λ(u, v), t).

We now return to the third step of our construction. Since B ∪ {p,q} is the union of two
squares

B− = [−1, 0] ×
[

− 1

2
, 1

2

]

, B+ = [0, 1] ×
[

− 1

2
, 1

2

]

which only meet along a common edge, we can define strong deformation retract data for B sep-
arately on the pieces B− − {q} and B+ − {p}, and the Lemma gives us the data needed to show
that the boundaries of B− and B+ are strong deformation retracts of B− − {q} and B+ − {p}
respectively. By the preceding sentence, we can piece these together to obtain deformation retract
data for the inclusion of the Theta Space X in B.
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To summarize, we have shown that the subspace X is a strond deformation retract of B, the
subspace X is a strong deformation retract of A, and the subspace A is a strong deformation retract
of R

2 − {p,q}. These combine to show that the Theta Space X is a strong deformation retract of
R

2 − {p,q}.

A HOMEOMORPHISM OF THETA SPACES. For the sake of completeness, here is a proof that the
model for a Figure Theta Space used in this document is homeomorphic to the model described
in Munkres. The key features of a Figure Theta space are (1) it is a union of three closed sub-
sets A,B,C, each of which is homeomorphic to [−1, 1], (2) for each pair of these subspaces, the
intersection corresponds to the two endpoints. Recall that we can characterize the endpoints p

of a space J homeomorphic to [−1, 1] in terms of the topology on J — they are precisely those
points for which the complement J − {p} is connected. It is a straightforward exercise to prove
that if we have two spaces X = A ∪ B ∪ C and X ′ = A′ ∪ B′ ∪ C ′ which satisfy these properties,
then X and X ′ are homeomorphic such that A corresponds to A′, B corresponds to B ′ and C

corresponds to C ′. [PROOF: Let p and q be the common points in X, and let p′ and q′ be the
common points in X ′. Then there are homeomorphisms A → A′, B → B′ and C → C ′ which send
p to p′ and q to q′. For example, we are given homeomorphisms A ∼= [−1, 1] ∼= A′, and this map
either sends p to p′ and q to q′ or vice versa; in the second case, if we replace our homeomorphism
with A ∼= [0, 1] → [0, 1] ∼= A′, where the map in the middle sends t to −t, the new map will send p

to p′ and q to q′. For these choices, we can assemble the homeomorphisms A → A′, B → B′ and
C → C ′ into a homeomorphism from X to X ′.]

For the model in Munkres, we can set

A equal to the semicircular arc defined by |x| ≤ 1 and x = −
√

1 − y2, in which case the

homeomorphism sends y ∈ [−1, 1] to (−
√

1 − y2, y),

B equal to the closed segment {0} × [−1, 1], in which case the homeomorphism is the
obvious slice inclusion, and

C equal to the semicircular arc defined by |x| ≤ 1 and x = +
√

1 − y2, in which case the

homeomorphism sends y ∈ [−1, 1] to (+
√

1 − y2, y).

For our model, we can set

A equal to the broken line curve consisting of closed straight line segments, first horizon-
tally from

(

0,− 1

2

)

to
(

− 1

2
,− 1

2

)

, then vertically from
(

− 1

2
,− 1

2

)

to
(

− 1

2
,+ 1

2

)

, and finally

horizontally from
(

− 1

2
,+ 1

2

)

to
(

0,+ 1

2

)

, in which case the homeomorphism is the standard
piecewise linear parametrization of the broken line which maps each third of [−1, 1] to a
closed segment in A,

B equal to the closed segment {0} ×
[

− 1

2
,+ 1

2

]

, in which case the homeomorphism is 1

2

times the obvious slice inclusion, and

C equal to the broken line curve consisting of closed straight line segments, first horizon-
tally from

(

0,− 1

2

)

to
(

+ 1

2
,− 1

2

)

, then vertically from
(

+ 1

2
,− 1

2

)

to
(

+ 1

2
,+ 1

2

)

, and finally

horizontally from
(

+ 1

2
,+ 1

2

)

to
(

0,+ 1

2

)

, in which case the homeomorphism is the standard
piecewise linear parametrization of the broken line which maps each third of [−1, 1] to a
closed segment in C.

Since these two decompositions satisfy the abstract characterization of Theta Spaces, it follows
that the decomposed spaces are homeomorphic to each other.
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