NAME:		

Mathematics 205A, Fall 2003, Examination 1

Point values are indicated in brackets.

- 1. (i) [10 points] Give an example of a continuous 1-1 onto mapping that is not a homeomorphism.
- (ii) [20 points] Given a topological space X and $Y \subset X$, let \overline{Y} denote the closure of Y in X. Show that the closure operation satisfies $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$ for all $A, B \subset X$, and given an example for which the containment is proper.

SOLUTIONS.

For the fist part, one can take the identity map on a set S where the domain has the discrete topology and the codomain has any smaller topology (for example, the indiscrete topology, assuming $|X| \geq 2$). A second example would be the map from [0,1) to the circle S^1 taking t to $\exp 2\pi i t$.

For the second part, note that $A,B\subset A\cap B$ implies that $\overline{a},\overline{B}\subset \overline{A\cap B}$ and hence $\overline{A\cap B}\subset \overline{A}\cap \overline{B}$. To show that containmnet may be proper, let $X=\mathbf{R}$ and take A and B to be the disjoint invervals (0,1) and (1,2). The closures of these sets are the closed intervals [0,1] and [1,2], and therefore the intersection of their closures is $\{1\}$, which is not empty.

2. [25 points] Given a metric space X and a point $x \in X$, show that the one-point subset $\{x\}$ is closed in X.

FIRST SOLUTION.

We shall show that the complement $X-\{x\}$ is open in X. Let $y\in X-\{x\}$, so that $y\neq x$ and $r=\mathbf{d}(y,x)>0$. Then $N_r(y)\subset X-\{x\}$ because $r=\mathbf{d}(y,x)>0$. Therefore the set $X-\{x\}$ must be open in X.

SECOND SOLUTION.

Suppose that $\{a_n\}$ is a sequence in $\{x\}$ and $a=\lim_{n\to\infty}a_n$. We need to show that $a\in\{x\}$. By definition, a point p lies in $\{x\}$ if and only if p=x, the infinite sequence reduces to the constant sequence $a_n=x$ for all n. The limit of a constant sequence is just the constant value, so this implies that a must be equal to x and therefore $\{x\}$ must be closed.

3. $[30 \ points]$ Let X and Y be topological spaces satisfying the Hausdorff Separation Property. Prove that $X \times Y$ also satisfies the Hausdorff Separation Property.

SOLUTION.

Let (x_1, y_1) and (x_2, y_2) be distinct points in $X \times Y$. There are two cases depending upon whether the first or second coordinates of (x_1, y_1) and (x_2, y_2) are unequal. Since the two points are distinct at least one of these applies.

Suppose that $x_1 \neq x_2$. Then there are disjoint open subsets U_1 and U_2 in X such that $x_i \in U_i$, and $U_1 \times Y$ and $U_2 \times Y$ are disjoint open subsets of $X \times Y$ containing (x_1, y_1) and (x_2, y_2) respectively.

Suppose now that $y_1 \neq y_2$. Then there are disjoint open subsets V_1 and V_2 in Y such that $y_i \in V_i$, and $X \times V_1$ and $X \times V_2$ are disjoint open subsets of $X \times Y$ containing (x_1, y_1) and (x_2, y_2) respectively.

4. [15 points] Let A and B be homeomorphic subsets of \mathbb{R}^n such that A is closed and bounded. Prove that B is also closed and bounded. Give an example of two homeomorphic subsets $A, B \subset \mathbb{R}^n$ such that A is closed but not bounded and B is bounded but not closed.

SOLUTION.

If A is closed and bounde3d then A is compact. Since there is a homeomorphism $h:A\to B$ it follows that B=h(A) is also compact, which in turn implies that B is closed and bounded.

The easiest examples for the second part would be a bounded open interval and the entire real line. For example, the function $f(x) = \tan x$ defines a homeomorphism from $(-\pi/2, \pi/2)$ to ${\bf R}$ (its inverse is the arc tangent function).