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Mathematics 205A, Fall 2003, Examination 2
Point values are indicated in brackets.

1. [20 points] Suppose we know that the system of equations u = f(z,y), v = g(y, 2),
w = h(z, z) has a unique solution for each choice of (u,v,w) € R® and the functions f, g and h all
have continuous first partial derivatives. The Inverse Function Theorem implies that the mapping

o@,y,2) = (f@),9:2), h,2))

is a homeomorphism with a C! inverse if and only if some polynomial expression in the partial
derivatives of f, g and h is nonzero. Derive the explicit condition on these partial derivatives.

SOLUTION.

According to the Inverse Function Theorem, the basic condition is that the Jacobian should be
nonzero at every point. In the situation being considered, the latter is given by
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where k,, denotes the partial derivative of k with respect to w. If we expand the determinant by the
usual 3 x 3 rule we see that the Jacobian is equal to

Jegyh: + fyg:hs

and therefore the condition we want is that f, g, h, + fy g hs is everywhere nonzero.m



2. [20 points] Given a connected metric space X and a completion Y of X, show that Y is
also connected.

[5 points extra credit] Give an example of a disconnected metric space whose completion is
connected.

SOLUTIONS.

Since X is dense in its completion Y and X is connected, it follows that the closure, which is Y,
is also connected.m

To answer the extra credit problem it suffices to find a complete metric space Y that is connected
and a point y € Y such that Y — {y} is dense and disconnected. There are many ways of doing this,
but perhaps the simplest is to take Y to be the interval [-1,1] and y = 0O.m



3. [15 points] Prove that a (finite) product of arcwise connected spaces is arcwise connected.

[5 points extra credit] Give complete necessary and sufficient conditions for a (finite) disjoint
union of arcwise connected spaces to be arcwise connected.

SOLUTIONS.

Suppose that X, is arcwise connected for o € A, and let u and v belong to [[, X,. For each
a let u, and v, be the associated coordinates of u and v respectively. Since each X, is arcwise
connected, one has continuous curves v, : [0,1] — X, such that 7,(0) = u, and y4(1) = u, for all
a. Let 4 :[0,1] — X be the unique continuous function whose « coordinate is given by 7,. Then by
construction we have y(0) = u and y(1) = v.m

To answer the extra credit problem, note that a disjoint union of two nonempty spaces is never
connected and hence never arcwise connected. Therefore the disjoint union can be arcwise connected
only if there is at most one nonempty summand. Conversely, if there is one nonempty summand, then
the disjoint union is homeomorphic to this arcwise connected summand and hence is arcwise conneted.n



4. [20 points] Recall that one definition of a quotient map in Munkres is a continuous map
f: X — Y that is onto and such that for all E C Y, E is closed in Y <= f~1(E) is closed in X.
Show that if f is a continuous onto map from a compact space X to a Hausdorff space Y, then f
is a quotient map. [Hint: First show that f is closed.]

SOLUTION.

The map f is closed because every continuous map from a compact space to a Hausdorff space
is closed [Proof: E closed in X = E is compact, which in turn implies that f(E) is a compact
subset of Y and hence closed because Y is Hausdorff]. To see that f is a quotient map, let B C Y be
such that f~1(B) is closed in X. Since f is onto we know that B = f( f~%(B)), and since f~1(B) is
closed in X and f is a closed mapping it also follows that B is closed in Y.»



5. [25 points] Let X be a compact metric space and let &/ be a finite open covering by
subsets Uy, --- ,U,. Prove that there is a finite open covering V of X by subsets V3, --- |V, such
that V; C U; for all 4 (informally, V is a shrinking of U). [Hints: Let Uy, U,41 and Vj each denote
the empty set, and inductively construct open subsets V; such that (1) V; C U; for all 4, (2) the
family consisting of V; for j <4 —1 and U; for j > ¢ forms an open covering of X, as follows: Let
W; be the union of all V}’s for j < ¢ — 1 and all Uj’s for j > 4, and let F; = X — W;. Explain why
F; C U;. Since X is normal there is an open subset V; such that F; C V; C V; C U;. Why does the
family consisting of V; for j < ¢ and Uj for j > ¢ form an open covering of X7].

[5 points extra credit] Give a weaker condition on a compact space under which the above
statement and proof are still valid (for the record, no credit will be given for simply saying that X
is normal or T4y).

SOLUTIONS.

Needless to say we shall follow the hint, which indicates an inductive construction for the open
subsets V;. We may start the induction by letting V) be the empty set. Suppose now that we have V;
for j < i < n such that (1) V; C U; for all j < i, (2) the family consisting of V; for j < i — 1 and
U; for j > 4 forms an open covering of X. As suggested in the hint, let W; be the union of all V;'s for
Jj <i—1andall Uj's for j >4, and let F; = X — W,. The hint asks us to explain why F; C U;. This
is true because every point in X belongs to one of the sets V; for j <7 —1or U; for j >4 and F; is
the set of all points that belong to the subfamily of such subsets formed by removing U;. The only way
these statements can be consistent is if every point of Fj lies in U;. As indicated in the hint, we have an
open subset V; such that F; C V; C V; C U;. Since the union of F; with the open subsets forming W;
is all of X and V; contains F;, it follows that X is also the union of all the V;'s for j <4 — 1, the set
Vi, and all the Uj's for j > i it follows that the family consisting of V; for j < i and U; for j > ¢ does
form an open covering of X. By the induction hypothesis and the choice of V; we also have V; C U;
for all 5 < 4. This completes the inductive proof of the required open subsets. When we reach i = n
we shall have an open covering of X with all the required properties.n

To answer the extra credit problem, it is only necessary to say that the whole argument works if X
is compact Hausdorff because all such spaces are normal.m



