II. Metric and topological spaces

The discussion of the main topics in this course begins here.

As noted in a classic text on general topology by W. Franz, “ the word ‘topology’ is derived
from the Greek word 7émos which means ‘place,” ‘position,’ or ‘space’ ... it is a subdiscipline of
geometry” (see pp.1-3 of the book by Franz; complete bibliographic information is given at the end
of these notes).

Although a detailed discussion of the history of point set topology is beyond the scope of these
notes, it is useful to mention two important points that motivated the original development of the
subject.

(1) Several important theorems about continuous functions of real valued functions of a (sin-
gle) real variable have analogs in other contexts, and the most effective way to work with
such analogs is to develop a unified approach.

(2) When one considers functions of several real variables, more thought must be given to
the sets on which functions are defined. For one variable, the emphasis is on functions
defined over some interval, which may or may not have end points. On the other hand,
for functions of two or more real variables there is an overwhelming variety of shapes to
counsider (e.g., round, square, triangular, hexagonal, octagonal, with and without some or
all boundary points, with or without holes inside, U-shaped, X-shaped, Y-shaped, ... ).
Clearly there are far too many to enumerate in a relatively simple manner. Therefore,
when one wants to discuss concepts like partial differentiation, it is better to begin by
considering a reasonable class of regions or domains to work with. Mathematically,
these conditions are given by the definition of an open set.

The concepts of point set topology have proven to be useful — in fact indispensable — in a
wide range of mathematical contexts where it is meaningful to talk about two objects being close to
each other in some algebraic, analytic or geometric sense. In particular, these concepts have played
a major and foundational role in the application of geometric ideas to solve analytical questions, the
interactions between the two subjects have stimulated each one to a great extent (interactions with
algebra have also been mutually beneficial). A graduate course in point set topology should take
the important links with algebra and analysis into account, but it also seems important to retain
as much of the geometric nature of the subject as possible, particularly for a course that is the first
third of a full year sequence, and striking a decent balance from a contemporary perspective is one
goal of these notes.

For the sake of completeness, here are some references on the history of topology and related
topics:

www.math.uiuc.edu/~droyster/courses/fall99/math4181/classnotes/notesl.pdf
www-gap.dcs.st-and.ac.uk/~history/Hist/Topics/Topology_in_mathematics.html

www.wikipedia.org/wiki/Topology

History of Topology, I. M. James (ed.)

Full information on this and other books cited in these notes appears in the bibliography at
the end.



II.1: Metrics and topologies

(Munkres, §§ 12, 13, 16, 20; Edwards, § 1.7)

For both historical and logical reasons one can view the most basic aspects of point set theory as
natural generalizations of important properties of certain subsets of the real numbers. One approach
to doing this is to base the discussion on an abstract notion of DISTANCE that generalizes the
usual notion of distance between two numbers in the obvious fashion. Another approach is to
take the concept of an OPEN SUBSET (or something logically equivalent) as the fundamental
abstract structure. It is not difficult to formulate the concept of an open set if one has a notion
of distance, so there is a natural progression of abstraction from the real numbers to metric spaces
(sets with a suitable notion of distance) to topological spaces (sets with a suitable notion of open
subsets).

Eventually a course in point set topology needs to cover both types of structures, but there is
no universal agreement on which should come first and when the other should be introduced. The
approach in these notes will be to introduce metric spaces first and topological spaces immediately
afterwards. This will allow us to take advantage of the strengths of both approaches throughout
the course.

The basic definitions and a few examples

The notion of distance between two points in R™ is fundamentally important in multivariable
calculus and some aspects of linear algebra. It turns out that an extremely short list of properties for
distances are enough to prove abstract versions of many important results from advanced calculus
and real variables courses.

Definition. A metric space is a pair (X,d) consisting of a set X and a functiond : X x X - R
(sometimes called the metric or distance function, with d(z,y) being called the distance from
x to y, or between z and y) such that the following properties hold:

(MS1) d(z,y) >0 for all z,y € X.

(MS2) d(z,y) =0 if and only if z = y.

(MS3) d(z,y) =d(y,z) >0 for all z,y € X.
(z,2) <d

(MS4) d(z,z) <d(z,y) +d(y,z) for all z,y,z € X.

The last property is often called the triangle inequality because it generalizes the usual triangle
inequality from classical Euclidean geometry.

EXAMPLES. 1. The most important examples are the ordinary coordinate or Euclidean
spaces R™ for which d(z,y) = |r — y|. The four basic properties for an abstract metric are
established in undergraduate courses containing linear or vector algebra.

2. If (X,d) is a metric space and A is a subset of X, then one can make A into a metric
space using the subspace metric given by d‘(A x A); less formally, this means that the distances
between points of A are the same as their distances in X itself.

3. If S is an arbitrary set, then one can make S into a metric space with the so-called
discrete metric, for which d(s,t) =1 if s # ¢ and 0 if s = ¢. It is a routine exercise to verify that
this defines a metric on z.
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4. One can for an abstract generalization of the first example a follows: If one defines a
norm on a real vector space V to be a function sending each v € V' to a nonnegative real number
|v| such that

(a) |v| =0 if and only if v =0,
(b) |ev] = |c||v| for all c€e R and v € V,
(o) |v+w| <|v|+ |w| for all v,w € V,

then the formula d(v,w) = |v — w| defines a metric on V. It is again an elementary exercise to
verify that this satisfies the four conditions required for a metric.

5.  We need to give some additional examples in order to show that the preceding construc-
tion yields something beyond ordinary Euclidean spaces.

(5A) Actually, this is two examples. Take V = R", write a typical vector z in coordinates
as (x1,---,%,), and consider the functions |z|; = ), |7;| and |z|e = max;{ |z;| }. It is
again elementary to check that each of these define norms. If one wants to distinguish
the previous norm from these it is customary to write the latter as |z|s, which reflects the
quadratic nature of the latter (as in measure theory, one can interpolate an entire series
of norms |z[, for 1 < p < oo but we shall not need these examples here).

(5B) This is a much larger example. Let S be a set, and let C(S) be the space of all bounded
real valued functions on S. Then a norm is defined by the formula |f| = sup,cs{ |f(z)| }-

It is also possible to construct a vast array of other norms on vector spaces at this point, but we
shall not do so in order to avoid straying too far from the central themes of the course.

The examples above show that one can construct many different metrics on a given set. How-
ever, it clearly becomes very cumbersome to write (X, d) every time we are referring to a metric
space, so in order to simplify the exposition we shall often simply write X if the metric is clear
from the context.

Open sets

The basic definition extends the one for Euclidean spaces.

Definition. Let (X,d) be a metric space. A subset U C X is said to be open if for each z € U
there is a positive real number ¢ such that d(z,y) <e =y € U.

For each r > 0 and = € X, the set
Np(y) ={ye X |d(z,y) <r}

is called the open ball (or disk or neighborhood) of radius 7 centered at z. One can rewrite the
definition of open set to say that for all x € U there exists an € > 0 such that N.(z) C U.

The most important properties of open sets in metric spaces are summarized in the following
result:

THEOREM. LetU be the family of all open subsets of X. The the following hold:
(1) Each subset of the form N.(z) is open in X.
(12) The empty set and X itself are both open in X.
(792) If for each a € A the set U, is open in X then Uy U, is also open in X.
(w) If Uy and Us are open in X then Uy NUs is also open in X.
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One can combine (7v) and finite induction to prove that the intersection of any finite collection
of open subsets of X is also open in X.

Proof. (i) Let y € N.(z), and let s = d(z,y). We claim that N._,(y) C N.(z). It may
be worthwhile to draw a two-dimensional picture at this point in order to make this assertion
plausible; the formal proof of the assertion proceeds as follows. Suppose that z € N._4(y), so that
d(y, z) < e —s. We need to prove that d(z, z) < e. Applying the triangle inequality we have

d(z,z) <d(z,y) +d(y,2) =s+d(y,z) <s+(e—s)<e

as required.

(74) We shall first consider the case of the empty set. It has no points so the condition on all
points in it will automatically be true because it is a statement about nothing. The openness of x
follows because N.(z) = X for all z and e.

(#73) Suppose that z € U, Uy, and choose 8 € A so that z € Ug. Then one can find € > 0 so
that N.(z) C Ug, and since Ug C U, U, it also follows that N,.(z) C Uy U,.

(tv) Let ¢ =1 or 2, and let x € Uy N Uz. Then one has ¢; > 0 so that N, (z) C U; for i =1,2.
If we take ¢ to be the smaller of €; and e then N (z) C U; N Uz. Once again, it might be helpful
to draw a picture as an aid to understanding this proof.s

It is useful to look at the meaning of open subset for one of the examples described above;
namely, the discrete metric on a set. In this case Ni(z) is merely the one point set {z}. Thus every
one point subset of S is open with respect to the discrete metric. But if W C S, then clearly we

have
w=J {=}

TeEW

so by the preceding theorem we see that every subset of a metric space with a discrete metric is
an open subset. Of course, for examples like Euclidean spaces there are many examples of subsets
that are not open. In particular, one point subsets are NEVER open in Euclidean spaces (unless
one adopts the convention R? = {0}, in which case this object must be excluded).

Topological spaces

The preceding theorem provides the motivation for the central concept of a course in point set
topology:

Definition. A topological space is a pair (X, T) consisting of a set X and a collection T of subsets
of X satisfying the following conditions:

(TS1) The empty set and X itself both belong to T.
(TS2) If for each a € A the set U, C X belongs to T, then U, U, also belongs to T.
(TS3) If U; and U, belong to T, then U; N U also belongs to T.

We often say that T is a topology on X or that T is the family of open subsets of X, and we
say that U C X is open if U € T. As before, if the topology on a set is clear from the context we
shall often use the set by itself to denote a topological space.

Note. One can combine (TS3) and finite induction to prove that the intersection of any finite
collection of subsets in T is also open in T.
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If (X, d) is a metric space and T denotes the family of open subsets of X, then by the preceding
theorem (X, T) is automatically a topological space. We often call this the metric topology
(associated to d).

In particular, if S is an arbitrary set and we put the discrete metric on S, then we have seen
that all subsets of S are open in the corresponding metric topology. More generally, a topological
space is said to be discrete if the every subset is open (equivalently, every one point subset is open);
by previous observations, this is just the metric topology associated to the discrete metric.

On the other hand, there are many examples of topological spaces that do not come from
metric spaces.

EXAMPLES. 1. Given a set X, the indiscrete topology on X is the family T consisting only of
the empty set and X itself. It is elementary to verify that this defines a topology on X. However, if
X contains at least two points then this cannot come from a metric space because if X is a metric
space and p € X then X — {p} is open for all p € X (we shall prove this below).

2. Given a set X, the finitary topology on X is the family T consisting of the empty set
and all subsets of the form X — A where A is finite. The verification that T is a topology can be
found in Example 3 on page 77 of Munkres. If X is finite this is equal to the metric topology for
the discrete metric. On the other hand, if X is infinite, then if 4 and v are distinct points of X and
U and V, then UNYV is always infinite (its complement is finite!), and by the Hausdorff separation
property below it follows that T does not come from a metric on X if the latter is infinite.

Here are the results that we need to show that these examples do not come from metrics:

PROPOSITION T1. If X is a metric space and p € X, then X — {p} is open.

Proof. Let g € X — {p}, so that ¢ # p and r = d(q,p) > 0. Then clearly N,(q) C X — {p}, and
hence the latter is open.

PROPOSITION T2. (Hausdorff Separation Property) If X is a metric space and u,v € X
are distinct points, then there exist disjoint open subsets U and V containing u and v respectively.

Proof. Let 2¢ = d(z,y) > 0, and take U and V to be N.(u) and N(v) respectively. To see
that these are disjoint, suppose that they do have some point z in common. Then by the triangle
inequality and z € N.(u) N N.(v) we have

2e =d(u,v) <d(u,z) +d(z,v) <e+e

which is a contradiction. Therefore the intersection must be empty. Once again, it might be helpful
to draw a picture as an aid to understanding this proof.

The following result is often useful in working with open sets:

LEMMA. IfU is an open subset of a metric space, then one can find numbers (y) > 0 for all
y € U such that U = Uy, N(,)(y).

Proof. If e(y) > 0 such that N,(,)(y) C U, then we have the chain of inclusions
Uv=J{w} c |J Newylv) c U
y y

shows that U = U, N, (y).
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Comparing and constructing topologies on a set

We have seen that a given set may have several different metrics and several different topologies.
There are a few aspects of the topologies on a space that are worth examining in some more detail
at this time.

Since topologies on a set are just families of subspaces, it is meaningful to ask if one is contained
in the other. Every topology must contain the indiscrete topology, and since the topology of a
discrete metric contains every subset it is clear that every other topology is contained in this one.
Frequently one sees statements that one topology T on a space is stronger or weaker than another
topology S if one contains the other, and the terms coarser or finer are also used in such contexts.
Unfortunately, this notation can be hopelessly confusing because, say, there is no consistency about
whether a stronger topology has more open sets than a weaker one or vice versa. We shall avoid
this by simply saying that one topology is larger or stronger than the other (compare the first few
lines on page 78 of Munkres).

The following observation is elementary to verify:

FACT. The unions and intersections of arbitrary families of topologies on a given set X are also
topologies on X .m

Another abstract feature of topologies is that given a family A of subsets of X, there is a
unique minimal topology T(A) on X that contains A.

In view of the fact stated above, the topology can be described as the intersection of all
topologies that contain A; this family is nonempty because the discrete topology is a specific
example of a topology containing A. However, for many purposes it is necessary to have a more
explicit description of this topology. Define A* to be the set of arbitrary unions of sets having the
form A; N---N Ay for some finite family of subsets {A;,---,Ax} in A together with X and the
empty set. To show that A* is a topology it is necessary to verify that it is closed under arbitrary
unions and finite intersections. It will be convenient to let B denote the set of finite intersections of
sets in A; then every element of A* except possibly X and the empty set will be a union of subsets
in B. Since a union of unions of subsets in B is again a union of subsets in B, it follows that A*
is closed under taking arbitrary unions. Suppose now that U and V lie in A*. Write these sets as
UgUg and U,V, respectively; then

uvnv=_Jusnv,
By

where each summand UgNV, is a finite intersection of subsets in A, and this implies that UNV € A*
as required.

Definition. A family A of subsets of X is called a subbase for the topology T on X if A* = T.

Basic open subsets for a topology

There is a special type of subbase known as a base that is often useful in constructing topologies.
Definition. A family B of subsets of X is called a base for the topology T on X if
(BO) B* =T,
(B1) each z € X belongs to at least one B € B,
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(B2) ifz € BiNB; where By, By € B, then there isa B; € B such that x € Bz and B3 C B;NBs.

If B is a base for T we often refer to the sets in B as basic open subsets.
The following result is elementary to prove:

PROPOSITION. If B is a family of subsets of X satisfying (B1) and (B2) above, then the
smallest topology containing B is the set of all unions of sets in B together with the empty set.m

Lemma 13.2 on page 80 of Munkres is another useful result on bases for topologies.

Subspace topologies

We have already noted that a subset of a metric space can be viewed in a natural way as a
metric space in its own right by restricting the metric. There is a parallel way of viewing a subset
of a topological space as a topological space in its own right, and it turns out that if X is a metric
space, the topologies that one obtains on A in both fashions are identical.

Definition. If (X, T) is a topological space and A is a subset of X, then the subspace topology
on A is the family T|A of all intersections U N A where U € T. — It is an elementary set-theoretic
exercise to verify that this defines a topology on A.

The following result relates the metric and subspace topologies on a subset of a metric space.

PROPOSITION. If X is a metric space and A C X, then the metric topology on A is identical
to the subspace topology on A.

Proof. It will be convenient to distinguish the open disks in A and X by N“ and NX respectively.
By construction we have that N4 = An N¥.

Let T|A denote the subspace topology and let M 4 denote the metric topology. Every set in
T|A has the form U N A where U € T, where T denotes the metric topology on X. By definition
of the metric topology on X, for every point y € ANU there is an r > 0 such that NX(y) C U,
and therefore we have

NA(y)=ANNS(y) cANU

which shows that every set in T|A belongs to M 4. Conversely, every open set W in the metric
topology is a union of open disks having the form N ;%y) (y) for y € W and suitably chosen r(y) > 0

(use the lemma stated above), and therefore we have

w={ Nty = U (4 nnE,m) = 4an (UN:W)

K

which shows that W is an intersection of A with an open subset of X .m

Neighborhoods

In a metric space the sets Ng(z) are often called d-neighborhoods; for general topological spaces
one also uses the term neighborhood of a point (say) p to denote an open set containing p (compare
the definition on page 96 of Munkres); however, sometimes the term “neighborhood” has a more
general meaning of a set N such that N contains some open subset U which in turn contains the
point p; one should be aware of this difference when reading other books.
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I1.2: Closed sets and limit points

(Munkres, § 17)

The usual discussion of limits for sequences for real numbers extends directly to metric spaces.
Given a metric space X and a sequence {a, } in X, we say that lim,,_, a,, = a if for all € > 0 there
is a positive integer M such that n > M implies d(a,,a) < €. As in real variables, a sequence has
at most one limit, and the proof in the general case is essentially the same.

Closed subsets of the real line are precisely the subsets that are “closed under taking limits of
convergent sequences,” so it is clear that one should be able to discuss closed subsets of an arbitrary
metric space. At first glance it is less obvious that one can also discuss closed sets for arbitrary
topological spaces, but this is indeed the case, and one major objective here to justify this.

Limit points and limits of sequences

We begin with the following definition:

Definition. Let X be a topological space, and let A C X be a subset of X. A point y € X
is called a limit point of A if for all open sets U containing y the intersection A N (U — {y}) is
nonempty. The set of all limit points of A in X is written L(A4; X), and when the ambient space
X is clear from the context we shall often write L(A).

The motivation for the terminology is implicit in the following result:

PROPOSITION. The following are equivalent for a metric space X, a point y € X and a subset
ACX:

(i) y € L(A).

(23) There is a sequence of points {a,} in A such that a,, #y for all n but lim, . a, = y.

Proof. ((i) = (i) Let n be a positive integer, and consider the open set N/, (y). By the
definition of L(A) there is a point a,, € A such that a,, # y but a, € N1/, (y). Then

1
dn, -
(an,y) <

for all n and therefore lim,_ o a, = y.

((#) => (1)) Let the sequence {a,} be given as in the statement of (ii), let U be an open
subset containing y, let € > 0 be such that N.(y) C U, and choose M such that n > M implies
d(an,a) < e. Then we have

anm+1 € AN (Ne(y) —{y}) CANU —{y})

and therefore y € L(A).=
The nest result is the key to defining closed subsets in arbitrary topological spaces.
THEOREM. If A is a subset of a topological space X, then X — A is open if and only if L(A) C A.

Proof. (=) Suppose that X —A is open and the set L(A) is not contained in A. Let y € L(A)—A4;
clearly y € X — A. By the definition of the set of limit points, it follows that there is a point
z € X — A that is also in A, which is a contradiction. Thus L(A) C A if X — A is open.
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(<=) Suppose that L(A) C A and let y € X — A. By hypothesis y is not a limit point of A and
therefore there is some open set U, containing y such that U, — {y} and A are disjoint (Note: You
should check that the conclusion is the negation of the condition in the definition of limit point!).
Since we also know that y ¢ A it follows that U, and A are also disjoint, so that U, C X — A.
Therefore we have the string of inclusions

X-4 = Uy c Uy c x-4
ygA ygA

which shows that X — A = U, U,; since the right hand side is a union of open sets, it follows that
the sets on both sides of the equation are open.m

This leads us to a topological definition of closed set that is compatible with the notion of
“closure under limits of sequences” for metric spaces.

Definition. A subset F of a topological space X is closed if and only if its relative complement
X — A is open.

Note. In contrast with the usual usage for the terms “open” and “closed,” a subset of a
topological space may be open but not closed, closed but not open, neither open nor closed, or
both open and closed. Over the real line these are illustrated by the subsets (0, 1), [0, 1], [0,1) and
R itself (you should verify this for each example).

Closed subsets have the following properties that correspond to the fundamental properties of
open subsets.

PROPOSITION. The family of closed subsets of a topological space X has the following prop-
erties:
(1) The empty set and X itself are both closed in X.
(12) If for each a € A the set F, is closed in X then N, Fy is also closed in X.
(131) If Fy and F3 are closed in X then Fy U Fy is also closed in X.

Note.  One can combine (737) and finite induction to prove that the union of any finite
collection of closed subsets in X is also closed in X.

Proof. (i) The empty set and X are complements of each other, so since each is open their
complements — which are merely the empty set and X itself — are closed.

(#3) This follows immediately from the complementation formula

X-(Fa = J&X - Fa)

«

and the fact that unions of open subsets are open.

(747) This follows immediately from the complementation formula
X-(FLUF) = (X-F)NX-F)

and the fact that the intersection of two open subsets is open.

Clearly one could define mathematical systems equivalent to topological spaces by specifying
families of closed subsets satisfying the three properties in the preceding proposition. In fact, there
are also many other equivalent ways of describing topological spaces, but we shall not say very
much about them here.n
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For metric spaces one has the following important fact regarding closed subsets.
PROPOSITION. If X is a metric space and x € X, then the one point set {z} is closed in X.

This follows immediately from an earlier observation that X —{z} is open in X if X is a metric
space. As noted previously, the indiscrete topology on a set with at least two elements does not
have the corresponding property.n

Closures and interiors of subsets

In many mathematical contexts it is useful and enlightening to have constructions that fill the
gaps in a mathematical object. For example, the real numbers are a way of filling the gaps in the
rational numbers. Given a subset of, say, the real line, one often wants to expand this set so that it
contains all limits of sequences that are defined on that set. This is done by considering the closure
of the set, and the concept can be formulated in a manner that applies to all topological spaces.

Definition. Given a topological space X and a subset A C X, the closure of A is the set
A=AUL(A).

The terminology suggests that A should be the smallest closed subset of X that contains A.
Verifying this will take a little work.

PROPOSITION. The set A is the intersection of all closed subsets containing A, and conse-
quently it is the smallest closed subset containing A.

Proof. Let F be the intersection described in the statement of the proposition. We need to prove
the two inclusions A C F and F C A.

(Z C F) Since A C F it is only necessary to show that L(A) C F. It follows immediately
from the definitions that A C F' implies L(A) C L(F) (fill in the details here!). But since F is
closed we know that L(F') C F, and therefore we have that L(A) C F as required.

(F C Z) This will follow if we can show that A is closed in X, or equivalently that X — A is
open in X. So suppose that y € X — A. By definition this means that y ¢ A and y ¢ L(A). The
latter in turn means that there is an open set U, C X such that AN (U, — {y}) is empty. But we
also know that y ¢ A,so we can strengthen the latter to say that AN U, is empty. We then have
the usual chain of inclusions

X-4 = U c Uy c x-4
ygA ygA
which shows that X — A = U, U, and therefore is open; but this means that A4 is closed.m

There is a complementary concept of the interior of a set A, which is the largest open subset
U contained in A. Formally, one can define the interior by the formula

Int (A) = X— X—A4

and the proof that this is the union of all open subsets contained in A reduces to an exercise in set
theory.
For the sake of completeness, here are the details: One can rewrite the defining equation
as X —Int (A) = X — A and since the latter contains X — A, by taking complements we
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have that Int(A) is an open set that is contained in A. Suppose now that U is any open
subset contained in A. Then X — U is a closed set that contains X — A and thus also
X — A= X —Int (A); taking complements once again we see that U is contained in Int(A).=

Warning. In some topological contexts the term “interior” has a much different meaning, but
in this course the term will always have the meaning given above.

The following result provides an extremely useful relation between the notions of closure and
passage to subspaces.

PROPOSITION. Given a topological space X and subspaces A,Y such that A CY C X, let
Closurey (A) denote the closure of A with respect to the subspace topology on'Y. Then

Closurey (A) = ANY .

Proof. Once again we have to prove the inclusions in both directions.

(Closurey (A) C ANY) Note first that the close subsets of Y have the form Y N F where
F isclosed in X (Proof: EisclosedinY &Y —FEisopeninY <Y — E = XnNU for some U
openin X & E=Y —Y NU for some U open in X & E =Y N (X —U) for some U open in X
& E =Y NF for some F closed in X). — It follows that the right hand side is a closed subset of
Y and therefore contains the set Closurey (4).

(ANY C Closurey(A)) The right hand side is a closed subset of Y, and therefore by the
preceding paragraph it has the form B NY where B is closed in X. By construction B D 4, so B
must also contain A. But this means that

ANY Cc BNY = Closurey (A)

which yields the desired inclusion.m

Convergence in general topological spaces

In general one cannot work with limits of sequences in abstract topological spaces as easily
and effectively as one can work with them in metric spaces. The crucial property of metric spaces
that allows one to work with sequences is the following:

First Countability Property. If X is a metric space and x € X then there is a sequence of
decreasing open subsets Uy such that every open subset contains some Uy.

In fact, we can take Uy to be the open disk of radius ; centered at z (i.e., Ny/x(z)).m

There is a somewhat more complicated concept of net that serve a similar purpose to sequences
for arbitrary topological spaces. Nets for topological spaces are not as important or useful as
sequences for metric spaces, but there are some situations where it is convenient to have them. A
concise but readable introduction to nets appears on pages 187-188 of Munkres.
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I1.3: Continuous functions

(Munkres, §§ 18, 21; Edwards, § 1.8)

The standard definitions for continuous and uniformly continuous functions generalize imme-
diately to metric spaces.

Definition. Let (X,dx) and (Y,dy) be metric spaces, and let a € X. A set-theoretic function
f: X — Y is said to be continuous at a if for each € > 0 there is a 6 = d(¢) > 0 such that
dx(z,a) < ¢ implies dy (f(z), f(a)) < e. The function f is said to be continuous (on all of X) if
it is continuous at every point of X.

As in the case of functions of a real variable, the numbers d(g) depend upon the point a.

Definition. Let (X,dx) and (Y,dy) be metric spaces, and let a € X. A set-theoretic function
f: X =Y issaid to be uniformly continuous if for each € > 0 there is a § = d(¢) > 0 such that for
all u,v € X, we have that dx (u,v) < ¢ implies dy (f(u), f(v)) < e.

As in real variables, the difference between continuity and uniform continuity is that § depends
upon ¢ and a for continuity but it depends only upon ¢ for uniform continuity.

The following characterization of continuity yields a definition that is meaningful for functions
on arbitrary topological spaces:

THEOREM. Let (X,dx) and (Y,dy) be metric spaces, and let f : X — Y be a function. Then
f is continuous if and only if for each open set V C Y, the inverse image f~1(V) is open in X.

Proof. (=) Choosey €Y and z € X so that y = f(z). There is an ¢ > 0 so that N.(y) C V,
and by continuity there is a § > 0 such that f maps Ns(z) into N.(y). It follows as in many
previous arguments that

vy = Ns()

(check this out!) and therefore the left hand side is an open subset of X.

(<) Choosey €Y and z € X so that y = f(z), and let ¢ > 0 be given. By the hypothesis
we know that the set

W= f_l (Ns(y))

is an open subset of X containing z. If we choose ¢ > 0 so that Ng(z) C W, then it follows that f
maps Nj(z) into N, (y).m

In view of the above, if (X, Tx) and (Y, Ty) are topological spaces we may DEFINE a set-
theoretic map f : X — Y to be continuous if and only if for each open set V' C Y, the inverse
image f~!(V) is open in X.

Several equivalent formulations of continuity are established in Theorem 18.1 on pages 104-105
of Munkres and Lemma 21.3 on page 130 of Munkres. Here is an overlapping list of equivalences:

CHARACTERIZATIONS OF CONTINUITY. Let X and Y be topological spaces and let
f:X =Y be a set-theoretic map. then the following are equivalent:

(1) f is continuous.

(2) For every closed subset F C 'Y the inverse image f~1(F) is closed.
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3) For all A C X we have f(A) C f(A)
f

(3) :
(4) For all B CY we have f~1(B) C f~1(B).
(5)

5) For all A C X we have Int (f(A)) C f(Int(A)).
(6) For all B CY we have f~! (Int(B)) C Int (f~1(B)).
If X and Y are metric spaces then the following is also equivalent to the preceding conditions:

(7) For all sequences { z, } in = such that lim,_, z, = a we have lim,_, f(z,) = f(a).

The statements and proofs of the results in Munkres should be read and understood. Verifi-
cation of the statements not proven in Munkres is left to the reader as an exercise.n

It is not possible to discuss uniform continuity in a topological space unless some extra structure
is added; one reference for an abstract treatment of such uniform structures (or uniformities) is
Kelley, General Topology. Topological spaces with uniform structures are often known as uniform
spaces. A class of spaces known as topological groups have particularly important examples of
the uniform structures that exist on uniform spaces. An introduction to the theory of topological
groups appears in Appendix A of these notes.

EXAMPLES. 1. A real variables textbook (and even a calculus or precalculus textbook)
contains many examples of continuous functions from subsets of the real numbers to the real
numbers.

2. If A is a subset of a topological space with the subspace topology, then the inclusion
map i : A — X is continuous because i ~1(U) = U N A for all open subsets U. In fact, if X is a
metric space and A has the subspace metric, then the inclusion map is uniformly continuous; for
each € > 0 we can take § =e¢.

3. An important special case of the preceding example occurs when A = X, and in this
case the inclusion is the identity map on X.

4. Let X be an arbitrary metric space, and let A be a nonempty subset of X. For each
point € X the distance from z to A is defined by the formula

d(z,A) = g.lb.,c,d(z,a)

where the greatest lower bound exists and is nonnegative because all distances are nonnegative.
We claim that the function d(—, A) is uniformly continuous. — Here is a Proof: By the triangle
inequality we have that d(z,a) < d(z,y) + d(y,a) for all z,y € X and a € A. Therefore it
follows that d(z, A) < d(z,y) +d(y,a). Subtract d(z,y) from each side. This yields the inequality
d(z,A) — d(z,y) < d(y,a), which in turn implies that the left hand side is < d(y, A). We can
now rewrite this in the form d(z, A) — d(y, A) < d(z,y). If we reverse the roles of z and y in this
argument we get the complementary inequality d(y, A) — d(z, A) < d(z,y). Combining these, we
obtain the inequality

which shows that the function in question is in fact uniformly continuous because for each ¢ > 0
we can take § = ¢.

5. We shall end this list of examples with one that is very simple. Suppose that X and
Y are any topological spaces and that y € Y. Then there is a constant map Cy : X — Y which
sends every point of X to y. This map is continuous. To see this, let V' C Y be open, and consider
f~Y(V). If y € V then the inverse image is all of X but if y ¢ V then the inverse image is the
empty set. In either case the inverse image is open.
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In analysis there are theorems stating that sums, products and composites of continuous func-
tions are continuous. Metric and topological spaces usually do not have the algebraic structure
needed to construct sums and products. However, one does have the following version of continuity
for composite functions.

PROPOSITION. If X, Y, Z are topological spaces and f : X — Y and g : Y — Z are
continuous, then so is the composite g°f : X — Z.

Proof. Suppose that W is open in Z; then by continuity it follows that V = g=1(W) is open in
Y and U = f~1(V) is open in X. However, we also have

u=f" (g (W) = (g°f)" (W)
and therefore it follows that g° f is also continuous.s

COROLLARY. Iff: X —Y is continuous and A C X 1is equipped with the subspace topology,
then the restriction F|A: A —'Y is continuous.

This is true because the restriction is the composite of f and the inclusion map for A C X;
we have already noted that the latter is continuous.

In addition to the preceding way of constructing continuous functions by restricting the domain,
it is also possible to construct new continuous functions by shrinking the codomain if the image of
the function is a proper subset.

PROPOSITION. Let f: X — Y be a continuous function, let B C Y be equipped with the
subspace topology, let j : B — Y denote the inclusion map, and suppose that f(X) C B. Then
there is a unique continuous map g : X — B such that jeg = f.

Proof. On the set-theoretic level one simply defines g by the rule g(z) = f(z). We need to verify
that this map is continuous.

Suppose that V is open in B. Then B = W N B where W is open in Y. Given an arbitrary
subset A C Y, elementary set-theoretic considerations imply that

74 =fHANB) =g (AN B)

with the first equation holding because f(X) C B and the second holding because f(z) = g(x) for
all z. Therefore if V is open in B and V = W N B (where W is open in Y), then

g (V)=fT'WnB)=fT (W) .

Since f is continuous the set on the right hand side of the equation is open in X; therefore the set
on the left hand side is also open and the map g is continuous.m

Homeomorphisms and other special mappings

We begin with a natural question:

Continuity of inverses. Suppose that f: X — Y is a continuous map of topological spaces that
is a 1 — 1 correspondence. Is the inverse map f~1 also continuous?

There are many examples to show that the answer to the question is negative. One purely
formal approach is to take a X =Y with f = idx and the topologies on the domain and codomain
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equal to the discrete and indiscrete topologies respectively. Then f is continuous (every map into
a space with the indiscrete topology is continuous!). What can we say about the continuity of
the inverse? By construction the inverse is just the identity map from a space with the indiscrete
topology to a space with the discrete topology. If X has more than one element and A is a
nonempty proper subset, then A is open in the discrete topology but not in the indiscrete topology,
and therefore the inverse map is not continuous.

Here is a more tangible example. Let S! be the unit circle in the cartesian plane, and let
f :[0,1) — S! send t to (cos2nt,sin2nt). Then f is clearly continuous and 1-1 onto (it might
be helpful to draw a picture of this). However, f~! is not continuous at the point (1,0) € R2.
Specifically, the set [0, %) is open in [0,1), but its inverse image in the circle under f~! — which is
simply f ([0,3)) (why?) — is not open in the circle. To see this, note that every open subset of
the circle containing (1,0) must have some points whose second coordinates are negative.

We are thus led to the following:

Fundamental Definition. A continuous 1-1 onto map f : X — Y of topological spaces is a
homeomorphism if f~! is also continuous.

It follows immediately from the definition that for every topological space X the identity map
idx is continuous (it is understood that X has the same topology whether it is viewed as the domain
or the codomain), the inverse of a homeomorphism is a homeomorphism, and the composite of two
(composable) homeomorphisms is a homeomorphism.

Here is an alternate characterization of homeomorphisms that may be enlightening:

PROPOSITION. Let (X,Tx) and (Y, Ty) be topological spaces, and let f : X — Y be a set-
theoretic map that is 1 — 1 and onto. Then f is a homeomorphism if and only if for each subset
A C X, we have that A is open in X if and only if f(A) is open in Y.

Proof. (=) Let C X. If f(A) is open in Y, then by continuity of f we have that

A= fTH(f(A)

is open in X. Similarly, if A is open in X, then by continuity of f~! we have that

isopeninY.

(<=) The hypotheses on f and the first set-theoretic identity in the previous paragraph
imply that f is continuous, and the hypotheses together with the second set-theoretic identity in
the previous paragraph imply that f~! is continuous.m

One can state and prove a similar theorem in which “open” is replaced by “closed” (in fact,
the argument is essentially the same with this substitution).

The preceding result and its analog for closed sets lead to some other important classes of
mappings on topological spaces.

Definitions. A set-theoretic map f : X — Y of topological spaces is open if for each open set
U C X, the image f(U) is open in Y. Similarly, a set-theoretic map f : X — Y of topological
spaces is closed if for each closed set A C X, the image f(A) is closed in Y.

Here are some instructive examples:
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1. The identity map from a set with the indiscrete topology to a set with the discrete topology
is both open and closed but not continuous.

2. The previously constructed map from [0, 1) to S! is continuous but neither open nor closed.
Its inverse is open and closed but not continuous.

3. The map from R? to R sending (z,y) to z is continuous and open but not closed. [Hints:
The proof that the map is open reduces to showing that the image of an open J-disk is always open.
Why is the image of the open d-disk about (z,y) equal to the open interval {t | z—0 <t < z+§ }?
To show the map is not closed consider the graph of 1/z and its image under the given map.]

4. The map from R to itself sending x to its absolute value is continuous and closed but not
open. [Hints: To show the map is not open, consider the image of the whole space. To show it is
closed, explain why every closed subset F' can be written as a union F' = F, U F_ where Fy is a
closed set consisting of all points in F' that are respectively nonnegative or nonpositive. Why does
f take Fy to a closed set, and how does this show that f is closed?]

The following result is elementary:

PROPOSITION. The composite of two open mappings is open, and the composite of two closed
mappings is closed. Identity maps are always open and closed.m

For metric spaces there is an extremely special type of homeomorphism:

Definition. Let (X,dx) and (Y,dy) be metric spaces. A set-theoretic function f : X — Y is
said to be an isometry if it is onto and dx(u,v) = dy (f(u), f(v)) for all u,v € X. — Such a map
is automatically 1-1 because

u#v = dy(f(u),f(v)) =dx(u,v) >0.

By construction such a map is also uniformly continuous and has a uniformly continuous inverse
(which is also an isometry). Note that identity maps are always isometries, the composites of
isometries are isometries, and inverses to isometries are isometries.

Different metrics determining the same topology

The discussion of diameters and bounded metric spaces on pages 121-122 of Munkres should
be read at this point. Theorem 20.1 on page 121 is an important case of an extremely general
phenomenon: If (X,d) is a metric space, then in general there are many different metrics e such
that the identity map from (X,d) to (X, e) is a homeomorphism. Furthermore, in general there are
many examples for which the identity map is also uniformly continuous, and in fact one can even
find large classes of examples for which the identity map in the opposite direction is also uniformly
continuous. — Important examples of this will arise later in the course.

Metric spaces of functions

We have already noted that the set BF(X) of bounded functions on a set X has a metric space
structure with

d(f,9) = sup |/ (z) — g(z)] .

In such a space the limit of a sequence of functions corresponds to uniform convergence: We have
lim,, oo frn = f if and only if for all € > 0 we can find M so that n > M implies |f,(z) — f(z)| < €
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for all x € X (this is not quite trivial because the latter inequality only implies |f, — f| < ¢, but
if the condition holds we can also find M’ so that n > M’ implies |f,(z) — f(z)| < €/2 and the
latter certainly implies |f, — f| < /2 < ¢), A large amount of the theory of uniform convergence
for functions of real variables carries over to this general setting. In particular, pages 147-151 of
Rudin, Principles of Mathematical Analysis (Third Edition), go through with only minor changes.
In particular, at certain points in a point set topology course it is necessary to use the following
result, which is proved on page 132 of Munkres or pages 149-150 of the book by Rudin mentioned
above.

THEOREM. Let X be a topological space, let BF(X) be defined as above, and let BC(X) denote
the set of all continuous functions in BF(X). Suppose that lim,_,, f, = f in BF(X) where each
of the functions f, is continuous. Then f is also continuous.m

The spaces BC(X) also have a great deal of algebraic structure (for example, addition and
multiplication of functions) that one has for continuous functions on, say, the unit interval. This is
all discussed in Section 21 of Munkres (pp. 129-133).

Piecing together continuous functions

The previous material provides one powerful method for constructing continuous functions on
metric and topological spaces. This is essentially an analytic method for constructing functions. It
is often important to have a similarly useful geometric method for obtaining continuous functions.

Geometric piecing problem. Suppose that we are given topological spaces X and Y, a family
of subsets {Ay} of X and a continuous function fo : Ay =Y for each a. Is it possible to form a
continuous function g : Uy Ay — Y such that g(z) = fo(z) if x € Ay ?

Notation. Given a function h: A — B and C C B we shall denote the composite of h with
the inclusion C — A by h|C and call it the restriction of h to C. Note that if h is a continuous
map of topological spaces and C has the subspace topology then h|C' is automatically continuous.

There is an obvious set-theoretic condition that is necessary if a function g as above actually
exists. Namely, for all y € A, N Ag we need the consistency condition f,(y) = fz(y). In terms of
the restriction notation this can be rewritten formally as

fa|AanAﬂ :fﬂ|Aa ﬂAﬂ.

For certain families of subspaces this turns out to be the only condition needed to piece together a
continuous function defined on an entire space.

THEOREM. Let X andY be topological spaces, let A = {A,} be a family of subsets of X such
that X = Uy As, and for each let fo : Ay — Y be a continuous function. Assume that these
functions satisfy the consistency condition fo| Ay N Ag = fs| Ao N Ap. If either

(1) A is a family of open subsets,

(13) A is a finite family of closed subsets,
then there is a unique continuous function f: X — Y such that f|Aq = fo for all .

To see that a similar result does not hold for arbitrary families of closed subsets, consider the
family A of one point sets {z}. Given an arbitrary set-theoretic function g from a metric space
X to a topological space Y, the restrictions g|{z} are all continuous and the consistency condition
follows because the sets in the family are pairwise disjoint. Thus any discontinuous function g
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satisfies the conditions for the family of closed subsets A, and for most choices of X there are many
discontinuous functions to choose from.

Proof of Theorem. First case. The consistency condition ensures that there is a well-defined
set-theoretic function f : X — Y with the desired properties, so the real issue is to prove this
function is continuous. Let V be an open subset of Y. Then we have

i) = (Aanf(v))

«

and since (f|Aa)"" (V) = Ao N f~1(V) the right hand side of the displayed expression is simply
the union of the sets (f|4q) ™" (V) = f71(V). By the continuity of the functions f, the sets on
the right hand side of this expression are open, and therefore the union of these sets, which is just

f~Y(V), is also open, proving that f is continuous.

Second case. Many of the steps in the argument are the same so we shall concentrate on the
differences. First of all, we need to replace the open subset V with a closed subset F'. The same
argument then shows that

fE) = )

where each summand on the right hand side is closed by continuity. Since the union on the right
hand side is finite, the union on the right hand side is again a closed subset, and this implies that
f7Y(F) is closed in X .=
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I1.4: Cartesian products

(Munkres, §§ 15, 19)

Product constructions are useful in mathematics both as a means of describing more compli-
cated objects in simpler terms (for example, expressing vectors in terms of magnitude and direction
or resolution into z, y and z components) and also as the basis for considering quantities (formally,
functions) whose values depend upon several variables.

Topological structures on finite products

Since product structures are less ambiguously defined for topological spaces as opposed to
metric spaces, we shall begin with the former.

There are two ways of viewing Cartesian products with finitely many factors. Clearly one
wants the product of the sets 4y, --- , A, to be the set of all ordered n-tuples (or lists of length n)
having the form (a1, --- ,a,) where a; € A; for all i. Formally these can be described as functions
a from {1, --- ,n} to U; A; such that a(i) € A; for all 5. Alternatively, one can view finite products
as objects constructed inductively from 2-fold products by the recursive formula

A]_X e XATL+1:(A1X XAn)XAn+1

for all n > 2. It is an elementary exercise to see that the two formulations both result in equivalent
concepts of ordered n-tuples with the property

(ala"'aan):(bla"'abn) <~ ai:bia Vi.

Definition. Let n > 2 be an integer, and for each integer i between 1 and n let (X;,T;) be a
topological space. The product topology on X7 x --- x X, is the topology generated by all sets
of the form Uy x --- x Uy, where U; € T; for all i. Frequently we shall write [], X; to denote
the product of the sets X; and [[,(X;, T;) to denote the product topology; if the topologies on the
factors are clear from the context and it is also clear that we want the product topology on [], X;
we shall frequently use the latter to denote the product space.

Before proceeding further we make a simple but useful observation.

PROPOSITION. Ewvery open subset in the product topology is a union of open subsets of the
form Uy x --- x U, where U; € 'T; for all i.

Proof. The topology generated by a family F of subsets consists of arbitrary unions of finite
intersections of sets in F, so it suffices to show that the latter is closed under finite intersections;
by associativity and induction it suffices to check this for the intersections of pairs of subsets. But
if we are given [[, V; and [], W; where V; and W; are open in X; for all 4, then se have

[Iv N IIw: = JJoinw)

so that the family of products of open subsets is closed under finite intersections.
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COROLLARY. Let B; be a base for the topology on X;. Then every open subset in the product
topology is a union of open subsets of the form Vi x --- x V,, where V; € B; for all 1.

Proof. Since a union of unions is a union, it suffices to show this for open subsets of the form
Uy x --- xU,, where U; € T; for all 7. Since each B; is a base for T;, we can express each U; as
a union Uy Vi), and it follows that Uy x --- x U, is equal to

U Va[l] X -+ X U Va[n] =

af1] an]
U IIVes
(efl], ... ,a[n]) ¢
and hence U; X --- X U, is a union of products of the prescribed type.n

The following result provides some motivation for the definition:

THEOREM. For each n > 2 the topology on R"™ with respect to the Euclidean metric is equal
to the product topology associated to the family (X;,T;), where each space is the real line with the
usual topology.

Proof.  First step — Open sets in the product topology are open in the metric topology. By
the preceding corollary, every open subset in the product topology is a union of sets of the form
U; x --- x U, where each U; is an open interval in R, and since arbitrary unions of metrically
open sets are metrically open, it suffices to show that each product of open intervals [],(a;, b;) is
open in the metric topology. Let z = (z1, --- ,z,) be a point in this product, and let ¢ > 0 be
such that

e < (SEZ - ai), (bz - ZEl)

for all . If y = (y1, -+ ,yn) satisfies d(y,z) < e with respect to the standard Euclidean metric
then we have
lyi —zs| < d(y,z) < ¢

for all 7. It is an elementary exercise to check that this displayed inequality and the previous one
imply y; € (a;,b;) for all 5. Therefore [],(as,b;) is open in the metric topology because N, (z) is
contained in this product.

Second step — Open sets in the metric topology are open in the product topology. It suffices
to show that for each z € R™ and € > 0 there is a d > 0 so that [[,(z; — d,z; + J) is contained in
N (z). To see this, note that given a metrically open subset U we may write it as

zeU

for suitable positive real numbers £(z). The latter union then contains the union

U H (x; — 0(z,€), z; + d(z,¢€))

zeU A

which in turn contains U, {z} = U. Thus U is a union of sets having the form

[ — 6,2 +6)

%
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and hence is open in the product topology.

The proof of the assertion is best understood using a simple picture in the plane. Consider
the open disk in the uv-plane consisting of all points for which u? + v? < 1. How large of an open
square centered at the origin can one fit inside this open disk? In particular, one can ask this for
a square whose sides are parallel to the coordinate axes. It turns out that the square in question
has one vertex of the form (1/4/2,1/4/2) and the other three vertices given by multiplying either
or both coordinates of the latter by —1. Now suppose we are looking inside the open unit disk in
coordinate 3-space. What is the largest cube in that case? The coordinates of the vertices turn
out to be £1/4/3. One can then form an educated guess regarding the vertices for a maximal
n-dimensional hypercube inside the unit n-dimensional hyperdisk.

Formally, proceed as follows. Given a fixed n and an arbitrary € > 0, let

s €

Vn
and consider the set [],(z; — d,z; + 6). If y belongs to this set then |y; — z;| < ¢ for all 4 and

therefore
1/2 o\ 1/2
€
den = (Skuk) < ($2) -

%

as required.m

General properties of (finite) product topologies

Given a sequence of sets X7, --- , X, and an integer j between 1 and n, there is a map

pj: HXZ—>X-7

called projection onto the i** coordinate defined by the formula
pi(T1, =+ ,Tn) =5 .

The following result characterizes the product topology in terms of these projections:

PROPOSITION. Let (X;,T;) be a topological space for 1 < i < n, and let [[, T; denote the
product topology on the product [, X;. Then [], T; is the unique smallest topology such that each
projection map p; is continuous.

Proof. Continuity of projections. Let W be open in X;. Then
pitw)=[[w:
i

where W; = X, if ¢« # j and W; = W. This product set is open in the product topology and
therefore p; is continuous.

Minimality property. Suppose that T is a topology on [[, X; such that each p; is continuous.
Let U =[], U; where U; is open in X;; we need to show that U is open with respect to T. By
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the continuity of the projections we know that each set pj_l(Uj) is open with respect to T, and
therefore the finite intersection

i) = []Us

i i

is open with respect to T. Since every open set in the product topology is a union of sets of the
form [, U; it follows that every open set in the product topology is also open with respect to T.m

COROLLARY. Let (X;, T;) be a topological space for 1 < i < n, let (Y, W) be a topological
space, for each i let f; : Y — X; be a set-theoretic function, and let f : Y — [, X; be the unique
function such that fep; = f; for all i so that f(y) = (f1(y), -+ ,fu(y)). Then f is continuous
(with respect to the product topology on ], X;) if and only if each function f; is continuous.

Proof. If f is continuous then the continuity of the projections p; and the continuity of composites
imply that each f; is continuous because f; = p;° f.

Now suppose that each f; is continuous. If we can show that the inverse image of each basic
open subset [ [, U; is under f is open, then since inverse images preserve unions it will follow that
the inverse image of every open set under f is open and hence that f is continuous. As before we

know that
[Tvi=N i)

and if we take inverse images (and use the fact that inverse images preserve intersections) then we

have
f (H Ui) = ﬂ flepr Y (Uy) = ﬂ 1)

and the latter is open because each f; is continuous.m

By construction a product of open subsets is open in the product topology (where we are only
dealing with finite products). The analogous statement for closed subsets is also true:

PROPOSITION. Let (X;,T;) be a topological space for 1 < i < n, and for each i suppose that
F; is a closed subset of X;. Then [], F; is a closed subset of [, X; with respect to the product
topology.

Proof. This follows from the set-theoretic equation
Or'F) = [[F
i i

the continuity of the projections p; and the fact that inverse images of closed subsets with respect
to a continuous function are closed.m

COROLLARY. Let (X;,T;) be a topological space for 1 <1i < n, and for each i suppose that A;

is a subset of X;. Then
& - Tia-

Proof. The first set in the display contains the second because the first is a closed set containing
the product of the A; and the second is the smallest such closed subset. To see that the first is
contained in the second, let b be a point in the product of the closure, and let U be an open subset
of [], X; that contains b; we need to prove that U N ][], A; # 0. Let [], V; be a basic open subset
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that contains b and is contained in U. Since the coordinates of b satisfy b; € A; for all j, it follows
that V; N A; # 0 for all j, and from this we have that [, V; N [, A; # 0; since U D [], V; it also
follows that U N ][, A; # 0. But this means that b lies in the closure of [], A;.=

Projection maps also have the following important property.
OPENNESS OF PROJECTIONS. The coordinate projection maps p; : [ [, X; = X, are open.
Proof. The set-theoretic equality

s(Uwa) = U gwa)

shows that it suffices to prove p; (W) is open if W is a basic open subset. But such a set has the
form [[, U; where each U; is open in X;, and the image of this set under p; is simply W;.=

We have already given an example to show that coordinate projections are not necessarily
closed; namely projection onto either coordinate is a continuous and open map from R? to R, but
the image of the closed set of points satisfying the equation zy = 1 (geometrically a hyperbola
whose asymptotes are the z- and y-axes) is R — {0}, which is not a closed subset of the real line.

Products and morphisms

If we are given a sequence of set-theoretic functions f; : X; — Y;, then there one can define
the Cartesian product of morphisms

F=1Lf: [[% - ILY

by the formula
F(mla 7$n):(f1(:1"1)7 afn(mn))

or alternatively by the conditions
my °F = fiomX

where 7%

2 and 7} denote the i*® coordinate projections for [], X; and [],Y; respectively. Maps
of this sort arise very frequently when one constructs new continuous functions out of old ones. If

n = 2 one often describes such product maps using notation of the form
.fl Xf2!X1 XX2 —)Y1XY2

and similar notation is often used for other small values of n. Here are some properties of the product
construction that are extremely elementary but also extremely important in many situations:

PROPOSITION. (i) In the preceding notation, if each X; and Y; are topological spaces the
function F is continuous with respect to the product topologies if and only if each f; is continuous.
(74) If each f; is an identity map, then so is F.
(131) Suppose we are also given sets Z; and (set-theoretic) maps g; : Y; — Z;, and we set G
equal to [[, g;. Then
G°F = [l;(g°fi) -

The verifications of these statements are left to the reader as exercises.
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Another important class of morphisms involving products are the maps that permute coordi-
nates. We shall only discuss the simplest example here. Given two topological spaces X; and X5
the twist map

T(Xl,Xg) X1 x Xy — Xox X,y

is the map sending (a,b) € X; x X5 to (b,a) € X5 x X;. These maps have the following elementary
but important properties:

PROPOSITION. If X; and X5 are topological spaces, then 7(X1, X3) is continuous with respect
to the product topologies. In fact, it is a homeomorphism whose inverse is given by 7(X2, X1).

Proof. The second statement is purely set-theoretic and is elementary to verify. To check the
continuity of the twist map, let p; and ps be the coordinate projections for the domain and let ¢;
and ¢ be the coordinate projections for the codomain. We then have the identities

@1°7(X1,X2) = p2.  @°7(X1,X3) = py

and the continuity of 7(X;, X2) follows immediately from these.

Products and metric spaces

If (X;,d;) are metric spaces for 1 < i < n, then it is possible to put metrics on [], X; whose
underlying topologies are the product topology. In fact, there are three particularly important
product metrics. We shall describe three specific examples that are particularly significant. Let
z,y € []; X; and express them in terms of coordinates as (z1, -+ ,z,) and (y1, --- ,y,) respec-
tively. Then the following formulas define metrics on the product:

d<°°)(ac,y) = maxi{ di(ﬂﬂi,yi) } .
@) (z,y) = (5 dilws,0)?) " .
d(z,y) =Y, dilzi, vi) -

The verification that each formula defines a metric is left to the reader as an exercise. We then
have the following result:

PROPOSITION. The topology determined by the metric d{° is the product topology. Further-
more, the identity map from (], X;,d{®) to (I1; X4, d*#)) is uniformly continuous for all choices
of o, B € {1,2,00}.

Proof. To verify the assertion about d{>? note that
d{)(z,y) <e <= y; € N.(z;), Vi .

Thus the e-neighborhood of z with respect to the d{°) metric is just
i
By previous results, a base for the product topology on [[, X is given by open sets of the form
i
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and this implies that the product topology contains the metric topology. On the other hand, for
each j the projection map p; : [[, X; = X is uniformly continuous because

d; (pj(=),p;(y)) = dj(zj,y;) < d(z,y)

implies we can take § = ¢ in the criterion for uniform continuity. This means that the metric
topology contains the product topology, and therefore by the previous observations we see that the
topologies are equal.

The uniform continuity statements are direct consequences of the following inequalities for
nonnegative real numbers ¢; for 1 <1 < n:

1/2
max;{ a; } < (Za?) < Zai < n-max{ o; }

%

The middle inequality is perhaps the least trivial, and it can be verified by squaring both sides and
noting that the corresponding inequality holds for the squares. These inequalities imply that the
identity maps

(xea) = (Ixea®) > (Ixea®) - (T

are uniformly continuous (and in fact the ¢ corresponding to a given ¢ can be read off explicitly
from the inequalities!), and of course the composites of any two or three consecutive maps from
this diagram are also uniformly continuous.m

The following basic result on products and metric spaces is also worth mentioning;:

PROPOSITION. If X is a metric space then the distance functiond : X x X — R is continuous
(where R has the usual topology).

Proof. Let (z,y) € X x X, and view the product topology as coming from the maximum metric
by the preceding discussion. Given € > 0 suppose that (u,v) € X x X satisfies

max( d(z,u), d(y,v) ) <

DN | ™

Then several applications of the triangle inequality show that d(u,v) —d(z,y) < e and therefore
d is in fact uniformly continuous.

Products and the Hausdorff Separation Property

We shall say that a topological space X has the Hausdorff Separation Property (or more simply,
it is Hausdorff) if for each pair of distinct points u,v € X there are disjoint open subsets U,V C X
such that w € U and v € V. As noted before, metric spaces have this property but it does not
necessarily hold for an arbitrary topological space.

PROPOSITION. In a Hausdorff space every one point subset is closed.
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Proof. Given p € X we shall show that X — {p} is open if X is Hausdorff. Suppose that
y € X — {p}. Then there are disjoint open subsets U, and V, such that p € U, and y € V,.

Therefore we have
X = Uyt ¢ Uw c x-{p}
Yy#p Y#p

which implies that the last two subsets are equal, and thus X — {p} is open because it is a union
of open subsets.n

We now come to a result that has appeared on countless examinations:

THEOREM. Given a set X, let the diagonal dx denote the set of all points (u,v) € X x X such
that uw = v. Then X is Hausdorff if and only if Ax is closed in X x X with respect to the product
topology.

Proof. This follows because each of the statements listed below is equivalent to the adjacent
one(s):

(1) X is Hausdorfl.

(2) Given (u,v) € X x X — Ax there are open subsets U,V C X such that u € U, v € V and
(U X V) N AX = @

(3) X x X — Ax is open in X x X with respect to the product topology.
(4) Ax is closed in X x X with respect to the product topology.
Taken together, these prove the result.m

The theorem has an extremely important consequence:

PROPOSITION. LetY be a Hausdorff space, and let f and g be continuous functions from a
topological space X to Y. Then the set

E={zeX|f(z)=9g()}

is closed in X.

Proof. If H: X — Y xY is the function defined by

then we have already noted that H is continuous if f and g are continuous. It follows immediately
that £ = H *(Ay). Since Y is Hausdorff we know that Ay is closed in Y x Y and therefore its
inverse image under H, which is simply ¥, is closed in X .=

SPECIAL CASE. If f and g are continuous real valued functions on the unit interval [0,1] and
f(z) = g(z) for all rational points of [0,1], then f = g.

Proof. The proposition shows that if f and g are continuous functions from the same space X
into a Hausdorff space Y and f|A = g|A then f|A = g|A. In this case A is the set of all rational
points in X = [0,1] and A = X. More generally this argument shows that if Y is a Hausdorff space,
X is any space and A C X is a subspace such that A = X and f|A = g|A, then f = g»

It is easy to construct counterexamples to the conclusion of the proposition if the codomain is
not Hausdorff. Suppose that X and Y both have the associated indiscrete topologies where both
sets have at least two elements. Then every function from X to Y is continuous, and every nonempty
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subset A C X is dense (i.e., A = X). Large families of counterexamples can be constructed in this
manner; details are left to the reader as an exercise.

Infinite products

In earlier decades infinite products of topological spaces received a great deal of attention. We
shall not deal with such objects extensively here, but it seems worthwhile to say a little about them
for the sake of completeness and to avoid some natural possibilities for misunderstandings.

Given an indexed family of sets X, with indexing set A, the set-theoretic cartesian product

1] %

a€A

may be defined formally as the set of all set-theoretic functions z from A to U, X, such that
z(a) € X, for all a. This captures the intuitive ideas that the elements of the cartesian product
are given by the coordinates z, and that two elements are equal if and only if all their coordinates
are equal.

The Axiom of Choice in set theory is equivalent to the statement that if each of the sets X,
is nonempty, then so is their cartesian product [[, Xo.

As in the case of finite products there are projection maps pg : [[, Xo — Xp defined by
pp(x) = ().

Assume now that we have an indexed family of topological spaces (X4, T,). The crucial
property of the product topology for [[, X, will be that it is the unique smallest topology such
that every projection map pg is continuous.

The preceding condition implies that the product topology should be generated by all sets of
the form pEl(Uﬂ) where Ug is open in X3, and thus the product topology will be arbitrary unions
of finite intersections of such sets.

PROPOSITION. A base for the product topology is given by all open subsets of the form [], Ua
where each U, is open in X, AND U, = X, for all but finitely many «.

Proof. The subsets described in the proposition are finite intersections of sets having the form
pEl(Ug); specifically, if I is a finite subset of A then the subsets in the proposition have the form

ﬂ p;l (Uy) =

yer

Another topology on the product is the so-called boz topology generated by all subsets of the
form [], U, where U, is an arbitrary open subset of X,. For finite products these yield the same
topology, but this is not true for infinite products. A fairly detailed discussion of the differences
appears in Section 19 of Munkres.

Final remark. Theorem 19.6 on page 117 of Munkres gives a fundamentally important
property of the product topology (in both the finite and infinite cases).

Finally, here are some facts about finite products that carry over to infinite products. The
proofs are essentially the same.
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OPENNESS OF PROJECTIONS. For each ( in the indexing set the coordinate projection
maps

ps: [ Xa— X5
(83

are open.m

PRODUCTS OF CLOSED SUBSETS. Let (X,,T,) be a topological space for a € A, and
for each a suppose that F, is a closed subset of X,. Then [] Fy is a closed subset of [[, X, with
respect to the product topology.m

COROLLARY. Let (X4, Tq) be a topological space for a € A, and for each a suppose that F,
s a closed subset of X,. Then
[[4.=]]4a =

MAPPINGS INTO PRODUCTS. Let A be a set, and for each a € A let fo, : Xo > Y, be a
set-theoretic map. Then there is a unique map

F:Hafi : HXa - HaYa

defined by the conditions
7r§ °F = fq, °7rff

where wX and ¥ denote the i coordinate projections for [[, Xa and [, Ya respectively. This
map s continuous if and only if each fo is continuous, and it is the identity map if each fo is an
identity map. Finally, if we are also given sets Z, and (set-theoretic) maps go : Yo — Zo, and we
set G equal to [], go. Then

GF = ]l (9a°fa) -

Finally we mention one more that is an exercise in Munkres (Theorem 19.4, page 116; see also
Exercise 3 on page 118). A proof (probably not the best one) for products of two spaces appears
in Section III.1 of these notes.

PRODUCTS AND THE HAUSDORFF PROPERTY. Let A be a nonempty set, and
supposed that X, is a Hausdorff topological space for each o € A. Then [, X, is also a Hausdorff
space.m
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