IV. Smooth Functions

In many mathematical contexts one considers functions with properties that are stronger than
continuity. For example, if X and Y are open in Euclidean spaces it is often necessary or desirable
to consider functions with good differentiability properties. The latter often have important metric
or topological consequences, and in this course we shall be interested in certain results of this type.

IV.1: Linear approximations

(Edwards, §§ IL.1, I1.2)

For functions of one real variable, a function is continuous at a point if it has a derivative
at that point, but there are standard examples of functions of two variables that have partial
derivatives defined near a point but are not continuous there. On the other hand, a basic result in
multivariable calculus shows that functions that have continuous partial derivatives near a point
are necessarily continuous at the point in question.

We shall begin by establishing a version of this result that holds for functions of an arbitrary
(finite) number of real variables. It will be convenient to adopt some notation first. The unit vector
in R whose it® coordinate is 1 and whose other coordinates are 0 will be denoted by e;. If U is
an open set in R™ and f : U — R" is a (not necessarily continuous) function such that all first
partial derivatives exist at some point p € U, then the gradient V f(p) will denote the vector whose
ith coordinate is the partial derivative of f with respect to the i variable at p. We shall use (u,v)
to denote the usual dot product of two vectors u,v € R™.

PROPOSITION. Let U be an open subset in R™, let x € R™, and let f : U — R™ be a (not
necessarily continuous) function such that f has continuous partial derivatives on some open subset
of U containing x. Then for all sufficiently small h # 0 in R™ one can define a function 6(h) such
that

f(z+h) = f(z) =(Vf(z),h) + |h|6(h)
where limy_, o 0(h) = 0.

Proof. Write h = ), ¢;h; for suitable real numbers #;, take d > 0 so that f has continuous partial
derivatives on Njs(z), and assume that 0 < |h| < §. Define h; for 0 < i < n recursively by hy = 0
and h;+1 = h; + t;11€;41. Then h,, = h and we have

flz+h) - f(z) = Zf(w +hi) = f(zi-1)

and if we apply the ordinary Mean Value Theorem to each summand we see that the right hand
side is equal to

0
; 6—1_1]‘. (iE +hi—1+ Kz(x)tz) 15
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for some numbers K;(z) € (0,1). The expression above may be further rewritten in the form

(Vf(z),h) + (Z 8%1 (z + hi—1 + Ki(z)t;) — aiif(ﬁﬂ)) -t

and therefore an upper estimate for |f(z + h) — f(z) — (Vf(z), h) | is given by

0
awi

f(z)

0
>l gyt (@ s+ Kifat) = ti

Since the partial derivatives of f are all continuous at z, for every ¢ > 0 there is a §; > 0 such that
01 < ¢ and |h| < d; implies that each of the differences of partial derivatives has absolute value
less than ¢/n. Since h # 0, if we define 6(h) as in the statement of the conclusion, the preceding

considerations imply show that
€ - [ti]
0(h
o)l < >0

%

1/2
s (4]

it follows that |#(h)| < € when 0 < |h| < §;.m

and since

COROLLARY. If f satisfies the conditions of the proposition, then f is continuous at r.m

The conclusion of the theorem indicates the right generalization of differentiability to functions
of more than one variable:

Definition. Let U be an open subset in R™ and let f : U — R" be a function (with no further
assumptions at this point). The function f is said to be differentiable at the point z € U if there
is a linear transformation L : R™ — R™ such that for all sufficiently small vectors h we have

f(z+h) = f(z) = L(k) + | 6(h)

where limy,_,00(h) = 0.

Immediate Consequence. If m = 1 in the definition above and we restrict h so that h = te; for
|t| sufficiently small then if f is differentiable at x it follows that all first partial derivatives of f
are defined at x and

of (z)

(9]3i

In particular, the preceding shows that there is at most one choice of L for which the differen-
tiability criterion is true, at least if m = 1.m

Of course the proposition above implies that a function is differentiable if it has continuous
partial derivatives.

The differentiability of a function turns out to be determined completely by the differentiability
of its coordinate functions:

68



PROPOSITION. let U be open in R™, let f : U — R™ be a function, and express f in coordinates
as f(z) = >, yj(z)e;. Then f is differentiable at x if and only if each y; is differentiable at z, and
in this case the linear transformation L is given by

L(u) = Z(Vyi(ac),mei .

K2

It follows that there is at most one choice of L for an arbitrary value of m. If we write
u=>y ;Ui then this yields the fundamental identity

9= 5

for the derivative linear transformation. In words, the (i,7) entry of the matrix representing L is
the j*8 partial derivative of the i*® coordinate function.

Proof of proposition. Suppose that f is differentiable at . For i between 1 and m, let P; be
projection onto the i*" coordinate. If we apply P; to the formula for f(z + h) — f(z) we obtain the
following relationship:

yi(z + h) — yi(z) = PiL(h) + [h|P;i6(h)

The composite P; L is linear because both factors are linear, and the relation
P:0(h)| < [6(h)]
shows that lim,_,o P;6(h) = 0, so that y; = P; f is differentiable at X and
Vyi (.7,‘) = PiL

as required.

Now suppose that each y; is differentiable at x, and write

fl@+h) = f@) =) (Wi(z+h) —yi(z)) e =

%

> (Vyi(z), h)es + Z |1|0; () es

K2

where h =) . t;e; and limy_,¢ 6;(h) = 0 for all i. Choose d > 0 so that Ns(z) C U and 0 < |h| < 4
implies |0@(h)f < g/n for all . Then 0 < |h| < d implies |#(h)| < &, whosing that f is differentiable
at z and the linear transformation L has the form described in the proposition.s

Smoothness classes of functions

If U and V are open sets in Euclidean spaces and f : U — V is a function, then we say that f
is (smooth of class) C! if Df exists everywhere and is continuous. For r > 2 we inductively define
f to be (smooth of class) CT if Df is (smooth of class) C"~!, and we say that f is (smooth of class)
C if it is smooth of class C” for all positive integers r. For the sake of notational uniformity we
often say that every continuous function is of class CP°.
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It is elementary to check that a function is of class C” if and only if all its coordinate functions
are and that
C*=C =C'=CcC’

for all . Every polynomial function is obviously of class C*, and for each r there are many
examples of functions that are C” but not C™+1. If r = 0 the absolute value function fyo(z) = |z|
is an obvious example, and inductively one can construct an example f, which is C™ but not C™+!
by taking an antiderivative of f,._;.

One important point in ordinary and multivariable courses is that standard algebraic operations
on differentiable (or smooth) functions yield differentiable (or smooth) functions. In particular, this
applies to addition, subtraction, multiplication, and division (provided the denominator is nonzero
in this case). We shall use these facts without much further comment. The smoothness properties
of composites of differentiable and smooth functions will be discussed reasonably soon.

Matrix operations

Plenty of examples of smooth functions can be found in multivariable calculus books, so we
concentrate here on some basic examples that will be needed shortly.

PROPOSITION. Addition addition of m X n matrices is a C* map from
R 2 (M(m,n))”
to R™" = M(m,n), scalar multiplication of m X n matrices is a C* map from
R™Tl >~ R x M(m,n)

to R™ =2 M(m,n), and matriz multiplication from M(m,n) x M(n,p) to M(m,p) is also a C*
map.

This simply reflects the fact that that the entries of a matrix sum or product are given by
addition and multiplication operations on the entries of the original matrices (or matrix and scalar).m

The next result is slightly less trivial but still not difficult.

PROPOSITION. The set of invertible n x n matrices GL(n,R) is an open subset of R" =
M(n,n), and the map from GL(n,R) to itself sending a matriz to its inverse is a C™ map.

Proof. We shall prove this using coordinates; it is possible to prove the result without using
coordinates, but the proof using coordinates is shorter.

Recall that the determinant of a square matrix is a polynomial function in the entries of the
matrix and that a matrix is invertible if and only if its determinant is nonzero. The former implies
that the determinant function is continuous (and in fact C*), while the second observation and
the continuity of the determinant imply that the set of invertible matrices, which is equal to the set
det™*(R — {0}), is open. But Cramer’s Rule implies that the entries of the inverse to a matrix are
rational expression in the entries of the original matrix, and thus the entries of an inverse matrix are
C functions of the entries of the original matrix. Therefore the matrix inverse is a C* function
from GL(n,R) to itself.s
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Matriz norms

Before discussing the metric and topological properties of C” functions it is necessary to know
a little about the corresponding properties of their linear approximations. The most basic property
is a strong form of uniform continuity.

PROPOSITION. IfL:R"™ — R™ is a linear transformation, then there is a constant b > 0
such that |L(u)| < blu| for all U € R".

Proof. The easiest way to see this is to note that L is continuous, and therefore the restriction of
the function h(u) = |L(u)| to the (compact!) unit sphere in R™ assumes a maximum value, say c,
so that |u| = c¢. Every vector u may be written as a product cv where c is nonnegative and |v| = 1.
It then follows that

|L(u)| = [cL(v)| = ¢ |L(v)| = |u] - [L(v)| <b-|ul

as required.m
Notation. The maximum value b is called the norm of L and written || L ||.

PROPOSITION. The norm of a matriz (or linear transformation) makes the space of m x n
matrices into a normed vector space.

Proof. By definition the norm is nonnegative, and if it is zero then L(v) = 0 for all v € R"
satisfying |v| = 1; it follows that L(v) = 0 for all v (why?). If a is a scalar and L is a linear
transformation, then the maximum value || L || of |aL(v)| for |v| = 1 is simply |a|- || L ||. Finally, if
Ly and Ly are linear transformations and v is a unit vector such that |[L1 + Lo](v)| =|| L1 + L2 ||,
then we have

[ L+ Ly || = [[La + Lo](v)] < [La(0)] + | La(v)] <[ Lo | + [ L2 || -

Thus the norm as defined above satisfies the conditions for a normed vector space.m
The matrix norm has the following additional useful property:
PROPOSITION. If A is an m X n matriz and B is an n X p matriz, then | AB ||<|| A || - || B ||-

Proof. Let v be a unit vector in R? at which the function f(z) = ABz takes a maximum value.
Then we have
[ABz| < [|A[l-[Bz| < [A|-[B]

as required.m

Comparisons of norms

Although there are many different norms that can be defined on R™, the following result shows
that they all yield the same open sets.

THEOREM. Let |...| denote the standard Euclidean norm on R™, and let || ... || denotes some
other norm. Then there are positive constants A and B such that

lz] < Alz|, |z| < Bz

for all x € R™. In particular, the identity maps of normed vector spaces from Fuclidean space
(R™,]...]) to (R™,]|| ... ||) and vice versa are uniformly continuous.
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Proof. Given a typical vector z, write it as ) |, z;e;.
Choose M such that || e; || < M for all ;. Then we have

Tzl < Y lail- llei | < nM Y ail
%

(2

and by the Cauchy-Schwarz-Buniakovsky Inequality the summation is less than or equal to n'/2|z|.
Therefore || z ||< n3/2M|z|.

The preceding paragraph implies that the function f(z) = || = || is a continuous function on
R” with respect to the usual Euclidean metric. Let ¢ > 0 be the minimum value of f on the unit
sphere defined by |z| = 1. It then follows that || z || > ¢ - |z| for all z and hence that

1
< -
ol < =z

forallz €e R".»
COROLLARY. The same conclusion holds if the Fuclidean norm is replaced by a second arbitrary

norm.

Proof. Let a and § denote arbitrary norms on R™ and let |...| denote the Euclidean norm. Then
there are positive constants A, Ag, B, Bg such that the following hold for all z € R™:

a(r) <Aglzl, |z] < Baoa(z)
Bz) < Aglz|, |z| < BgpB(x)
These immediately imply a(z) < A,Bgf(z) and B(z) < AgBya(z).m
The following observation will be useful later.

PROPOSITION. If A is an n X n matriz such that | A || < 1, then I — A is invertible.

Proof. Suppose that the conclusion is false, so that I — A is not invertible. Then there is a
nonzero vector v € R™ such that (I — A)v = 0. The latter implies that Az = z for some z such
that |z| = 1, which in turn implies that || A | > 1=

Note. If || A ||< 1, then the the previously stated inequalities for the matrix norm show that
k k
A% < [ Al

and the latter implies that the inverse to I — A may be computed using the geometric series:

(I-A) =) 4k
k
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IV.2: Properties of smooth functions

(Edwards, § 11.3)

In this section we shall establish generalizations of two important principles from elementary
calculus. One is a version of the Chain Rule, and the other is a general form of a basic consequence
of the Mean Value Theorem. As an application of these results we shall show that the restriction
of a smooth map to a compact set satisfies a metric inequality called a Lipschitz condition that
generalizes the strong form of uniform continuity which holds for linear maps of (finite-dimensional)
Euclidean spaces.

The Chain Rule

Undergraduate multivariable calculus courses generally state one or more extensions of the

ordinary Chain Rule
l9°f] () =¢' (f(2)) - f' ()

to functions of several real variables. Linear transformations provide a conceptually simple way of
summarizing the various generalizations of this basic fact from single variable calculus:

CHAIN RULE. Let U andV be open in R™ and R™ respectively, let f : U — V be a map that
is differentiable at x, and let g : V — RP be differentiable at f(x). Then ge f is differentiable at
and

Dlg°f](z) = D(g) (f(=)) °Df(z) -
Proof. By the definition of differentiability for g at y = f(z), for |k| sufficiently small we have

gy +k) —gly) = [Dg(y)(k) + |k - a(k)

where limy_,o a(k) = 0. If we take k so that y + k = f(z + h) for |h| sufficiently small, then we
have k = f(z + h) — f(z), and by the differentiability of f at = we have

k=f(z+h) - f(z)=[Df(@)](h)+|h|- B(R)

where limy,_,q B(h) = 0. If we make this substitution into the first equation in the proof we obtain
the relation

[9°f1(z +h) —[g°fl(z) = [Dg (f ()] ([Df (@)](h) + |h| - B(h)) + |kla (f (z + h) — f(z))
and for h # 0 the right hand side may be rewritten as follows:

[Dg (f (@) ([Df (@)](h)) + [Dg (£ ()] ([h] - B(R)) + |h] - % a(f(z+h) - f(2))

Let ¢ > 0 be given. We need to show there is a § > 0 such that |h| < § implies the following
inequalities:

I Dg (f(@) | 18R] < %
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- < I Df(=) | +1

£

|f(z+h) - f(z)] < 2 Df (@) | +1)

The first of these can be realized by the limit condition on 8, and the third can be realized by
the limit condition on « and the continuity of f at z. To deal with the second condition, note that

k] = |f(z + 1) = f(2)] = [[Df(@))(R) + [RIB(R)] <

I Df(z) || -|hl + [R][B(R)|
so that "
WS | Df(z) | + [B(R)]
and thus we may realize the second inequality if we choose ¢ so that 0 < |h| < § implies

9

(I Df(=) [ +1)

/3 h <
If we combine all these we see that

lg°fl(z +h) — lg°fl(z) = [Dg(f(=)([Df(x)](h)) + [h]~(R)

where limp,_,gy(h) = 0=

COROLLARY. In the notation of the preceding result, if f is C" on U and g is C" on V, then
gef is CT.

Proof. Suppose that r = 1. Then the Chain Rule formula, the continuity of the derivatives of f
and g and the continuity of f show that D(g°f) is continuous.

Suppose now that » > 2 is an integer and we have shown the Corollary inductively for C*
functions for 1 < s < 7 — 1. Then the functions Dgef and Df are C"~! by the induction
hypothesis and the fact that f is C", and the matrix product of these functions is also C" because
matrix multiplication is C*®.u

Since the result is true for all finite r, it follows immediately that the conclusion is also true if
r = 00.

Ezample. Suppose that U is open in R™ and f: U — R™ is C” for some r > 1; let a,z € U
be such that Nyj,_q((a) C U. Then the function

g9(t) = f(a+ (z —a))

is a C" function on some interval (—d,1 + §) and

g'(t)=[Df (a+tz-a)](z-a).
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Mean Value Estimate

The Mean Value Theorem for real-valued differentiable functions of one real variable does not
generalize directly to other situations, but some of its important consequences involving derivatives
and definite integrals can be extended. The following example is important in many contexts:

PROPOSITION. Let U be open in R”, let f : U — R™ be a C' function, and suppose that
a € U and § > 0 are such that |z — al,|y — a| < & implies x,y € U. Then for all such x we have
the following inequality:

|f(z) = f(y)l < max._q<s || Df(2) || - |z -yl

Proof. Let h =z —y, and set g(t) = f(y + th); since open disks are convex we know that y + th
also satisfies |y + th — a| < 6. Then we have

and therefore
1
f@ -1l < [ lgw]a.
0

As indicated before, by the Chain Rule we know that

g'(t) = [Df (y+t(z—y))]|(z —v)

and therefore we have the estimate

1
/0 g ()|dt < maxocrn || DF (y+ 1tz — ) || |z — ]

which immediately yields the inequality in the proposition. =

Lipschitz conditions

The restriction of a smooth function (say of class C") to a compact set satisfies a strong form
of uniform continuity that generalizes the matrix inequality |Az| <|| A || -|=|.

THEOREM. Let U be open in R™, let f : U — R™ be a C! function, and let K C U be compact.
Then there is a constant B > 0 such that

[f(u) = f(v)] < Blu—ov|

for all u,v € K such that u # v.

The displayed inequality is called a Lipschitz condition for f. This strong form of uniform
continuity associates to each ¢ > 0 a corresponding ¢ equal to ¢/B. An example of a function
not satisfying any Lipschitz condition is given by h(z) = y/z on the closed unit interval [0,1] (use
the Mean Value Theorem and lim;_,o+ h'(t) = +00). Incidentally, the inverse of this map is a
homeomorphism that does satisfy a Lipschitz condition (e.g., we can take B = 2).
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The inequality
o] 2 i

for u,v € R shows that f(z) = |z| is a function that satisfies a Lipschitz condition but is not C*.

A Lipschitz constant for f on a set K (not necessarily compact) is a number B > 0 such that
|f(u) — f(v)] < Blu—w| for all u,v € K such that u # v. Note that Lipschitz constants are
definitely nonunique; if B is a Lipschitz constant for f on a set K and C > B, then C is also a
Lipschitz constant for f on a set K.

Proof of theorem. For each z € K there is a §(z) > 0 such that Nys(,)(z) C U. By compactness
there are finitely many points x1, --- ,z, such that the sets Nj(,,)(z;) cover K. Let B; be the
maximum of || Df || for |y — z;| < d(z;). If B; =0 for all ¢ then D f = 0 on an open set containing
K and therefore f is constant on K, so that the conclusion of the theorem is trivial. Therefore we
shall assume some B; > 0 for the rest of the proof.

By the Mean Value Estimate we know that y,z € Ns,,)(z;) implies that |f(y) — f(z)| <
Bily — z|.

Let 7 > 0 be a Lebesgue number for the open covering of K determined by the sets Nj(,,)(z:),
and let M C K x K be the set of all points (u,v) € K x K such that |[u — v| > n/2. The function
A(u,v) = |u — v| is continuous on K x K, and consequently it follows that M is a closed and thus
compact subset of K x K. Consider the continuous real-valued function on M defined by

u) — f(v
M) — L0 = T0)

u—v|
Since the denominator is positive on M, this is a continuous function and therefore attains a
maximum value A.

Let B be the maximum of the numbers A, By, --- , By, and suppose that (u,v) € K x K.
If (u,v) € M, then by the preceding paragraph we have |f(u) — f(v)| < A-|u —v|. On the
other hand, if (u,v) ¢ M, then |u — v| < n/2 and thus there some i such that u,v € Nj(g,)(;).
By the Mean Value Estimate we know that |f(u) — f(v)| < B; -+ |u — v| in this case. Therefore
|f(u) — f(v)] < B-|u—wv| for all u and v.m
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IV.3: Inverse Function Theorem

(Edwards, §§ T11.2, TT1.3)

We have already mentioned the general question of recognizing when a 1-1 onto continuous
function from one space to another has a continuous inverse. There are also many situations
where it is useful to know simply whether a local inverse exists. For real valued functions on an
interval, the Intermediate Value Property from elementary calculus implies that local inverses exist
for functions that are strictly increasing or strictly decreasing (we have not actually proved this yet,
however). Since the latter happens if the function has a derivative that is everywhere positive or
negative close to a given point, one can use the derivative to recognize very quickly whether local
inverses exist in many cases, and in these cases one can even compute the derivative of the inverse
function using the standard formula:

o
f'(9(y))

Of course this formula requires that the derivative of f is not zero at the points under consideration.

g=f" = 4 =

There is a far-reaching generalization of the single variable inverse function theorem for func-
tions of several real variables. It is covered in many but not all courses on multivariable calculus or
undergraduate courses on the theory of functions of a real variable, but even when it is covered the
treatment is sometimes incomplete (for example, only worked out for functions of two or at most
three variables).

INVERSE FUNCTION THEOREM. Let U be open in R", leta € U, and let f : U — R™
be a C" map (where 1 < r < o0) such that Df(a) is invertible. Then there is an open set W
containing a such that the following hold:

(1) The restriction of f to W is 1 — 1 and its image is an open subset V.

(i4) There is a C" inverse map g : V. — Uy such that g(f(z)) =z on U,.

Proof. The proof given here uses the Contraction Lemma.

It is convenient to reduce the proof to the special case where a = f(a) = 0 and Df(a) = I.
Suppose we know the result in that case. Let A = Df(a), and define f; by the formula

fi(z) = A7 (f(z +a) - f(a) -

Then f1(0) = 0 and by the Chain Rule we have Df1(0) = I. Then assuming the conclusion of
the theorem is known for f;, we take Wy,Vi, g1 as in that conclusion. If we take W = a + Wy,
V = AVy + f(a), and

9(2) =91 (A7 (y — f(a)) +a

then it follows immediately that the function f(y) = Afi(y —a) + f(a) satisfies the conclusions of
the theorem.

Since f has a continuous derivative, there is a § > 0 such that |z| < ¢ implies || Df(z)—I ||< 3.
For each y on the closed disk D of radius 4/2 about the origin, define a map T on D by the formula
T(z) =z + vy — f(x), and observe that T'(z) = z if and only if y = f(z).

We want to apply the Contraction Lemma to T'. The first step is to show that T' maps D to
itself. Let ¢ be the function ¢(z) = z — f(x); then ¢(0) =0 and Dy = I — D f, and consequently
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by the Mean Value Estimate we have that |¢(z)| < |z|/2 if |z] < §. Since T'(z) = y + ¢(z) and
ly| < 6/2 it follows that |T'(z)| < ¢ and hence T'(D) C D.

We now need to estimate |T'(z1) — T'(zg)| in terms of |z1 — zo|. Since T and ¢ differ by a
constant it follows from the Mean Value Estimate that

[T@1) ~ T(ao)| = |(er) — plao)| < 5hor o

and therefore the Contraction Lemma implies the existence of a unique point z € D such that
T(z) = z, which is equivalent to f(z) = y.

Let g : N5/2(0) — D be the inverse map sending a point y to the unique = such that f(z) = y.
We claim that g is continuous. The first step is to show that |zg|, |z1| < §/2 implies | f(z1)—f(z0)| >
2|1 — |- To see this, use the identity f(z) = z — ¢(z) and use the equation and inequalities

1 1
|f(z1) — f(zo)| > |21 — mo] — |@(z1) — @(@0)| > |21 — 0| — 5|z —@ol = S1f(z1) = F(zo)l -
If we set y; = f(z;) so that z; = g(y;) then we have

lz1 — zo| = 19(y1) — 9(wo)| < 2-|y1 — wo

and thus g is uniformly continuous.

Let Uy be the image of g; we claim that U is open. Suppose that z € Uy, so that f(z) =y
where |y| < §/2. Then one can find some 1 > 0 so that |z — z| < n implies |f(z)| < §/2 (why?)
and the identity g(f(z)) = z then implies that z € Image(g). Thus we may take V = N;/5(0) and
Up =g(V).

Finally, we need to show that g is a C” function if f is a C" function. Given y € V and k such

that y+k € V, writey = f(z) and y+k = f(z+h). Since | Df(z) — I ||< 1 it follows that D f(z)
is invertible. Let L be its inverse. Then we have

9y +k) —g(y) — L(k) = h = L(k) = =L (f(z + h) — f(z) — Df(x)h)

and the right hand side is equal to
L(|h| - 0(h))

where lim,|—0 @(h) = 0. Since h = g(y + k) — g(y) we know that |h| < 2|k| and therefore we also
have

1
lim — - L(|h|-6(h))=0
im0 0(h)
(where h = g(y + k) — g(y) as above), which shows that g is differentiable at y and satisfies a
familiar looking formula:

Dg(y) = (Df (9(y))™"

Since the entries of an inverse matrix are rational expressions in the inverse of the original matrix,
the continuity of g and the C! property of f imply that g is also C*.

If f is a C" function, one can now prove that g is a C*® function for all s < r inductively as
follows: Suppose we know that f is C” and g is C*® for 1 < s < r. By the formula for the derivative
of g we know that Dg is formed by the composite of g, Df and matrix inversion. We know that g
is C*, that Df is too because f is C**! (recall that s + 1 < r), and that inversion is C* because
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its entries are given by rational functions, and therefore it follows that D[ge f] is also C*, which
means that gof is C*T1l.m

COROLLARY. LetU andV be open in R™, and let f : U - V be 1 — 1 onto and C" where
1<r<oo. Then f~! is also C"m

A similar result holds when r = 0, but the proof requires entirely different methods which
come from algebraic topology.

The Inverse Function Theorem also has the following purely topological consequence for C*
mappings:

COROLLARY. Let f:U — R" be a C! function (r > 1), where U is open in R™, and assume
that Df(x) is invertible for all x € U. Then f is open.m

There is also an extension of this result to the C° case provided f is locally 1-1 (this is Brouwer’s
Invariance of Domain Theorem); the proof again requires methods from algebraic topology.

Proof. Let W be open in U and let x € W. Then the Inverse Function Theorem implies that
there is an open subset Wy(z) C W containing = such that f maps Wy(z) onto an open subset
V(z) in R™. Therefore it follows that

fw) = rwe) = J v

T

which is open in R"™.

Examples. Consider the complex exponential mapping f from R? to itself sending (z,y)
to (e* cosy,e®siny). The derivative of this map is invertible at every point but the map is not
1-1 because every nonzero point in R? is the image of infinitely many points; specifically, for every
(z,y) and integer k we have f(z,y + 2kw) = f(z,y).

Another example of this type is the complex square mapping f : R? — {0} — R? sending (z, y)
to (2 — y2,2zy), which has the property that f(—z,—y) = f(z,y) for all (z,y); note that if we

write z = u + iv, then f(z) = 22.

Final Remark. Given a C! function f : U — R™ with U open in R”, if we write the coordinate

functions of f as y1, --- y, then det Df(p) is just the classical Jacobian function
a(yla e Jyn)
a(xla ,.’En) (p)

and with this terminology the condition on Df(p) in the Inverse Function Theorem may be
rephrased to state that the Jacobian at p is nonzero.

The Implicit Function Theorem

There is a close relation between the Inverse Function Theorem and the standard Implicit
Function Theorem from ordinary and multivariable calculus. In its simplest form the Implicit
Function Theorem states that locally one can solve an equation F(z,y) = 0 uniquely for y in terms
of z; more precisely, if F'(a,b) = 0 and the second partial derivative of F' is nonzero at (a, b), then on
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some open interval (a—d,a+4) there is a unique function f(z) such that y = f(z) <= F(z,y) =0
(hence f(a) =b) and

Q|
S
N

a4
dr

~
|
&3

—

Here is a general version of this result:

IMPLICIT FUNCTION THEOREM. LetU andV be open in R"™ and R™ respecitvely, and
let f:U xV — R™ be a smooth function such that for some (z,y) € U x V we have f(z,y) =0
and the partial derivative of f with respect to the last m coordinates is invertible. Then there is an
open neighborhood Uy of © and a smooth function g : Uy — V such that g(z) =y and for all u € Uy
we have f(u,v) =0 if and only if v = g(u).

For the sake of completeness we note that the partial derivative of f with respect to the last
m coordinates is the derivative of the function f*(v) = f(z,v), and that smooth means smooth of
class C" for some r such that 1 <7r < cc.

Proof. Define h: U x V — R™ x R" by h(u,v) = (f(u,v),u). Then the hypotheses imply that
Dh(z,y) is invertible, and therefore by the Inverse Function Theorem there is a local inverse

k:Int (eD™)x Uy —UXV .

Since the second coordinate of h(u,v) is u, it follows that the first coordinate of the inverse k(z, w)
is w so that we may write k(z, w) = (w, Q(z,w)) for some smooth function Q.
On one hand we have g (k(z,w)) = (z,w), but on the other hand we also have

g(k(sz)) = g(’LU,Q(Z,’LU)) = (f(w,Q(z,w)),w).

In particular, this means that

z = f(u, Q(z, u))

for all z and u. If we take g(u) = Q(0,u) it follows that y = g(x) and f(u,v) = 0 if and only if
v=g(u)m

One can use the Chain Rule to calculuate Dg(u) as follows: If ¢(u) = f(u,g(u)) and p € R",
then the Chain Rule yields the formula

[Dew)l(p) = [Dif (u,9(u))](p) + [D2f (u,9(u))] ([Dg(u)](p))

where D; and D, refer to partial derivatives with respect to the first and last sets of variables.
Since ¢ = 0 it also follows that [D¢(u)](p) = 0. Furthermore, if v and v are sufficiently close to z
and y then the second partial derivative is invertible. Therefore one obtains the formula

Dg = — (Dof)™'°Dyf

which generalizes the formula in elementary multivariable calculus.m
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