V. Constructions on Spaces

This material in this unit concerns two basic themes that run throughout geometry — all the
way from children’s toys to the frontiers of research. One of these is the construction of new objects
from old ones by gluing certain subsets together. For example, one can form a circle (actually, a
space homeomorphic to a circle) from a closed interval by gluing the two endpoints together. A
second theme is the formation of new objects from old ones by first creating several disjoint copies
of the original objects and then gluing pieces together in an appropriate fashion. For example, one
can form a cube from six pairwise disjoint squares with sides of equal length by gluing the latter
together in a suitable way along the edges.

Two widely known examples of such constructions are the Mobius strip and the Klein bottle,
and we shall indicate how they can be formed using the ideas presented here. The latter can also
be used to show that one can construct a Klein bottle from two Mobius strips by gluing the latter
together along their (homeomorphic) edges.

V.I: Quotient spaces

(Munkres, § 22)

We shall adopt a somewhat different approach from the one appearing in Munkres. In mathe-
matics it is often useful to create a quotient object from a mathematical structure and a well-behaved
equivalence relation on such an object. For example, if n is a positive integer greater than 1, then
one can construct the ring Z,, of integers modulo n using the equivalence classes of the relation

a=b(n) < a—b=kn, someke€Z

and the projection from Z to the set of equivalence classes Z,, is compatible with the addition
and multiplication on both systems. One often says that Z,, is a quotient ring of Z, and further
constructions of this sort are indispensable in most of abstract algebra.

Another specific and important example involves the complex numbers, which may be viewed
as equivalence classes of real polynomials under the equivalence

ft)~gt) = f(t) — gt) = q(t)-(t2 + 1) for some ¢(t) € RJt]

where RJ[t] denotes the ring of polynomial forms over the real numbers. As in the case of the
integers modulo 7, the addition and multiplication maps are given by the sums and products of
representatives, and the crucial issue to defining such maps is that if « is equivalent to o’ and S
is equivalent to 3’, then o + 8 and « - 8 are equivalent to o’ + 8’ and o' - 8’ respectively. Given
any other construction for the complex numbers C, there is a unique algebraic isomorphism from
the quotient object R[t]/~ to C that sends real numbers to themselves and sends the equivalence
class of t to v/—1.

More generally, quotient constructions arise naturally for many types of mathematical systems,
so the following question about topological spaces arises naturally at least from a formal perspective:
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Question. Let X be a topological space and let R be an equivalence relation on X. Is there a
reasonable definition of a topology on the set of equivalence classes X/R?

One obvious requirement is that the projection map
™ X = X/R

taking a point z to its R-equivalence class [z]z (frequently abbreviated to [z]) is continuous. One
trivial way of achieving this is to take the indiscrete topology on X /R, but something this easy
should seem too good to be true (and it is). For example, if X is Hausdorff we would like the
topology on X /R to be Hausdorff, at least as often as possible (there are fundamental examples to
show that one cannot always have a Hausdorff topology).

It turns out that the right topology to take for X/R is the unique maximal topology for which
7R is continuous, and it is useful to formulate things somewhat more generally.

Definition. Let (X, T) be a topological space, let Y be a set, and let f : X — Y be a map of
sets. The quotient topology f. T on Y is defined by the condition

V € f.T if and only if f~1(V) € T.

Before proceeding, we need to check that the construction above yields a topology on X/R.
— The inverse image of the empty set is the empty set and the inverse image of X/R is X, so f,T
contains the empty set and X/R. If U, lies in X/R for all a, then f~1(U, Uy) = Uy f~1(Uy)
where each term on the right hand side lies in T by the definition of f,T; since the union of open
sets in X is again an open subset, it follows that f~!(U, Uy,) is open in X which in turn implies that
Ug U, belongs to f.T. Likewise, if U; and U, are in £, T, then f~2(UyNU,) = f~1(U1) N f~1(Us),
and each term of the right hand side lies in T since the latter is a topology for z it follows that
the right hand side also lies in T, and therefore it follows that U; N U; lies in f,T.

The following are immediate consequences of the definition and the preceding paragraph.
PROPOSITION. (i) f defines a continuous map from (X, T) to (Y, f.'T),
(13) f«T contains every topology U for which f : (X, T) — (Y,U) is continuous.

(iii) A subset B CY is closed with respect to f. T if and only if its inverse image f~(B) is
closed with respect to T.

Proof. The first statement follows because a set V C Y is open if and only if f=1(V) is open in
X. The second is verified by noting that if U is given as above and W € U, then f~}(W) C T by
continuity, and hence U C T. The third statement holds because B is closed with respect to the
quotient topology if and only if Y — B is open, which is true if and only if f~}(Y —B) = X — f~1(B)
is open in X, which in turn is true if and only if f~1(B) is closed in X .

Quotients and morphisms

It is helpful to deal first with some aspects of equivalence class projections that are entirely
set-theoretic and relate the discussion here to the approach in Munkres.

If X is a set and R is an equivalence relation on X, then the equivalence class projection 7
is onto. In fact, every onto map can be viewed as an equivalence class projection as follows: If
f : X — Y is an arbitrary onto map of sets, and then one can define an equivalence relation Ry on X
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by u ~ v if and only if f(u) = f(v). There is a canonical 1-1 correspondence h : Y — X/R s which
sends the equivalence class [z] to f(z). It is an elementary exercise to show that h is well-defined,
1-1 and onto (verify this!).

The following set-theoretic observation describes an fundamental property of quotient con-
structions with respect to functions.

PROPOSITION. Let f : X — Y be a function, let R be an equivalence relation on X, and
let p: X — X/R be the map sending an element to its equivalence class. Suppose that whenever
u ~r v in X we have f(u) = f(v). Then there is a unique function g : X/R — Y such that

gep=1.
The point is that a well-defined function is obtained from the formula g([z]) = f(z). Analogous

results hold for a wide range of mathematical structures; a version for topological spaces is given
immediately after the proof below.

Proof. Suppose that [z] = [y]; then by definition of the equivalence relation we have f(z) = f(y),
and therefore the formula defining g yields

9([z]) = f(=) = f(y) = 9(lv])

which shows that g is indeed well-defined.n

COROLLARY. Let f, X, Y, R be as in the proposition, suppose they satisfy the conditions
given there, suppose there are topologies on X and Y such that f is continuous, and put the
quotient topology on X/R. Then the unique map g is continuous.

Suppose that W is open in Y. Then g~!(W) is open in X/R if and only if 7' (g7 (W) is
open in X. But gemg = f, and hence 7' (g~} (W) = f~1(W). Since f is continuous, the latter is
in fact open in X. Therefore g~ (W) is indeed open, so that g is continuous as required.

The following relates our approach to that of Munkres.

DEFINITION. Let f : X — Y be continuous and onto, let R be the equivalence relation
described above, and let h : X/R — Y be the standard 1-1 onto map described above. By
construction, A is continuous if X/R is given the quotient topology. We say that f is a quotient
map if h is a homeomorphism.

By the definitions, f is a quotient map if and only if for every B C Y we have that B is open
in Y if and only if f~!(B) is open in X. — The statement remains true if one replaces “open” by
“closed” everywhere.

Remark. In many books the quotient topology is only defined for continuous maps that are
onto, so we shall comment on what happens if f is not onto. In this case, if y € f(X) then {y} is
an open and closed subset because f~!({y}) = 0 and 0 is open and closed in X; more generally,
every subset of Y — f(X) is open and closed for the same reason. It also follows that f(X) is
open and closed because its inverse image is the open and closed subset X. The quotient topology
on the entire space Y is given by the quotient topology on f(X) with respect to the onto map
g: X — f(X) determined by f and the discrete topology on Y — f(X).
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Recognizing quotient maps

The following result provides extremely useful criteria for concluding that a continuous onto
map is a quotient map.

PROPOSITION. Suppose that f : X — Y is continuous and onto, and also assume that f is
either an open mapping or a closed mapping. Then f is a quotient map.

Proof. We shall only do the case where f is open; the other case follows by replacing “open”
with “closed” everywhere in the argument.

We need to show that V is open in Y if and only if f~1(V) is open in X. The ( = ) implication
is true by continuity, and the other implication follows from the hypothesis that f is open because
if f=1(V) is open in X then

vV = f(fHv))

must be open in Y.»

Exercise 3 on page 145 of Munkres gives an example of a quotient map that is neither open
nor closed. We have already given examples of continuous open onto maps that are not closed and
continuous closed onto maps that are not open.

COROLLARY. If X is compact, Y is Hausdorff and f : X — Y 1is continuous, then the quotient
space X /Ry is homeomorphic to the subspace f(X) (and hence the quotient is Hausdorff).

Proof. The preceding arguments yield a continuous 1-1 onto map h from the space X/R s, which
is compact, to the space f(X), which is Hausdorff. Earlier results imply that A is a closed mapping
and therefore a homeomorphism.n

Important examples

Throughout this discussion D™ will denote the set of all points z in R™ satisfying |z| < 1 (the
unit n-disk) and S™~! will denote the subset of all point for which |z| = 1 (the unit (n — 1)-sphere).

We start with the first example at the top of this unit; namely, the circle S* is homeomorphic
to the quotient of [0,1] modulo the equivalence relation R whose equivalence classes are the one
point sets {t} for ¢ € (0,1) and the two point set {0,1}. The construction of a homeomorphism is
fairly typical; one constructs a continuous onto map from [0.1] to S* for which the inverse images
of points are the equivalence classes of R. Specifically, let f be the map [0,1] — S defined by

f(t) = exp(2mit).

Non-Hausdorff quotients. We have already mentioned that one can find equivalence relations
on Hausdorff spaces for which the quotient spaces are not Hausdorff. The example we shall consider
is one with only finitely many equivalence classes: Take the equivalence relation A on the real line
R whose equivalence classes are all positive real, all negative reals and zero (one verbal description
of this relation is that two real numbers are A-related if and only if one is a positive real multiple
of another. Then there are three equivalence classes that we shall call +, — and 0, and the closed
subsets are precisely the following:

0, R/A, {0}, {+, 0}, {—, O}
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Since the one point subsets {£} are not closed in this topology, it is not Hausdorff. Since the
quotient topology is the largest topology such that the projection map is continuous, it follows that
in this case there is NO Hausdorff topology on R/.A for which the projection

m4:R—R/A

is continuous.
Exercise 6 on page 145 of Munkres gives an example of a quotient map on a Hausdorff space
where one point subsets in the quotient space are always closed but the quotient is not Hausdorff.

We now come to the constructions of the Mobius strip and Klein bottle. Our description of
the former will be designed to reflect the usual construction by gluing together the two short ends
of a rectangle whose length is much larger than its width. Let K > 0 be a real number, and
consider the equivalence relation Mg on [—K, K] x [—1, 1] whose equivalence classes are the one
point sets {(s,t) } for |s| < K and the two point sets { (—K,—t). (K,t) } for each ¢t € [—1,1].
Mathematically this corresponds to gluing {K} x [—1,1] to {—K} x [-1, 1] with a twist. A M&bius
strip may be viewed as the associated quotient space; note that any two models constructed above
are homeomorphic (one can shrink or stretch the first coordinate; details are left to the reader).
— Similarly, one can construct a Klein bottle from the cylinder [-K, K] x S! by means of the
equivalence relation whose equivalence classes are the one point sets { (s, 2) } for |s| < K and the
two point sets { (—K,z). (K,z) } for each z € S'. Mathematically this corresponds to gluing
{K} x 8 to {—K} x S* by the reflection map that interchanges the upper and lower arcs with
endpoints +1. As in the previous case, the quotient spaces obtained for different values of K are
all homeomorphic to each other.

It is physically clear that one can construct the Mdbius strip in R3, and although one cannot
find a space homeomorphic to the Klein bottle in R? (one needs some algebraic topology to prove
this!), some thought strongly suggests that the Klein bottle should be homeomorphic to a subset of
R* (this has been exploited by numerous science fiction authors). For the sake of completeness (and
to prove that the spaces constructed are Hausdorff) we shall prove these realization statements.

The first step is a simple geometric observation:

LEMMA. For all positive integers p and q the products S? x ST and SP x D9t are homeomorphic
to subsets of RPTIt!,

Proof. We know that S? x R is homeomorphic to the nonzero vectors in RP*! by the map
sending (z,t) to tx because
P(v) = (|v[ v, [v])

is the inverse. Taking products with R? shows that S? x R?*! is homeomorphic to a subset of
RP+9+1 and the lemma follows because the former clearly contains S? x S% and SP x D91 u

The next step is to observe that one can write the spaces in question as quotients of [a,b] X X
fora < b€ R and X =[0,1] or S! depending upon whether we are constructing the Mobius strip
or Klein bottle; it is only necessary to consider the increasing linear homeomorphism from [— K, K|
to [a,b] and substitute a and b for —K and K in the description of the equivalence relations.

The final step is to construct continuous maps from the Mobius strip and Klein bottle to
S! x D? and S x S? respectively such that the inverse images of points in the codomains are
merely the equivalence classes of the defining relations for the quotient spaces. Since maps from
compact spaces into Hausdorff spaces are closed, this means that the images are homeomorphic to
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the quotient spaces of the domains. For the Mobius strip the map f : [0,1] x [-1,1] — S x D? is
given by
f(u,v) = (exp(2miu), v exp(miu) )

and for the Klein bottle the map g : [0,1] x S* — S! x §? is given by
g(u,v) = (exp(2miu), Ay (J (v)))

where J : S — 52 is the standard inclusion of S* = $2 N (R? x {0}) and A, is the orthogonal
rotation matrix

1 0 0
0 cosmu —sin7wu
0 sinmu cosTu

for which A;(J(v)) = J (v). Verifications that these maps have all the desired properties are left
to the reader as an exercise.

Final remark. A very extensive treatment of quotient topologies is given in Chapter VI of
the text, Topology, by J. Dugundji.
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V.2: Sums and cutting and pasting

Most texts and courses on set theory and point set topology do not say much about disjoint
union constructions, one reason being that everything is fairly elementary when one finally has the
right definitions (two references in print are Sections 1.3 and III.4-TI1.7 of Jénich, Topology, and
Section 8.7 of Royden, Real Analysis). However, these objects arise immediately in a wide range
of geometrical and topological constructions of the sort described at the beginning of this unit, in-
cluding some fundamental examples from later courses in this sequence. A brief but comprehensive
treatment seems worthwhile to make everything more precise and to eliminate the need to address
the underlying issues in contexts that also involve more sophisticated concepts.

Disjoint union topologies

We have already defined the disjoin union (or set-theoretic sum) of two sets A and B to be

the set
AHB: (A x {1})U(B>< {2}) < (AUB)x{1,2}

with injection mapsiys : A -+ A[[Bandip: A — A]] B given by ia(a) = (a,1) and i5(b) = (b, 2).
The images of these injections are disjoint copies of A and B, and the union of the images is A[] B.

Definition. If X and Y are topological spaces, the disjoint union topology or (set-theoretic) sum
topology consists of all subsets having the form U [[V, where U is open in X and V is openin Y.

We claim that this construction defines a topology on X [[Y, and the latter is a union of
disjoint homeomorphic copies of X and Y such that each of the copies is an open and closed subset.
Formally, all this is expressed as follows:

ELEMENTARY PROPERTIES. The family of subsets described above is a topology for X [[Y
such that the injection maps ix and iy are homeomorphisms onto their respective images. These
images are pairwise disjoint, and they are also open and closed subspaces of X [[Y. Each injection
map s continuous, open and closed.

Sketch of proof. This is all pretty elementary, but we include it because the properties are so
fundamental and the details are not readily available in the standard texts.

Since X and Y are open in themselves and () is open in both, it follows that X [[Y and
0 =0]]0 are open in X [[Y. Given a family of subsets { U, || Vi, } in the so-called disjoint union
topology, then the identity

et - (g

shows that the so-called disjoint union topology is indeed closed under unions, and similarly the if
Ui [[ V1 and U; [ ] V> belong to the so-called disjoint union topology, then the identity

N @Ilv) = (NIl NWv

i=1,2 i=1,2 i=1,2
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shows that the so-called disjoint union topology is also closed under finite intersections. In partic-
ular, we are justified in calling this family a topology.

By construction U is open in X if and only if ix (U) is open in ix(X), and V is open in Y if
and only if iy (V') is open in iy (Y'); these prove the assertions that ix and 7y are homeomorphisms
onto their images. Since ix(X) = X []0, it follows that the image of ix is open, and of course
similar considerations apply to the image of 7y-. Also, the identity

ix(X) = (X]_[Y) — iy (Y)

shows that the image of ix is closed, and similar considerations apply to the image of iy.
The continuity of ix follows because every open set in X [[Y has the form U ][]V where U
and V are open in X and Y respectively and

i (v[Iv) = v

with similar conditions valid for 7y. The openness of ix follows immediately from the identity
ix(U) = U]] 0 and again similar considerations apply to iy. Finally, to prove that iy is closed,
let F C X be closed. Then X — F' is open in X and the identity

ix(F)=F[J0= (X]_[Y) - ((X —F)HY)
shows that ix (F') is closed in X [[Y’; once more, similar considerations apply to iy .=

IMMEDIATE CONSEQUENCE. The closed subsets of X [[Y with the disjoint union topology
are the sets of the form E || F where E and F are closed in X and Y respectively.m

If the topologies on X and Y are clear from the context, we shall generally assume that the
X ]]Y is furnished with the disjoint union topology unless there is an explicit statement to the
contrary.

Since the disjoint union topology is not covered in many texts, we shall go into more detail
than usual in describing their elementary properties.

FURTHER ELEMENTARY PROPERTIES. (i) If X andY are discrete, then so is X [[Y.
(13) If X and Y are Hausdorff, then so is X [[Y.
(13) If X and Y are homeomorphic to metric spaces, then so is X [[Y.

() If f: X > W and g: Y — W are continuous maps into some space W, then there is a
unique continuous map h: X [[Y — W such that heix = f and heiy =g.

(v) The spaces X [[Y and Y [ X are homeomorphic for all X and Y. Furthermore, if Z is a
third topological space then there is an “associativity” homeomorphism

(XHY)HZ%XH(YHZ)

(in other words, the disjoint sum construction is commutative and associative up to homeomor-
phism).

Sketches of proofs. (i) A space is discrete if every subset is open. Suppose that E C X []Y.
Then E may be written as A][[ B where A C X and B C Y. Since X and Y are discrete it follows
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that A and B are open in X and Y respectively, and therefore E = A[[ B is open in X [[Y. Since
FE was arbitrary, this means that the disjoint union is discrete.

(13) If one of the points p, ¢ lies in the image of X and the other lies in the image of Y, then the
images of X and Y are disjoint open subsets containing p and ¢ respectively. On the other hand,
if both lie in either X or Y, let V and W be disjoint open subsets containing the preimages of p
and ¢ in X or Y. Then the images of V and W in X [[Y are disjoint open subsets that contain p
and ¢ respectively.

(731) As noted in Theorem 20.1 on page 121 of Munkres, if the topologies on X and Y come
from metrics, one can choose the metrics so that the distances between two points are < 1. Let dx
and dy be metrics of this type.

Define a metric d* on X [[Y by dx or dy for ordered pairs of points (p,q) such that both
lie in the image of ix or iy respectively, and set d*(p,q) = 2 if one of p, g lies in the image of ix
and the other lines in the image of iy. It follows immediately that d* is nonnegative, is zero if and
only if p = ¢ and is symmetric in p and ¢g. All that remains to check is the Triangle Inequality:

d*(p,r) <d*(p,q) +d"(g,7)

The verification breaks down into cases depending upon which points lie in the image of one
injection and which lie in the image of another. If all three of p, g, lie in the image of one of the
injection maps, then the Triangle Inequality for these three points is an immediate consequence of
the corresponding properties for dx and dy. Suppose now that p and r lie in the image of one
injection and ¢ lies in the image of the other. Then we have d*(p,7) < 1 and

d*(p,q) +d*(¢,r) =2+2=4

so the Triangle Inequality holds in these cases too. Finally, if p and r lie in the images of different
injections, then either p and ¢ lie in the images of different injections or else ¢ and r lie in the images
of different injections. This means that d*(p,) = 2 and d*(p,q) + d*(¢,7) > 2, and consequently
the Triangle Inequality holds for all ordered pairs (p, ).

(tv) Define h(z,1) = f(z) and h(y,2) = g(y) for all z € X and y € Y. By construction
heix = f and heiy = g, so it remains to show that h is continuous and there is no other continuous
map satisfying the functional equations. The latter is true for set theoretic reasons; the equations
specify the behavior of A on the union of the images of the injections, but this image is the entire
disjoint union. To see that h is continuous, let U be an open subset of X, and consider the inverse
image U* = h=}(U) in X []Y. This subset has the form U* = V [[W for some subsets V C X
and W C Y. But by construction we have

V=ix'(U") =ix k' (U) = f71(U)
and the set on the right is open because f is continuous. Similarly,
W =i (U) = iy' 7N (U) = g7 (U)

so that the set on the right is also open. Therefore U* = V [[W where V and W are open in X
and Y respectively, and therefore U* is open in X [[Y, which is exactly what we needed to prove
the continuity of h.

(v) We shall merely indicate the main steps in proving these assertions and leave the details to
the reader as an exercise. The homeomorphism 7 from X [[Y to Y [[ X is given by sending (z, 1)
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to (z,2) and (y,2) to (y, 1); one needs to check this map is 1-1, onto, continuous and open (in fact,
if 7xy is the map described above, then its inverse is 7y x). The “associativity homeomorphism”
sends ( (z,1),1) to (z,1), ((y,2),1) to ((y,1),2), and (z,2) to ((z,2),2). Once again, one needs to
check this map is 1-1, onto, continuous and open.m

COMPLEMENT. There is an analog of Property (iv) for untopologized sets.

Perhaps the fastest way to see this is to make the sets into topological spaces with the discrete
topologies and then to apply (¢) and (iv).m

Property (iv) is dual to a fundamental property of product spaces. Specifically, oredered pairs
of maps from a fixed object A to objects B and C' correspond to maps from A into B x C, while
oredered pairs of maps going TO a fixed object A and coming FROM objects B and C correspond
to maps from B[] C into A. For this reason one often refers to B[] C as the coproduct of B and
C (either as sets or as topological spaces); this is also the reason for denoting disjoint unions by
the symbol ][, which is merely the product symbol [| turned upside down.

Copy, cut and paste constructions

Frequently the construction of spaces out of pieces proceeds by a series of steps where one
takes two spaces, say A and B, makes disjoint copies of them, finds closed subspaces C and D
that are homeomorphic by some homeomorphism A, and finally glues A and B together using
this homeomorphism. For example, one can think of a rectangle as being formed from two right
triangles by gluing the latter along the hypotenuse. Of course, there are also many more complicated
examples of this sort.

Formally speaking, we can try to model this process by forming the disjoint union A]] B and
then factoring out by the equivalence relation

T~Yy<=>zr=1Yy Or

z=14(a), y=1ig(h(a)) for somea € A or
y=1a(a), z =1ig(h(a)) for some a € A.

It is an elementary but tedious exercise in bookkeeping to to verify that this defines an equivalence
relation (the details are left to the reader!). The resulting quotient space will be denoted by

A | B
h:C=D
As a test of how well this approach works, consider the following question:

Scissors and Paste Problem. Suppose we are given a topological space X and closed subspaces
A and B such that X = AUB. If we take C = D = ANB and let h be the identity homeomorphism,
does this construction yield the original space X ?

One would expect that the answer is yes, and here is the proof:

Retrieving the original space. Let Y be the quotient space of A]] B with respect to the
equivalence relation, and let p : A[[ B — Y be the quotient map. By the preceding observations,
there is a unique continuous map f : A[[B — X such that fecis and feip are the inclusions
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A C X and B C X respectively. By construction, if u ~ v with respect to the equivalence relation
described above, then f(u) = f(v), and therefore there is a unique continuous map h : Y — X such
that f = heop. We claim that A is a homeomorphism. First of all, h is onto because the identities
hep°is = inclusionyg and h°p°ip = inclusiong imply that the image contains A U B, which is
all of X. Next, h is 1-1. Suppose that h(u) = h(v) but u # v, and write u = p(u’), v = p(v’).
The preceding identities imply that A is 1-1 on both A and B, and therefore one of u’,v" must lie
in A and the other in B. By construction, it follows that the inclusion maps send u’ and v’ to
the same point in X. But this means that u’ and v’ correspond to the same point in A N B so
that v = p(u’) = p(v') = v. Therefore the map h is 1-1. To prove that h is a homeomorphism,
it suffices to show that h takes closed subsets to closed subsets. Let F' be a closed subset of Y.
Then the inverse image p~!(F) is closed in A]] B. However, if we write write h(F) N A = P and
h(f) N B = Q, then it follows that p~1(F) = i4(P) Uig(Q). Thus is(P) = p~1(F) Nia(A) and
i5(Q) = p~}(F)Nip(B), and consequently the subsets i 4(P) and i(Q) are closed in A]] B. But
this means that P and @) are closed in A and B respectively, so that PUQ is closed in X. Therefore
it suffices to verify that h(F) = PUQ. But if z € F, then the surjectivity of p implies that z = p(y)
for some y € p~1(F) = ia(P) Uig(Q); if y € ia(P) then we have

h(z) = h(p(y)) = f(y) = feialy) =y

for some y € P, while if y € ig(Q) the same sorts of considerations show that h(z) = y for some
y € Q. Hence h(F) is contained in PU Q. On the other hand, ify € P or y € @ then the preceding
equations for P and their analogs for @) show that y = h(p(y)) and p(y) € F for y € PUQ, so that
P U Q is contained in h(F') as required.u

One can formulate an analog of the scissors and paste problem if A and B are open rather
than closed subset of X, and once again the answer is that one does retrieve the original space.
The argument is similar to the closed case and is left to the reader as an exercise.

Examples. Many examples for the scissors and paste theorem can be created involving
subsets of Euclidean 3-space. For example, as noted before one can view the surface of a cube as
being constructed by a sequence of such operations in which one adds a solid square homeomorphic
to [0,1]? to the space constructed at the previous step. Our focus here will involve examples of
objects in 4-dimensional space that can be constructed by a single scissors and paste construction
involving objects in 3-dimensional space.

1. The hypersphere S3 C R* is the set of all points (x,y, z,w) whose coordinates satisfy the
equation
Py + 2 +w? = 1

and it can be constructed from two 3-dimensional disks by gluing them together along the boundary
spheres. An explicit homeomorphism

D3 U D3 — §°
id(S2)

can be constructed using the maps

fﬂ:(xayaz) = (37,%2, \/1 -2 — y2 - ,22)

on the two copies of D3. The resulting map is well defined because the restrictions of fi to S2 are
equal.
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2. We shall also show that the Klein bottle can be constructed by gluing together two Mobius
strips along the simple closed curves on their edges. Let g+ : [-1,1] — S! be the continuous 1-1
map sending ¢ to (£v1—¢2,¢). It then follows that the images Fy of the maps idjg,17 x [-1,1]
satisfy F + UF_ = [0,1] x S* and F; N [0,1] x {-1,1}. If ¢ : [0,1] x S* — K is the quotient
projection to the Klein bottle, then it is relatively elementary to verify that each of the sets ¢(FL)
is homeomorphic to the Mobius strip (look at the equivalence relation given by identifying two
points if they have the same images under ¢°g.) and the intersection turns out to be the set
©(F4) N@(F-), which is homeomorphic to the edge curve for either of these Mbius strips.

Disjoint unions of families of sets

As in the case of products, one can form disjoint unions of arbitrary finite collections of sets
or spaces recursively using the construction for a pair of sets. However, there are also cases where
one wants to form disjoint unions of infinite collections, so we shall sketch how this can be done,
leaving the proofs to the reader as exercises.

Definition. If Aisaset and { X, | « € A } is a family of sets indexed by A, the disjoint union
(or set-theoretic sum)
I .

acA
is the subset of all
(z,a) € (U Xa) x A
a€S
such that z € X,.

This is a direct generalization of the preceding construction, which may be viewed as the
special case where A = {1,2}. For each € A one has an injection map

ig: Xg = [[ Xa
a€A

sending z to (z,3); as before, the images of ig and i, are disjoint if 8 # 7 and the union of the
images of the maps i, is all of [ X,.

Notation. In the setting above, suppose that each X, is a topological space with topology T,,.
Let >, T be the set of all disjoint unions [[_, U, where U, is open in X, for each c.

As in the previous discussion, this defines a topology on [, X,, and the basic properties can

be listed as follows:

[1] The family of subsets Y, Ty defines a topology for [ [, X« such that the injection maps i, are
homeomorphisms onto their respective images. the latter are open and closed subspaces of [, Xa,
and each injection is continuous, open and closed.

[2] The closed subsets of || X with the disjoint union topology are the sets of the form || F where
F, is closed in X, for each .

[3] If each X, is discrete then so is [], Xa.
(4] If each X, is Hausdorff then so is [ [, Xq.
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[5] If each X, is homeomorphic to a metric space, then so is [], Xa.

[6] If for each a we are given a continuous function f : X, — W into some fized space W, then
there is a unique continuous map h: [, Xo = W such that hei, = fo for all a.

The verifications of these properties are direct extensions of the earlier arguments, and the
details are left to the reader.s

In linear algebra one frequently encounters vector spaces that are isomorphic to direct sums
of other spaces but not explicitly presented in this way, and it is important to have simple criteria
for recognizing situations of this type. Similarly, in working with topological spaces one frequently
encounters spaces that are homeomorphic to disjoint unions but not presented in this way, and in
this context it is also convenient to have a simple criterion for recognizing such objects.

RECOGNITION PRINCIPLE. Suppose that a space Y is a union of pairwise disjoint sub-
spaces X, each of which is open and closed in'Y. Then'Y is homeomorphic to [], Xa,.

Proof. For each a € A let j, : X, — Y be the inclusion map. By [6] above there is a unique
continuous function

J:HXa—>Y

such that Jei, = j, for all . We claim that J is a homeomorphism; in other words, we need to
show that J is 1-1 onto and open. Suppose that we have (z4, @) € i4(X,) and (2z5,08) € ig(Xp)
such that J(z,, @) = J(23, ). By the definition of J this implies i, (z4) = i3(25). Since the images
of i, and ig are pairwise disjoint, this means that o = 3. Since i, is an inclusion map, it is 1-1,
and therefore we have z, = z3. The proof that J is onto drops out of the identities

J (H Xa> =J (Uia(Xa)) =J T ((a(Xa) = Jia(Xa) =Y .
(83 « « (83
Finally, to prove that J is open let W be open in the disjoint union, so that we have
W =[] Ua
«

where each U, is open in the corresponding X,,. It then follows that J(W) = U, U,. But for each
«a we know that U, is open in X, and the latter is open in Y, so it follows that each U, is open in
Y and hence that J(W) is open.m
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