VI. Spaces with additional properties

This unit is essentially a continuation of Unit III, and it deals with two main issues:

(1) Topological properties of spaces that are not compact but still have some important prop-
erties in common with compact spaces (open subsets of R" are particularly important
examples in this connection).

(2) Recognition of topological spaces that come from metric spaces. We shall concentrate on
questions involving spaces constructed from reasonable pieces and merely state the general
results with references to Munkres for the proofs.

In a ten week beginning graduate course it is not possible to cover everything about topological
spaces that is useful in a broad range of mathematical contexts and/or for further courses in
geometry and topology. Two particularly worthwhile topics of this sort are paracompact spaces
(Munkres, § 41) and the compact-open topologies on spaces of continuous functions (Munkres, § 46).
Another interesting topic, known as dimension theory (Munkres, § 50), deals with the following
natural question: How can one use topology to define the dimension of a topological space (as an
integer > —1 or 0o) such that the topological dimension of R™ is precisely n? It seems reasonable
to expect that R™ and R"™ are not homeomorphic if m # n, and such a definition would yield this
as a simple corollary. Proper mappings are another important topic that definitely would be worth
discussing; these mappings are discussed at a number of points in Munkres (where they are called
perfect maps), and the files proper.* in the course directory contain further information.

An extremely comprehensive listing of properties of topological spaces, along with theorems
and examples to describe the logical interrelationships between the concepts, is contained in the
book, Counterexamples in Topology, by L. A. Steen and J. A. Seebach; the reference charts at the
end are particularly helpful for obtaining a good overview of this area. Another book containing
a very substantial amount of information on different properties of topological spaces is the text,
Topology, by J. Dugundji.

In analysis one considers a large variety of topological vector spaces (each one point subset
is closed, and both addition and scalar multiplication are continuous), and questions about the
metrizability of these spaces (and the properties of such metrics) arise naturally. This topic is
discussed specifically in Chapter 1 of Rudin, Functional Analysis.

VI.1: Second countable spaces

(Munkres, § 30)

We have already noted that continuous functions from the unit interval to a Hausdorff space
are completely determined by their restrictions to the rational points of the interval. In fact, this
property holds for all subsets of Euclidean spaces. The proof of this depends upon the existence of
a countable dense subset and the fact that the topology comes from a metric. There are two useful
equivalent characterizations of such metric spaces, and one of the conditions implies the other two
for arbitrary topological spaces.
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Definitions. If X is a topological space then X is said to be
(7) separable if it has a countable dense subset,
(17) second countable (or to satisfy the second countability axiom) if there is a countable base
for the topology (i.e., a countable family B of open sets such that every open set is a union
of sets in B,
(791) Lindeldf (or to have the Lindelof property) if every open covering has a countable subcov-
ering.

The logical relations between these concepts are given as follows:

THEOREM. A topological space that is second countable is also separable and Lindeldf, and a
metric space that is either separable or Lindelof is also second countable.

In particular, all three concepts are equivalent for metric spaces. Examples exist to show that
separable or Lindel6f spaces need not be second countable, and for arbitrary topological spaces
there is no relation between separability and the Lindel6f property (there are examples where each
is true and the other is false).

The book, Counterezamples in Topology, by Steen and Seebach, is a standard reference for
examples of topological spaces which have one property but not another.

Implications of second countability

We shall begin by showing that second countability implies the other properties.

Separability. Let B = {U;,Us, --- } be a countable base for the topology, and form the countable
subset A C X by picking a point a; € U; for each i. To show that A is dense in X we need to
show that every open subset of X contains a point in A. Since every open set W C X is a union
of sets in B there is at least one U; that is contained in W. We then have a; € U; C W. Therefore
A=X.

Lindelaf property. Once again let B = {U;,Us, --- } be a countable base for the topology. Given
an open covering U = { W, } of X, let
By = {V1,Va, --- }

be the (countable) family of all basic open sets that are contained in some element of W. It follows
that By is an open covering of X (because X is a union of the W, and each W, is a union of sets
in By). If for each j we pick a(j) such that V; C W) it follows that

WO = {Wa(l)a Wa(Z)a o }

is a countable subcovering of W.a

For the time being we shall simply note that R™ is an example of a separable metric space;
a countable dense subset is given by the subset Q™ of points whose coordinates are all rational
numbers. The results below will show that R™ and its subspaces also have the other two properties.

Second countability behaves well with respect to some standard operations on topological
spaces:

PROPOSITION. A subspace of a second countable space is second countable, and the product
of two (hence finitely many) second countable spaces is second countable.

95



This is stated and proved as Theorem 30.2 on page 191 of Munkres.

The reverse implications for metric spaces

We shall show that each of the other two properties implies second countability for metric
spaces. The first of these implications will prove that R™ is a separable metric space.

Separable metric spaces are second countable. Let A = {aj,a2, --- } be a countable dense subset
and consider the countable family of open sets Wy, , = Ni/pm(arn). Given an open set U in X and
a point p € X, let € > 0 be chosen so that N.(z) C U. Choose m and n such that 1/2m < e and
d(z,a,) < 1/2m. If we set W(z) = W,,, it then follows that z € W (z) C U, and consequently
we also have U = U, W (z), which shows that the countable family W = { W,,, ,, } is a base for the
topology.m

COROLLARY. The space R™ is a second countable space.m

The preceding implications have the following useful consequence.
PROPOSITION. If X is a separable metric space and A C X, then A is also separable.m

This follows because separable metric implies second countable and the latter implies separable.
One can construct examples of separable topological spaces that have nonseparable subspaces.

COROLLARY. Fwvery subset S of R™ has a countable dense subset.m

Note that the subset S might not contain any points at all from some arbitrary countable
dense subset D C R”.

Proof that Lindelof metric spaces are second countable. For each positive integer n let U,, be the
family of all sets Ny, (z) where z runs through all the points of X. Then U, is an open covering
of X and consequently has a countable subcovering W,,. We claim that W = U, W, is a base for
the metric topology.

Let V be an open subset of X and let z € V. Then there is some positive integer M such
that Ny,,(z) C V for all n > M. Choose an open set N'(z) from W, such that z € N'. It then
follows that N'(x) C Ny, (z) C V, and therefore we have U, N'(z) = V, which shows that W is a
countable base for the metric topology on X.

A compact space is automatically Lindelof, and therefore we have the following consequence
for compact metric spaces:

PROPOSITION. A compact metric space is second countable and has a countable dense subset.n
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VI.2: Compact spaces — I1

(Munkres, §§ 26, 27, 28)
This unit contains some additional results on compact spaces that are useful in many contexts.

Sequential compactness for metric spaces

We have shown that infinite sequences in compact metric spaces always have convergent sub-
sequences and noted that the converse is also true. Here is a proof of that converse:

THEOREM. If X is a metric space such that every infinite sequence has a convergent subse-
quence, then X is compact.

Proof. The idea is to show first that X is separable, then to use the results on second countability
to show that X is Lindel6f, and finally to extract a finite subcovering from a countable subcovering.

Proof that a metric space is separable if every infinite sequence has a convergent subsequence.
Let € > 0 be given. We claim that there is a finite collection of points Y'(¢) such that the finite
family
{Ne(y) [y €Y(e) }

is an open covering of X. — Suppose that no such finite set exists. Then one can recursively
construct a sequence { z,, } in X such that

Ne(@n) 0 (|J Ne(e)) =0.

i<n

By construction we have that d(z,,z,) > € if p # ¢, and therefore { z,, } has no Cauchy (hence no
convergent) subsequence.

If A=U,Y(1/n) then A is countable and for every § > 0 and z € X there is a point of A
whose distance to z is less than §, and therefore A is dense in X.

Proof that open coverings have finite subcoverings. Since X is separable and metric, it is
second countable, and therefore it also has the Lindelof property. Therefore given an open covering
W of X we can fine a countable subcovering U = {U;,Us, --- }. We need to extract a finite
subcovering from U.

For each positive integer n let
E, =X — (U Un) .
i<n

Then each E, is closed and E,, D E, 4 for all n. If some E, is empty then the first n sets in U
form a finite subcovering; in fact, if some E, is finite, then there still is a finite subcovering (take
the first n sets in & and add one more set from U for each point in the intersection). Therefore the
proof reduces to finding a contradiction if one assumes that each F,, is infinite.

If each E, is infinite, then one can find a sequence of distinct points y, such that y; € E; for
each j. The assumption on X implies that the infinite sequence { y; } has a convergent subsequence,
say {yk(j) }- Let y* be the limit of this subsequence. By construction, y, € E, if m > n, and
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because each F; is closed it follows that y* € Ej ;) for all j. Since the sequence of closed sets { E;, }
is decreasing, it follows that

B = ) B

n j

and that y* belongs to this intersection. But by construction the set N, E,, is empty because U is a
countable open covering for X, and therefore we have a contradiction; it follows that &/ must have
a finite subcovering, and therefore X must be compact.m

Wallace’s Theorem

The following result is related to the proof that a product of two compact spaces is compact,
and it turns out to be extremely useful in many contexts.

WALLACE’S THEOREM. Let X andY be topological spaces, let A and B be compact subsets
of X and Y, and let W be an open subset of X x Y that contains A and B. Then there are open
subsets U and V of X and Y respectively such that AC U, BCV and

AxB Cc UxV Cc W.

Proof. Given p = (z,y) € A x B one can find open sets U, and V,, in X and Y respectively such
that x € Uy, y €V, and U, X V, CW.

For a fixed b € B the open sets U, x V,, define an open covering of the compact subset A x {b}
and hence there is a finite subcovering associated to the family of sets

Ab = {Up) X Vor), =+ Upaav)) X Vipmeo)) -

If we take Vb# to be the intersection of the sets V) and Ub# to be the union of the sets Uy ), it
follows that
Ax{b} Cc UF xVF c W

for each b € B

The family of open subsets {V,',# } in Y defines an open covering of the compact subspace b,
and therefore there is a finite subcovering associated to some family of sets

F={U},, x Vi,

# #
by Uiy X Vel -

If we now take U to be the intersection of the sets UgééE and V to be the union of the sets Vbﬁ),

1)
it follows that
AxB Cc UxV c W

as required.m
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VI.3: Separation axioms

(Munkres, §§ 31, 32, 33, 35)

In some sense the definitions for topological spaces and metric spaces present an interesting
contrast. While it is clear that one does not need the full force of the properties of a metric
space to prove many basic results in point set theory, it is also apparent that one needs something
more than the austere structure of a topological space to go beyond a certain point. Up to this
point we have introduced several conditions like the Hausdorff Separation Property which suffice
for proving a number of basic results. This property is just one of a list of increasingly stronger
properties that lie between a topological space with no further conditions at all and a topological
space that comes from a metric space. There are many important examples of topological spaces in
topology, geometry and analysis that are not homeomorphic to metric spaces (e.g., many infinite-
dimensional objects in algebraic topology and the so-called weak topologies on Banach spaces),
and such objects are one motivation for introducing concepts somewhere between metric spaces
and arbitrary topological spaces. A second motivation, which can be viewed as interesting for its
own sake as well as its usefulness in certain situations, is the following:

METRIZABILITY PROBLEM. What sorts of topological conditions are necessary or suffi-
cient for a topological space to be homeomorphic to a metric space?

We shall consider this problem in some detail as the final topic of the course.

The T; conditions

The traditional way of organizing the separation properties that may or may not hold in a
topological space involves a list of statements T; where the subscript is some rational number and
the strength of the condition increases with the index (so if i > j then T; = T;). We shall only
deal with the statements for i =0, 1, 2, 3, 3% and 4. Definitions for certain other values of 7 (and
a great deal more) may be found online in the web sites, the paper and the reference to Munkres
listed below:

www.wikipedia.org/wiki/Separation_axiom — This list is pretty comprehensive.

at.yorku.ca/i/d/e/b75.htm — This points to electronic copies of a paper, “Definition
bank” in general topology, by G. V. Nagalagi, and one has many choices of format for
downloading this paper. The listing of properties T; for i < 1 is particularly extensive.

The paper, Espaces Tl% , by Carlos A. Infantozzi [Proceedings of the International Sym-
posium on Topology and its Applications (Budva, 1972), pp. 116-122; Savez Drustava
Mat. Fiz. i Astronom., Belgrade, 1973], deals with the case i = 1%.

Exercise 6(b) on page 213 of Munkres describes a natural candidate for Tg.

To answer obvious questions about the choice of terminology, the symbolism T; comes from
the German word Trennung, which means separation (the terms were introduced in the classic book
of Alexandroff and Hopf on topology, which was published in the nineteen thirties and written in
German). In any case, here are the most important of the separation properties for this course:

Definitions.  (T0) A topological space X is said to be a Tq space if for each pair of points
z, y € X there is an open set containing one but not the other.
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(T1) A topological space X is said to be a T; space if for each z € X the one point set {z}
is closed in X.

(T2) A topological space X is said to be a T4 space if it has the Hausdorff Separation Property.

(T3) A topological space X is said to be a Tg space if it is a Ty space and is also regular:
Given a point x € X and an open set U containing z, there is an open subset V' such that

zeVcCcVcU

or equivalently that if z € X and F is a closed subset not containing X, then there are disjoint
open subsets V and W such that z € V and F C W.

(T3%) A topological space X is said to be a T3% space if it is a T'; space and is also completely
reqular: Given a point £ € X and a closed subset /' C X not containing z, there is a continuous
function f : X — [0,1] such that f(z) =0and f =1 on F.

(T4) A topological space X is said to be a T4 space if it is a Ty space and is also normal:
Given a closed subset £ C X and an open set U containing z, there is an open subset V such that

EcvcVcU

or equivalently that if F and F' are disjoint closed subsets of X, then there are disjoint open subsets
V and W such that E CV and FF C W.

Most of the implications
if i>j,then T} = T;

are clear or have already been established, the main exceptions involving the case i = 3%. To see
that Ty 1 implies Tg, given £ and F' let f be the continuous function and take V and W to be
f71(10,3)) and f=1((3,1]) respectively. The proof that T4 implies Tg 1 is considerably more
difficult and in fact relies on the following deep result:

URYSOHN’S LEMMA. If X is a Ty space, then X is T4 if and only if for each pair of disjoint
closed subspaces E, F C X there is a continuous function f : X — [0,1] such that f =0 on E and
f=1onF.

The proof of the ( <= ) implication is similar to the proof that T3 implies T3; the reader
should fill in the details.

The remaining implication is an immediate consequence of this result. We shall not need the
result in this generality (a simple proof for metric spaces is given below); Section 33 of Munkres
(pages 207-212) give a detailed proof.s

There are two things one would like for the preceding list of separation properties. First of all,
every metric space should be a T4 space. Second, to avoid redundancies one would like to know
that if i >j then T; and T; are not logically equivalent; i.e., there is an example of a topological
space that is a T space but not a T; space. Some examples appear in Munkres, and there are
many other examples of this sort in the book by Steen and Seebach. The proof that metric spaces
are T4 turns out to be fairly straightforward.

PROPOSITION. FEvery metric space is a T4 space.
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PROOF. We have already shown that metric spaces are Ty (and even T3). To prove the normality
condition of Urysohn’s Lemma involving continuous functions, consider the function

_ d(z, E)
fle) = d(z,E) +d(=z, F)

We know that the distance functions in the formula are continuous, so the formula will define a
continuous real valued function if the denominator is nonzero. But since E and F' are disjoint
it follows that for each z € X either z ¢ E or z ¢ F is true (and maybe both are true). This
means that at least one of the numbers d(z, E), d(z, F) is positive and hence their sum is always
positive. Since the numerator is nonnegative and less than or equal to the denominator, it follows
that f(z) € [0,1] for all z € X. If z € E then d(z, E) = 0 and therefore f(z) = 0, while if z € F
then d(z, F) = 0 and therefore f(z) = 1.u

Compaciness and separation azioms

The following result has appeared on many examinations. When combined with Urysohn’s
Lemma it provides a powerful means for constructing continuous real valued functions on compact
Hausdorff spaces with far-reaching consequences, particularly in functional analysis. Stronger forms
of this result exist for spaces that are Ty and paracompact (a condition implied by compactness; see
Section 41 on pages 252-260 of Munkres, and particularly see Theorem 41.1 on pages 253-254 for an
analog of the theorem below). The result for paracompactness also has far-reaching consequences
in topology and differential geometry.

THEOREM. If a topological space is compact and T, it is also T4.

Proof. We shall give a quick proof that uses Wallace’s Theorem. The more traditional proof is
given by combining Lemma 26.4 on page 166 of Munkres (with the reasoning given on the previous
page), which shows that compact and Tg implies T3, with Theorem 32.3 on page 202 of Munkres,
which shows that compact and T3 implies T4.

Recall that a space X is Hausdorff if and only if the diagonal Ax is closed in X x X. If A and B
are disjoint subsets of a set S, it is immediate that ANB = @ is true if and only if (Ax B)NAx = 0.
Combining these observations, we see that if £ and F' are disjoint closed subspaces of a Hausdorff
space X then F x F' is contained in the open set X x X — Ax.

If X is compact, then so are F and F, and therefore by Wallace’s Theorem it follows that
there are open subsets U,V C X such that

EXFCUxVCXxX-Ax.

This means that U and V are disjoint open subsets containing F and F respectively.m

References for examples

As noted before, if ¢ < j it is not always easy to find examples of topological spaces that are
T; but not T;, and the examples in Munkres are spread out over Sections 31 through 33. Therefore
we shall give an index to those examples here.
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When analyzing the logical relations among separation properties it is often useful to consider
the following related questions:

(1) If A is a subspace of a T; space, is A also a Ty space?
(1) If X and Y are T; spaces, is their product X xY also a T; space?

In particular, if ¢ < j and either (1) or (2) is true for T; spaces but not for T; spaces, then it
follows that T; is strictly weaker than Tj. Specifically, the following answers to (1) and (2) show
that T; is strictly weaker than T4 if 7 < 4:

FACTS. The answers to both (1) and (2) are positive for Ty spaces if i < 4 and negative for Ty
spaces,

Given that the proofs for ¢ < 4 are fairly direct, the failures of these results to hold for T4 are
a bit surprising at first. However, they become less surprising in light of Urysohn’s Lemma, which
has many far-reaching implications (compare the first paragraph of Section 32 in Munkres).

It is relatively straightforward to show that the answers to both (1) and (2) are positive for
To and T, and the proofs are left to the reader as exercises. It is also straightforward to produce
examples to show that Tg does not imply Ty and T; does not imply T5. In the first case, one can
use the Sierpiniski space whose underlying set is {0, 1} and whose open subsets are the empty set,
the set itself and {0}. In the second case one can use the finite complement topology on an infinite
set. We shall now list the references to Munkres for the remaining cases.

Subspaces and products of T; spaces are T; if i = 1,2, 3, 3%. — The first two cases are
treated in Theorem 31,2 on pages 196-197 of Munkres, and the other case is treated in Theorem
33.2 on pages 211-212 of Munkres.n

Subspaces and products of T4 spaces are not necessarily T4. — The reference here is a
combination of Theorem 32.1 and Example 2 on pages 202-204 of Munkres.n

Ty does not imply Tg. — The reference is Example 1 on pages 197-198 of Munkres.n
T3 does not imply Tg1. — The reference is Exercise 11 on pages 214 of Munkres.n
Tg1 does not imply T4. — One can extract this from Example 2 on pages 203-204 either

by takinzg a subspace of a T4 space that is not T4 or by taking a product of T4 spaces that is not
T4. Since T4 implies Ty 1 and this property is preserved under taking subspaces and products, it
follows that the spaces in the given example are Ty 1 but not T4 .=

As we have already noted, the book by Steen and Seebach is a comprehensive summary of
many further results and examples for the logical interrelationships of various special properties of
topological spaces.

Non-Hausdor{f topologies

As noted in Munkres and numerous other references, the addition of the Hausdorff Separation
Property to the axioms for a topological space yields a class of objects that are more general than
metric spaces but are relatively closed to one’s geometric intuition in many ways. One additional
motivation is that most of the spaces that are important to mathematicians satisfy the Hausdorff
Separation Property. In some respects the examples of non-Hausdorff spaces that one sees in an
introductory topology course may be viewed as instructive, showing that non-Hausdorff spaces
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often have very strange properties and pointing out that in some cases this property does not
automatically hold, even if one makes simple constructions starting with Hausdorff spaces.

However, there are mathematical situations in which non-Hausdorff spaces arise, and in some
branches of mathematics these examples turn out to be extremely important. One particularly
noteworthy class of examples is given by the Zariski topologies from algebraic geometry. Here
is the basic idea in the most fundamental cases: Let k be an algebraically closed field (every
nonconstant polynomial factors completely into a product of linear polynomials, as in the complex
numbers). A set A C k" is said to be Zariski closed if A is the set of solutions for some finite
system or polynomial equations in n variables (where the coefficients lie in k). It is an easy exercise
in algebra to show that the family of all such subsets satisfies the conditions for closed subsets of a
topological space (see nearly any textbook on algebraic geometry or commutative algebra), and the
resulting topological structure is called the Zariski topology. Other objects in algebraic geometry
admit similar notions of Zariski topologies, but the latter quickly reach beyond the scope of this
course. If n = 1 then the Zariski topology on k is the finite complement topology; since algebraically
closed fields are always infinite (this follows immediately from the theory of finite fields), the Zariski
topology on k is not Hausdorff although it is T;. Similarly, most other Zariski topologies are not
Hausdorff (and not necessarily even T1). Two of the exercises for earlier sections (one on irreducible
spaces, one on noetherian spaces) contain elementary results that arise naturally when one works
with Zariski topologies; in fact, k™ with the Zariski topology is both irreducible and noetherian.
The introduction of these topological structures in the nineteen forties was an elementary but
far-reaching step in formulating the present day mathematical foundations for algebraic geometry.
Dieudonné’s book on the history of algebraic geometry provides some further information on these
points.

During the past 25 to 30 years, non-Hausdorff topological spaces have also been used in certain
areas of theoretical computer science. Although many of the basic ideas in such studies come from
topology and branches of the “foundations of mathematics,” the basic structures of the work and
its goals differ substantially from those of the traditional core of mathematics, and the relevant
spaces are much less geometrically intuitive than the Zariski topologies.

Two introductory references for this material are Section 3.4 of the Book, Practical Foundations
of Mathematics, by P. Taylor, and a survey article by M. W. Mislove, Topology, Domain Theory
and Theoretical Computer Science (Topology Atlas Preprint #181), which is available online at
http://at.yorku.ca/p/a/a/z/15 .htm~. The book Domains and Lambda Calculi, by R. Amadio
and P.-L. Curien, presents this material specifically in connection with its applications to topics
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VI.4: Local compactness and compactifications

(Munkres, §§ 29, 37, 38)

As in the case of connectedness, it is often useful to have a variant of compactness that reflects
a basic property of open subsets in Euclidean spaces: Specifically, if U is such a set and = € U,
then one can find an € > 0 such that the closure of N.(z) is compact; in fact if we choose § > 0
such that Ns(z) C U, then the compact closure property will hold for all € such that ¢ < ¢.

Definitions. A topological space X is said to be locally compact in the weak sense if for each
z € X there is a compact subset N such that z € Int(N) C N.

A topological space X is said to be locally compact in the strong sense if for each x € X and
each open subset U containing z there is a compact subset N such that z € Int(N) C N C U.

Clearly the second condition implies the first, but in many important cases these concepts are
equivalent:

PROPOSITION. If X is a Hausdorff space, then X is locally compact in the weak sense if and
only if X is locally compact in the strong sense. Furthermore, in this case if x € X and U is an
open set containing x, then there is an open set W such that t €¢ W C W C U and W is compact.

Proof. It is only necessary to show that the weak sense implies the strong sense and that the
additional condition holds in this case. Suppose that X islocally compact in the weak sense and that
x € U where U is open in X. Let N be the compact set described above, and let V =Int(N)NU.
Then z € V where V is open in N. Since the latter is regular (it is compact Hausdorff), there is
an open subset W C V such that

z € W C Closure(W,N) C V.

The set W is in fact open in X (because W = N N W’ where W' is open in X and W =
WnNV =VnW since W C V C N), Furthermore, since N is closed in X it follows that
Closure(W, N) = W N N must be equal to W.

Not all subspaces of a locally compact Hausdorff space are locally compact. For example, the
set of all rational numbers in the real line is not locally compact. (Proof: Suppose that a € Q and
that B C Q is an open subset in the subspace topology such that BN Q is compact. Without loss
of generality we may assume that B is an open interval centered at a. The compactness assumption
on the closure implies that B N Q is in fact a compact, hence closed and bounded, subset of the
real line. This is impossible since there are many irrational numbers that are limit points of B.).
However, a large number of interesting subspaces are locally compact.

PROPOSITION. If X is a locally compact Hausdorff space in the strong sense and Y is either
an open or a closed subset of X, then'Y is locally compact (and Hausdorff).

Proof. The proof for open subsets follows because if Y is open in X and U is open in Y, then U
is open in X; one can then use the strong form of local compactness to prove the existence of an
open subset of U with the required properties.

Suppose now that Y is closed, let y € Y, and let U be an open subset of Y containing y. Write
U =Y NU; where U; is open in X. Then there is an open set W7 in X such that

.’L‘EW1CW1CU1
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and W; is compact. Let W = W1 NY; then
r € WcCcWinY cU

where W1 NY is compact because it is closed in X and contained in the compact subspace Wj.
Since

Closure(W,Y) = WnY c W nY
it follows that Closure(W,Y") is compact and that

z € W C Closure(W,)Y) ¢ WinNY CcU

and therefore Y is locally compact in the strong sense.

COROLLARY. If X is locally compact Hausdorff and B = U N F, where U C X is open and
F C X is closed, then B is locally compact.

Proof. By the proposition we know that F' is locally compact Hausdorff. Since B = U N F is
open in F', the proposition then implies the same conclusion for B.=

COROLLARY. IfU is open in a compact Hausdorff space, then U is locally compact.

Proof. A compact Hausdorff space is clearly locally compact in the weak sense and hence locally
compact in the strong sense. Therefore U must also be locally compact in the strong sense.

COROLLARY. If X is a locally compact Hausdorff space, then X is Tg.

The defining conditions for locally compact Hausdorff in the strong sense imply that such a
space is regular. In fact, one can go further using Urysohn’s Lemma, to prove that a locally compact
Hausdorff space is in fact completely regular (hence it is Ty 1 )

Note. A locally compact Hausdorff space is not necessarily T4. For example, Example 2 on
pages 203-204 of Munkres actually describes an OPEN subset of a compact Hausdorff space that
is not T4, and by the proposition above this subset is locally compact Hausdorff.

Compactifications of noncompact spaces

Frequently in mathematics it is helpful to add points at infinity to a mathematical system to
deal with exceptional cases. For example, when dealing with limits in single variable calculus this
can be done using an extended real number system that consists of the real line together with two
additional points called +0o. In some other cases, it is preferable to add only a single point at
infinity; for example, this is necessary if one wants to have something equal to

and in the theory of functions of a complex variable it is also natural to have only one point at
infinity.

In other situations it is desirable to add many different points at infinity. Projective geometry
is perhaps the most basic example. In this subject one wants to add a point at infinity to each line
in such a way that two lines are parallel if and only if their associated extended lines contain the
same point at infinity. This turns out to be useful for many reasons; in particular, it allows one to
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state certain results in a uniform manner without detailed and often lengthy lists of special cases
(however, you do not actually get something for nothing — one must first invest effort into the
construction of points at infinity in order to obtain simplified arguments and conclusions).

In all these cases and many others, one basic property of the enriched spaces with added
points at infinity is that these enriched spaces are compact and contain the original spaces as dense
subspaces. In order to simplify the discussion but include the most interesting examples, we shall
only consider (original and enriched) spaces that are Hausdorff.

Definition. If X is a topological space, then a compactification of X is a pair (Y, f) where Y
is compact and f : X — Y is a continuous map that is a homeomorphism onto a dense subspace.
Two compactifications (Y, f) and (Z, g) are equivalent if there is a homeomorphism h : Y — Z such
that hef =g.

The compactification (Y, f) is said to dominate the compactification (Z, g) if there is a contin-
uous map h: Y — Z such that he f = g, and in this case we write (Y, f) > (Z, g).

There is also a corresponding notion of abstract closure in which there is no compactness
assumption on Y, and one can define equivalence and domination in a parallel manner. Given an
abstract closure (Y, f) of X, its residual set is the subset Y — f(X).

Here are some basic properties of Hausdorff compactifications and abstract closures.

PROPOSITION. (i) If (Y, f) and (Z,g) are Hausdor[f compactifications or abstract closures of
the same Hausdorff space X, then there is at most one h: Y — Z such that he f = g.

(13) If (Y, f) and (Z,g) are Hausdorff compactifications such that (Y, f) > (Z,g) and h is the
continuous map defining the domination, then h is onto.

(131) There is a set of equivalence classes of Hausdorff compactifications or abstract closures of a
Hausdorff spaces such that every Hausdorff compactification of X is equivalent to a compactification
in that set.

(1v) The relation of domination makes the equivalence classes of Hausdorff compactifications
or abstract closures into a partially ordered set.

PROOF. Proof of (i). Let h:Y — Z be a homeomorphism such that he f = g. If b’ is another
such map then the restrictions of h and b’ to f(X) are equal. Since f(X) is dense and the set of
points where two functions into a Hausdorff space are equal is a closed subset of the domain, it
follows that this subset is all of Y and thus h = A’ everywhere.

Proof of (i1). By construction the image of h contains the dense subspace g(X), and since
h(Y') is compact and Z is Hausdorff it also follows that h(Y") is closed. Therefore we must have
hY) = Z.

Note that the analogous result for abstract closures is false; by definition the identity map on
a Hausdorff space X is an abstract closure in the sense of the definition, and in general there are
many abstract closures (Y, f) such that f(X) #Y.

Proof of (iii). ~ We need to introduce some set-theoretic notation. Given a set S and a

nonempty family of subsets M C P(5), a family A C P(S) is called a filter provided
[a] f Be A, BCC and C € M then C € A,
[b] if B€ Aand C C Athen BNC € A.

Formally, this concept is dual to the concept of an ideal in a Boolean algebra where union
and intersection are interpreted as addition and multiplication, but for our purposes the important
point is that in a topological space X the set N, of all open subsets containing a given point z € X
is a filter.
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Given a family of subsets B C M that is closed under finite intersections, the smallest filter
B* containing B (or the filter generated by B) consists of B together with all subsets containing
some element of B.

If X is a Hausdorff topological space then F(X) will denote the set of all filters of open subsets
in X. For Hausdorff spaces it is immediate that p # g implies N}, # N,. Given a 1-1 continuous
map g from a Hausdorff space X to another Hausdorff space Y, there is an associated map f* from
Y to F(X) that sends y to the filter generated by f*~1(N,).

We claim that f* is 1-1 provided f is 1-1, Y is Hausdorff and f(X) is dense in Y. Suppose
that u,v € Y. Then there are disjoint open subset U,V € Y such that v € U and v € V It suffices
to show that f=1(U) € f*(u)— f*(v) and f=1(V) € f*(v) — f*(u). In fact, if we can prove the first,
then we can obtain a proof of the second by reversing the roles of u and v and U and V throughout
the argument.

By construction we have f~1(U) € f*(u) so verification of the claim reduces to showing that
f~YU) & f*(v). Assume that we do have f~1(U) € f*(v). Then there is some open set W in Y
containing v such that f=*(W) C f~1(U), and it follows that we also have f~*(W nV) c f~1(U).
Since f~Y(U) N f~1(V) = f~Y(U NV) = ( this means that f~*(W N V) must be empty. To see
that this is impossible, note that f(X)NW NV # (§ because v € W NV and f(X) is dense in Y.

It follows that Y can be identified with a subset of F(X). By construction the latter is a
subset of P(X) and therefore the number of points in Y is at most the cardinality of P(P(X)).
Since each topology on Y is a family of subsets of Y it follows that there is a specific bound on the
cardinality of equivalence classes of Hausdorff spaces that contain a homeomorphic copy of X as a
dense subspace.

Proof of (iv). Reflexivity is trivial (take the identity map on the compact space) and tran-
sitivity is also trivial (take the composite of the mappings on the compact spaces). Suppose now
that (Y, f) > (Z,¢g) and vice versa. Then there are continuous maps h : Y - Zand k: Z - Y
such that ¢ = he f and f = k°g. Therefore we have f = k°hef and g = h°k°g, so that k°h and
idy agree on the dense subset f(X) and h°k and idz agree on the dense subset g(X). These imply
that h and k are inverses to each other and hence that the two compactifications are equivalent.m

The Alexandroff one point compactification

In general there are many compactifications of a Hausdorff space. For example, there are many
closed bounded subsets of the plane that contain open dense subsets homeomorphic to R? 2 (0,1)?
(these include solid rectangles with an arbitrary finite number of open holes removed; see any of
the files swisscheese.* for more about this). Furthermore, a Hausdorff compactification does not
necessarily inherit certain “good” properties of the original space; in particular, Example 3 on page
238 of Munkres, shows that a compactification of the real line is not necessarily locally connected
or path connected.

In view of the examples in the previous paragraph and many others, it seems advisable to
begin with simple questions about the structure of the partially ordered set of equivalence classes of
Hausdorff compactifications. Two obvious questions are whether this set has maximal or minimal
elements. It turns out that every Tg 1 space has a maximal compactification (the Stone-Cech
compactification) that is unique up to equivalence. This object is constructed directly in Section
38 of Munkres.

Note. Since a compact T2 space is T4 and every subspace of a Ty 1 space is again T3% , it
follows that a topological space has a Hausdorff compactification if and only if it is T3%.
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Our main purpose here is to consider the minimal type of compactification where the added set
Y — f(X) consists of a single point. If X = R" there is a standard and important visualization of
this compactification; Y turns out to be homeomorphic to the n-dimensional unit sphere in R?*1.

If a space X has a Hausdorff compactification (Y, f) such that Y — f(X) is a single point (or
more generally a closed subset!) then by a corollary stated above the space X must be locally
compact. This will explain our assumption in the basic construction.

Definition. Let X be a locally compact Hausdorff topological space that is not compact, and let
oo be some point not in X (for example, in the standard axiomatic model for set theory one has
X ¢ X so we can take oo = {X}). The one point or Alezandroff compactification of X is the set
X* = X U{oo} with open sets given as follows:

(1) “Bounded open sets” that are open subsets of X itself.
(2) “Open neighborhoods of co” that are unions {oo} U X — K where K is a compact subset
of X.

It is necessary to verify that this family of sets defines a topology on X. The empty set is
open in X* because it is open in X, and X*® is open because it is equal to {oo} U X — ) and
() is compact. Suppose that we have a family of open sets in X*, and split it into the bounded
open sets U, and the open neighborhoods of infinity {oo} U X — Kz where Kz is compact. Some
elementary set-theoretic manipulation shows that the union of this family is either the bounded
open set N, U, if there are no open neighborhoods of infinity in the family or else it is

foo} U X~ (x-0)

where U = U, U, and K = Ng Kz (note that an arbitrary intersection of compact subsets in a
Hausdorff space is compact). The details of the set-theoretic algebra are described on the top of
page 184 of Munkres. The latter also gives the arguments to verify that the family of open subsets
defined above is closed under (finite) intersection.

CLAIM. The inclusion of X in X°® is a compactification.

Indication of proof. We need to show that the inclusion of X in X*® is 1-1 continuous and open
(this will show it is a homeomorphism onto its image), that the image of X is dense in X*® and that
X* is compact Hausdorff. A proof that X* is compact Hausdorff appears near the bottom of page
184 of Munkres.

To see that X is dense in X*, it suffices to verify that oo is a limit point of X. Let

{oo} U (X-K)

(with K compact) be an open set containing the point at infinity. Since X is noncompact we must
have X — K # (), and this proves the limit point assertion.

By construction the inclusion map from X to X* is 1-1 and open; we need to show it is also
continuous. This follows because the inverse image of a finite open set is just the set itself, and the
latter is open in X by construction, while the inverse image of a open neighborhood of infinity has
the form X — K where K is compact; since compact subsets are closed it follows that the inverse
image X — K is open in X .u

The uniqueness of this one point compactification is given by the following result:

PROPOSITION. If X is locally compact Hausdorff and (Y, f) is a Hausdorff compactification
such that Y — f(X) is a single point, then there is a unique homeomorphism h: X®* —'Y such that
hlX = f.

108



The proof of this is given as Step 1 on the bottom of page 183 in Munkres.n

One point compactifications of Fuclidean spaces

Since the spaces R™ are some of the most fundamental examples of locally compact spaces
that are not compact, it is natural to ask if some additional insight into the nature of the one point
compactification can be obtained in these cases. The following result shows that the one point
compactification of R™ is homeomorphic to the n-dimensional sphere

S"={zeR"!||z>=1}.

PROPOSITION. Lete, 1 € R"! be the unit vector whose last coordinate is 1 (and whose other
coordinates are zero). Then there is a canonical homeomorphism from the subspace S™ — {ep4+1}
to R™.

Sketch of proof. The homeomorphism is defined by stereographic projection, whose physical
realization is the polar projection map of the earth centered at the south pole. Mathematically this
is given as follows: View R” as the linear subspace spanned by the first n unit vectors, and given
a point v € S™ such that v # e, 41 let w be the unique point of R™ such that w — e, lies on the
straight line joining e, 1 to v. The explicit formula for this map is

2

e Gl )

flv) =2ep41 +

and illustrations of this appear in the files sterepic2.x* in the course directory.

The stereographic projection map f is continuous by the formula given above, and elementary
considerations from Euclidean geometry show that this map defines a 1-1 correspondence between
S™ — {ep+1 } and R™. In order to give a rigorous proof that f is a homeomorphism, it suffices to
verify that the map

g:R"—)S"—{en_H}

defined by the formula
4

W : (w - 2en+1)

g(w) =epy1 =

is an inverse to f; i.e., we have g(f(v)) =v and f(g(w)) =w forallv € S" —{e,+1 } and w € R".
In principle the verification of these formulas is entirely elementary, but the details are tedious and
therefore omitted.m

The following important geometrical property of stereographic projection was essentially first
established by Hipparchus of Rhodes (c¢. 190 B.C.E. — ¢. 120 B.C.E.):

CONFORMAL MAPPING PROPERTY. Leta,(:[0,1] = R" be differentiable curves with
a(0) = B(0) and &'(0),5'(0) # 0. Then the image curves gea and g° 3 in S™ satisfy the conditions
g°a(0) = g°B(0) and [g°a]'(0),[g°B]'(0) # 0, and

angle(c/(0), 8'(0)) = angle([g°a]'(0),[g°A]'(0)) -

This result will be established in the appendix on stereographic projection and inverse geom-
etry.
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V1.5: Metrization theorems

(Munkres, §§ 39, 40, 41, 42)

As noted before, it is natural to ask for necessary and sufficient conditions that a topology on
a space comes from a metric. Most point set topology texts, including Munkres, cover this material
in considerable detail.

Our approach here is somewhat different; namely, we want to show that compact Hausdorff
spaces built out of compact subsets of finite-dimensional Euclidean spaces are also homeomorphic to
subsets of such spaces. Examples of such objects arise in many geometric and topological contexts.
Our results deal with subsets of finite-dimensional Euclidean spaces and the general metrization
results involve finding homeomorphic copies of a space in various infinite-dimensional spaces, so the
results given here are not actually contained in the more general ones that are stated and proved
in Munkres.

Since a metric is by definition a real valued continuous function on X x X, it is not surprising
that the proofs of metrization theorems rely heavily on constructing continuous real valued functions
on a space. Therefore it is necessary to begin with results about continuous functions on compact
metric spaces.

Constructions for continuous functions

The basis for all these constructions is Urysohn’s Lemma, which is true for arbitrary T4 spaces
and was verified earlier in the notes for metric spaces: Given two nonempty disjoint closed subsets
E and F in X, there is a continuous function f : X — [0,1] such that f =0 on E and f =1 on
F.

Notation. A Hausdorff space will be called a UL-space if Urysohn’s Lemma is true. We have
already noted that this is equivalent to the T4 condition and that every metric space is a UL-space.

The following basic result is in fact logically equivalent to Urysohn’s Lemma;:

TIETZE EXTENSION THEOREM. Let X be a UL-space, let A be a closed subset of X and
let f : A —[0,1] be a continuous function. Then f extends to a continuous function from all of X
to [0,1].

It is easy to prove a converse result that X is a UL-space if for every closed subset A C X and
every continuous function A — [0, 1] there is an extension to X, for if E' and F are closed subsets
of X, then the function that is 0 on £ and 1 on F' is continuous and defined on a closed subset;
the extension to X shows that the UL-space condition is fulfilled.

Proof. Since the closed intervals [0,1] and [—1, 1] are homeomorphic, we may as well replace the
former by the latter in the proof. The main idea of the proof is to construct a sequence of functions
{¢n } such that

lim p,|A=f
n—00
in BC(A), and the basis for the recursive step in the construction is the following:
LEMMA. Letr >0 and let h: A — [—r,r] be continuous. Then there is a continuous function

g:X — [—3r,3r] such that || g|A—h ||< 2r.
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Proof of Lemma. Let B = h_l([—r, —%r]) and C = h_l([%r, r]), so that B and C' are disjoint
1

closed subsets of A. Take g : X — [—gr, %T] to be a continuous function such that g = —%r on B
and g = 37 on C. The verification that || g|A — h ||< 2r separates into three cases depending upon

whether a point a € A lies in B, C or

W ([=5m 57])
(at least one of these must hold). In each case one can show directly that |g(a) — h(a)| < 2r.m

Proof of the Tietze Extension Theorem continued. Start off with f : A — [—1,1], and apply

the lemma to get a function g; : X — [—%, %] with the properties stated in the lemma. Consider
now the function f; = f — (g1]A), which is a continuous function that takes values in [—2, 2]. Let

g2 be the continuous function on X associated to fi as in the lemma, define f5 to be f1 — (g2]|4),

and note that
9\ 2
1520 (5) -

We can now continue recursively to define sequences of continuous real valued functions g, on X
and f, = fn—1 — (gn|A) such that

lonll < G)-C) 7 imn < ()7

.fn = .f - Zgn|A
=1

Note that we have

for all positive integers n.

We want to define a continuous function G(z) by an infinite series
2 n
n

and this will be possible if

Yo lgnl
n
converges. But the latter sum is dominated by the convergent series
1 2\ n—1
3 2(5)

so there is no problem with constructing the continuous function G. To see that G|A = f, note
that G|A =), gn|A and for each n we have that

2\ N

17 =@l =161 < (3)

so that we also have f =3 g,|A. Finally, G maps X into [—1,1] because

Gl < gz(;) ~ 1.
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COROLLARY. Let X be a UL-space, let A be a closed subset of X and let f : A — (—1,1) be
a continuous function. Then f extends to a continuous function from all of X to (—1,1).

Proof. By the theorem we have a continuous function G : X — [—1,1] such that G = f on A.
We need to modify this function to something that still extends f but only takes values in (—1,1).

Let D C X be G~ ({-1,1}). By construction D and A are disjoint closed subsets, so there
is a continuous function k : X — [0,1] that is 0 on D and 1 on A. If we set F' equal to the product
of G and k, then it follows that F' takes values in (—1,1) and F|A = f.=

COROLLARY. Let X be a UL-space, let A be a closed subset of X and let f : A — R"™ be a

continuous function. Then f extends to a continuous function from all of X to R™.

Proof. If n =1 this follows from the previous corollary because (—1,1) is homeomorphic to R
(specifically, take the map h(z) = z/(1—|z|)). If n > 2 let f1, --- , f,, be the coordinate functions
of f, and let F; be a continuous extension of f; for each i. If F' is defined by the formula

F(x) = (F1(.’II), aFn(‘T))

then F|A = f.u

Piecewise metrizable spaces

The following result provides a useful criterion for recognizing that certain compact Hausdorff
spaces that are homeomorphic to subsets of Euclidean spaces.

PROPOSITION. Let X be a compact Hausdorff space such that X is a union of closed subsets
A U B, where A and B are homeomorphic to subsets of some finite-dimensional Euclidean space(s).
Then X is also homeomorphic to a subset of some finite-dimensional Euclidean space.

Proof. We may as well assume that both A and B are homeomorphic to subsets of the same Eu-
clidean space R™ (take the larger of the dimensions of the spaces containing A and B respectively).
Let f: A— R"™ and g : B — R" be 1-1 continuous mappings (hence homeomorphisms onto their
images).

Let Fy: B— R" and G : A — R" be continuous functions that extend f|A N B and g|AN B
respectively. We can then define F,G : X — R" by piecing together f and Fy on A and B in the
first case and by piecing together Gy and g on A and B in the second.

We shall also need two more continuous functions to construct a continuous embedding (a 1-1
continuous map that is a homeomorphism onto its image) on X = AU B. Let a : X — R be
defined by dg(z, AN B) on B and by 0 on A; this function is well defined and continuous because
the two definitions agree on A N B. Note also that a(z) = 0 if and only if z € A. Similarly, let
B : X — R be defined by d4(z, AN B) on A and by 0 on B; as before, this function is well defined,
and furthermore (z) = 0 if and only if z € B.

Define a continuous function
h:X 5R"xR" xR x R~ R?"*?

by the formula



By construction A is continuous, and since X is compact the map h will be an embedding if and
only if h is 1-1. Suppose that h(y) = h(z). If y € A then we know that a(y) = 0 and therefore we
must also have a(z) = 0 so that y and z both belong to A. Likewise, if h(y) = h(z) and y € B
then we must also have z € B. We then also have F(y) = F(z) and G(y) = G(z). If y € A, then
the fact that z also lies in A combines with the first equation to show that y = z, while if y € B,
then the fact that z also lies in B combines with the first equation to show that y = z. In either
case we have that h(y) = h(z) implies y = z.m

COROLLARY. If X is a compact Hausdorff space that is a finite union of the closed metrizable
subspaces A; that are homeomorphic to subsets of some finite-dimensional Euclidean space, then X
s also homeomorphic to subsets of some finite-dimensional Euclidean space and hence metrizable.m

In particular, this gives an alternate proof of Theorem 36.2 on pages 226227 of Munkres (the
details are left to the reader, but here is a hint — show that the space in the theorem is a finite
union of subspaces homeomorphic to closed disks in R").u

The next result is also useful for showing that certain compact Hausdorff spaces are homeo-
morphic to subsets of Euclidean spaces. Some preliminaries are needed.

Definition. If X and Y are topological spaces, and f : X — Y is continuous, then the mapping
cylinder My of f is the quotient of Y IT (X x [0, 1]) modulo the equivalence relation generated by
the condition

(z,1) e X x {1} ~ f(r)eY.

The equivalence classes of this relation are the one point sets { (z,t) } for t < 1 and the hybrid sets

{7 ({}) x {1} -
This space is a quotient of a compact space (the disjoint union of two compact spaces) and therefore

is compact.

PROPOSITION. If X and Y are homeomorphic to subspaces of R™ for some n, then the
mapping cylinder My is also homeomorphic to a subspace of some Euclidean space.

Outline of proof. The details are left to the reader as an exercise, but the underlying idea is as
follows. Start out with embeddings o and 8 of X and Y in R™ and construct a map

H: M;—R"xRxR" 2R
that is equal to (0,0,5(y) ) on Y and given by
(1 =t)a(z),1—t,t-B(f(z)))

on X x [0,1]. This yields a well defined map on M because it is consistent with the equivalence
relation, and the proof that h is a homeomorphism onto its image reduces to showing that A is 1-1;
the latter is an elementary exercise.m

Example. In algebraic topology one often encounters the following construction called
adjoining or attaching a k-cell: Given a space A and a continuous map f : S¥~! — A, we define

B:AUfek

to be the disjoint union of A and the disk D* modulo the equivalence relation generated by z € S¥—1
with f(z) € A for all z. Let E C B be the set of all points that come from AU{ z € D¥ | |z| > 1 }
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and let F' be the image of %Dk in B. Then FE is homeomorphic to My, and then one can apply
both results above to show that B is homeomorphic to a subset of some Euclidean space if A4 is
homeomorphic to a compact subset of some Euclidean space.

A finite cell complex (also called a finite CW complex) is a compact Hausdorff space that is
obtained from a one point space by a finite number of attachings of k;-cells for varying values of i.
We allow the case where i = 0 with the conventions that S~! = () and adjoining a 0-cell is simply
the disjoint union of the original space with a one point space. The preceding results imply that
each finite cell complex is homeomorphic to a subset of some Euclidean space.

An alternate approach

The metrizability proofs given above are direct and complete, and they show that the examples
are in fact homeomorphic to subsets of ordinary finite dimensional Fuclidean spaces. Another
approach to proving the metrizability of quotients of compact metrizable spaces is by means of the
Hausdorff metric on the family of closed subsets. The precise definitions and formal properties of
the Hausdorff metric are given in Exercises 7 and 8 on pages 280281 of Munkres. As noted in part
(a) of Exercise 7, this metric makes the set of all closed subsets of a metric space X into another
metric space that Munkres denotes by #.

PROPOSITION. Let X be a compact metric space, and let Y be a T quotient space of X.
Then Y is metrizable.

The two classes of examples above are homeomorphic to quotient spaces of compact metric
spaces (presented as disjoint unions of other compact metric spaces), and in each case every equiv-
alence class is a closed subset of the disjoint union. It follows that the quotient spaces are T;
in this case and therefore the proposition implies metrizability of the space constructed from the
pieces (although it does not yield the embeddability in some Euclidean space if each piece is so
embeddable). The need for the T; condition is illustrated by a variant of an earlier example: Take
X = [-1,1] and consider the equivalence relation z ~ y if and only if z and y are positive real
multiples of each other; as in Section 1 of Unit V, the quotient space is a non-Hausdorff space
consisting of three points (in fact, this quotient space is not T; because the equivalence classes of
—1 and +1 are not closed subsets).

Proof of Proposition. If Y is Ty then every equivalence class in X is a closed subset, and
therefore we have a map F : X — H sending z to f~({f(x)}). If we can show that F is
continuous, then the metrizability of Y may be established as follows: Let m : X — Y be the
quotient projection. Since w(u) = w(v) implies F(u) = F(v) there is a unique continuous map
g 'Y — H such that FF = gew. By construction ¢ is a 1-1 continuous map from the compact
space Y (recall it is the image of a compact space) to the metric space H, and therefore g is a
homeomorphism onto its image.

To verify that F is continuous, let € > 0, let D denote the Hausdorff metric on H. What does
it mean to say that D( F(u), F(v)) < €? If one defines U(A,e) C X as in Munkres to be the set
of all points whosed distance from a subset A is less than ¢, then the contidition on the Hausdorff
metric is that F(u) C U(F(v),e) and F(v) C U(F(u),e). Suppose now that d(u,v) < e where
as usual d denotes the original metric on X. Then the distance from u to F(v) is less than ¢ and
likewise the distance from v to F(u) is less than . Therefore we have F(u) C U(F(v),e) and
F(v) C U(F(u),¢), and as noted above this implies D( F'(u), F(v)) < € so that F' is uniformly
continuous (in fact, Lipschitz). We can now use the argument of the first paragraph of the proof
to show that Y is metrizable.n
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General metrization theorems

We begin with an early and powerful result. The proof is given in Theorem 34.1 on pages
215-218 of Munkres, with important preliminary material appearing in Theorem 20.5 on pages
125-126 and Theorem 32.1 on pages 200-201.

URYSOHN METRIZATION THEOREM. Let X be a second countable space. Then X is
homeomorphic to a metric space if and only if X is Tg.m

In fact, the argument shows that X is homeomorphic to a subspace of a compact metric space
if and only if X is T3 and second countable, for one constructs an embedding into a countable
product of copies of [0, 1] and the latter is compact by Tychonoff’s Theorem (alternatively, one can
use Exercise 1 on page 280 of Munkres to prove compactness of the product).

The necessary and sufficient conditions for the metrizability of arbitrary topological spaces
require some additional concepts.

Definition. A family of subsets A = { A, } in a topological space X is said to be locally finite if
for each z € X there is an open neighborhood U such that U N A, # 0 for only finitely many A,.

Ezamples. Aside from finite families, perhaps the most basic examples of locally finite families
are given by the following families of subsets of R”.

(1) For each positive integer n let A, be the closed annulus consisting of all points z such
that n — 1 < |z| < n. Then for each y € R™ the set Ny/5(y) only contains points from at
most two closed sets in the family (verify this!).

(2) For each positive integer n let V,, be the open annulus consisting of all points z such that
n —2 < |z| < n+ 1. The details for this example are left to the reader as an exercise.

Locally finite families are useful in many contexts. For example, we have the following result:

PROPOSITION. If X is a topological space and A = { Ay} is a locally finite family of closed

subsets (not necessarily finite), then U, A, is also closed.

Proofs of this and other basic results on locally finite families of subsets appear on pages 112
and 244-245 of Munkres.m

Here is the ultimate result on metrization.

NAGATA-SMIRNOV METRIZATION THEOREM. A topological space is metrizable if
and only if it is Tg and there is a base that is a countable union of locally finite families (also
known as a o-locally finite base).

This is Theorem 40.3 on page 250 of Munkres, and the a proof including preliminary observa-
tions is contained in Section 40 on pages 248-252. Note that the Urysohn Metrization Theorem is
an immediate consequence of this result because a countable base is a countable union of families
such that each has exactly one element.n

A somewhat different metrization theorem due to Smirnov is in some sense the ultimate result
on finding a metric on spaces built out of metrizable pieces: A Hausdorff space is metrizable if it
is paracompact and locally metrizable. The converse to this result is also true and is due to A.
H. Stone (metrizable => paracompact). Further information on these results appears in the files
smirnov.* in the course directory.
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