Category Theory

Category theory is ageneral mathematicd theory of structures, systems of structures and
relationships between systems of structures. It provides aunifying and econamic mathematicd
modeling language. Category theory lends itself very well to extrading and generali zing
elementary and eseential notions and constructions from many mathematicd disciplines (and
thusit is haf-jokingly known as “abstrad norsense”). Thanks to its general nature, the language
of caegory theory enables one to “transport” problems from one aeaof mathematics, via
suitable transformations known as “functors,” to ancther area where the solution may be eaier
to find; thereisa dea parall é with the Laplacetransform, which all ows one to find solutions to
differential equations by translating an analytic problem into a purely algebraic question.
Although caegory theory was originally developed to ded more predsely with relationships
between topdogy and algebra, it soon kecane more than a cnwvenient language and evolved into
afieldinitself. It iscurrently used in awide range of areas within mathematics as well as sme
areas of computer science and mathematicd physics. Infad, some mathematicians have used
caegory theory to construct an alternative to set theory as afoundation for mathematics.

Categories

A category attempts to capture the eseenceof a dassof related mathematicd objeds, for
instancethe dassof groups. Insteal of focusing ontheindividual objeds (groups) in the
traditi onal manner, the morphisms — i.e., the structure preserving maps — between these
objedsreceve dmost equal emphasis. In the example of groups, these ae the group
homomorphisms.

Definition. A category € isatriple consisting of the following pieces of data

aclass (or collection) Obj (8 ) of things called the gbjects of the category.

for every two objects A and B aset M or (A, B) of things called morphisms from A to
B. If fisinMor(A, B), wewrite f: A - B.

for every three objects A, B and C abinary operation Mor (B,C) x Mor (A,B) -
Mor (A, C) caled composition of morphisms. The composition of the two morphisms
g:B > Cand f: A Biswrittenas gof orsimplygf.

These are assumed to satisfy the following conditions:

The various sets M or (A, B) are pairwise digjoint (hence the domain A and the
codomain B of a morphism are well defined).



(associativity) If f: A - B, g: B - Candh: C - Dthenwehave h o(go° f)
=(hog)-of.

. (identity) For every object X , there exists aunique morphism 1x : X — X called the
identity morphism for X , such that for every morphism f : A -~ Bwehavelgof
=f=1fol4.

If the class of objects lies inside some set, the category is said to besmall. The two most trivial
examples of (small) categories are the category [lwhich has only one object and one morphism

(the identity map) and the category [ [ lwhich has two objects A, B and morphisms given by

theidentities of A and B plus an additional morphism f : A — B. Many important categories
are not small, but many others are (see a so the definition of locally small categories below).

Examples

One of the interesting features of category theory isthat it provides a uniform treatment of the
notion of structure. This can be seen, first, by considering the variety of examples of categories.
Almost every known example of a mathematical structure with the appropriate structure
preserving map yields a category. However, as indicated by the list below, there are also other
examples of categories; as aways in mathematics, any entity satisfying the conditions given in
the definition is a category.

Each category below is presented in terms of its objects and its morphisms.

« Thecategory Gl’p consisting of al groups together with their group homomorphisms.
The category AD consisti ng of all abelian groups together with their group
homomorphisms.

The category Rin g consisting of all (associétive) rings together with their ring
homomorphisms.

. Thecategory VECt(F) of al vector spaces over thefield F together with their F —
linear transformations.

. Thecategory Set of al sets together with functions between sets.

The category Op-lnt of al open intervalsin therea line with continuous functions.

- Any partially ordered set (P, <) forms a category, where the objects are the members of
P, and the morphisms are arrows pointing from X to Y precisely when X < Y.

Any monoid M (i.e., aset with an associated binary operation and two sided identity)
forms a small category with asingle object M, and where every element of the monoid

isamorphism from M to M (the monoid operation yields the categorical composition of
morphisms).

Any directed graph can be considered as asmall category: the objects are the vertices of
the graph and the morphisms are the paths in the graph. Composition of morphismsis




concatenation of paths (i.e., join them together at the final point of the first path, whichis
merely the same as the first point of the second path).

« If Sisaset, the discrete category on Sisthe small category which has the elements of S
as objects and only the identity morphisms as morphisms.

« Any category Ccanitsalf be considered as anew category in adifferent way: The

objects are the same as those in the original category but the arrows are those of the
original category reversed. Thisis called the dual or opposite category and is denoted by

€OP

If Cand Dae categories, one can form the product category C XD The objects

are pairs consisting of one object from Cand one from .@, and the morphisms are al'so

pairs, consisting of one morphismin Cand onein P, Such pairs can be composed
componentwise.

Special types of mor phisms
Let X be an arbitrary objectin C. A morphism f: A - B in Ciscalled aan

monomorphism if f g; =f g impliesg; = g, for all morphisms gy, g2 : X — A,
epimorphismif g; f =g, fimpliesg; = g for al morphismsg;, g>: B - X,
isomorphism if there exisssamorphismg: B - Awith f g=1gandg f =14,
retract if thereexistsamorphismg : B » Awith g f = 1,4,

retraction if there existsamorphismg: B - Awith f g= 15,
automorphism if f isanisomorphismand A = B.

In many standard categories such as the category of sets and functions or the categories of vector
spaces and linear transformations, monomorphisms turn out to be maps that are one-to-one and
epimorphisms turn out to be maps that are onto (check this out on your own!). Furthermore, in
these categories one also has that the retracts and monomorphisms are the same, and similarly
the retractions and epimorphisms are the same. In an arbitrary category one knows that retracts
and retractions are monomorphisms and epimorphisms respectively (verify this!), but the
converse statements do are false in general (for example, the inclusion of the integers mod 2 in
the integers mod 4 sending 1 to 2 is amonomorphism of abelian groups that is not aretract, and

the projection from the integers mod 4 to the integers mod 2 is an epimorphism of abelian
groups that is not aretraction).

There are contexts in which it is useful to consider categories in which every map is an
isomorphism. Such categories are known as groupoids.

Having defined isomorphisms we can now formulate an extremely useful generalization of the
concept of asmall category. Before doing so we need afew preliminary definitions.



Definition. Let € beacategory; asubcategory of Cisacategory § such that

(1) every object or morphismin Sisaso (respectively) an object or morphism of C R

(2) if amorphism of Clissin J; then so do its domain and codomain as well astheir
identity maps,

(3) if the morphisms f and gliein S'and their compositein Cis defined, then this

compositealsoliesin(f:

Definition. A subcategory S of € issaid to be afull subcateqory if for al objects A and B

ind’ the §'-morphisms from A to B are the same as the ¢?-morphisms from A to B.

In particular, the category of abelian groupsis afull subcategory of the category of all groups.

Definition. A category € issaid to be locally small if thereisasmall full subcategory §
such that every object in eisisomorphictoan object in S

If F isafield, then the category Cof finite-dimensional vector spaces over F (with linear
transformations as the morphisms) is not asmall category, but if Sisthefull subcategory whose
objects are the coordinate spaces F ", then every object in Cis isomorphic to an object in Sand
thus Cis locally small.

It isimportant to note that the morphisms are the crucial structure that characterizes a category
rather than objects. Thus, a category of vector spaces over the real numbers with additive maps
as the morphismsis different from the category of vector spaces over the real numbers with
linear transformations as the morphisms. In particular, the latter will have different properties as
a category when compared to the former (for example, al nonzero finite dimensional vector
spaces are isomorphic in the former but not in the latter!). The previous examples have
something in common: the objects are all structured sets with structure preserving maps.
However, any entity satisfying the conditions given in the definition is a category.

Functors

An important underlying ideain category theory is that when one defines a type of mathematical
object, there should be a corresponding definition of morphisms between objects of the given
type. Needlessto say, this should apply to categories themselves, and functors are the structure-
preserving maps between categories. Many of the “natural” or “canonical” @nstructionsin
mathematics can be expressed as functors.



Definition. A (covariant) functor F from one category € to another category .2 assigns

. toeach object X in € an object F(X) in .2
to each morphism f : X - Y amorphism F(f) : F(X) - F(Y)

such that the following two properties hold:

«  F(1x) = 1(x) for every object X in &,
F(gef) =F(g) ° F(f) for al morphisms f: X - Yandg:Y - Z.

A contravariant functor F between categories Cand Pis afunctor that “turns morphisms

. . . OoP
around.” The quickest way to defineit is as a covariant funtor between C~ ad .@, but due
to the importance of the concept we shall write out the definition more explicitly:

Definition. A contravariant functor F from one category € to another category .2
assigns

. toeach object X in € an object F(X) in 2
- toeach morphism f : X =Y amorphism F(f) : F(Y) - F(X)

such that the following two properties hold:

«  F(1x) = 1(x) for every object X in &,
- F(gof)=F(f) °F(g)foral morphisms f: X - Yandg:Y - Z.

Examples of Functors

Setsto vector spaces. Anexample of acovariant functor from the category of setsto the
category of all real vector spaces may be defined as follows. Given aset A let V(A) be the “real
vector space which has A asabasis.” Formally, an element of V/(A) isarea vaued function v
on A such that v(a) = O for all but finitely many a [1 A, with addition and real multiplication

defined in the usual way. Following standard practice, we shall write atypical element of V(A)
asasum

2t [h

where t; = O for all but finitely many a and the elements of a correspond to the basis elements



(i.e., thefunctions that are 1 at the element a of A and O at all others). If f: A - Bisasat-

theoretic function then there is a unique linear transformation V() : V(A) - V(B) that sends
stof(s). Itisleft asan exercise to verify that this construction defines a covariant functor.

Dual vector space: A lesstrivial example of acontravariant functor from the category of all
real vector spacesto itself is given by assigning to every vector space its dual space and to every

linear map its dual or transpose; specificaly, if fisalinear functiond onVand T : W - Vs
alinear trahsformation, then T* : W* — V* isthelinear transformation sending f to fo T.

Homomor phism groups. To every pair A, B of abelian groups one can assign the abelian
group Hom(A, B) consisting of all group homomorphismsfrom A to B. Thisisafunctor
which is contravariant in the first and covariant in the second argument; i.e., it isa covariant
functor

Ab%Fx Ab = Ab

(where ADb denotesthe category of abelian groups with group homomorphisms as the

morphisms). If both f: A; - Ayandg: By — B, aremorphismsin AD, then the group
homomorphism

Hom(f, g) : Hom(A,, B;) - Hom(A4, By)

isgivenby [Jage [lof. Ifonehddsthefirst variable (i.e., the eelian groupA) fixed,
then ore obtains a @variant functor

Hom(A,-): Ab - Ab

(spedficdly, on ohjedsit sendsthe groupG to HoM(A, G) and onmorphismsit sends h to

Hom(1,, h)) andif one hods the second veriable (i.e., the aelian group B) fixed, then ore
obtains a contravariant functor

Hom(-, B): Ab —» Ab

(spedficdly, on oljedsit sendsthe groupG to Hom(G, B) and onmorphismsit sends h to
Hom(h, 1g)).

Vector spaces of linear transformations: Similar considerations hold for vedor spaces
over afield F and F —linea transformations between them; in this case the set Lin(A, B) of
al li nea transformations from A to B isavedor spaceover F.




Forgetful functors: Consider the functor F : Ring — AD which mapsaring toits

underlying abelian additive group. Morphismsin Rin J (ring homomorphisms) become

morphismsin Ab (abelian group homomorphisms).

Power set functors. Givenasat X, let P[X] denote the set of all subsets of X (i.e., the
power set of X). Thisconstruction leadsto a pair of functors on the category of sets, one of

which is covariant and the other of which is contravariant. Specificaly, if f: X - Y isamap
of sets define

P.[f] : P[X] - P[Y] vytheformua P.[f](A)=fA)OY
for A O X, and similarly define
P[] : P[X] - P[Y] bytheformua P [f] (B)=f""(B)OX

for B LY. Itiseasly verified that these define functors (seethe exercisesin Munkres and the
remarksin the ealier notes on set theory).

Remark. If Sisaset, then T[S] has an algebraic structure given by unions and
intersedions, and these operations make it into atype of system known as a Boolean algebra.

The exercisesin Munkres show that 7 [f] is always a homomorphism of Boolean algebras

(because taking inverse images preserves unions and intersedions), and thus can be viewed as a
contravariant functor from the caegory of setsto a suitably defined caegory of Boolean

agebras. In contrast, the map P. [f] is not necessarily a homomorphism of Bodlean algebras
becaise it does not necessarily preserve intersedions or the unit element, bu it does define a
homomorphism of the monad structure determined by set-theoretic union (where the empty set
isthe identity element), so it can be viewed as a wvariant functor from the cdegory of setsto a
suitably defined category of monads.

Categorical Constructions

Category theory unifies mathematicd structures in ancther, perhaps more far-reading, manner.
Once atype of structure has been defined, it quickly beaomes imperative to determine how new
structures can be onstructed ou of the given ore and hav given structures can be decomposed
into more dementary substructures. For instance, given two sets A and B, set theory all ows usto
construct their cartesian product A X B. For an example of the second sort, given afinite
abelian group, it can be decomposed into a product of some of its subgroups. In bah cases, it is
necessary to know how structures of a cetain kind combine. The nature of these combinations
might appea to be considerably diff erent when looked at from too close. Category theory reveds



that many of these constructions arein fact special cases of objectsin a category with what is
called a"universal property". Indeed, from a categorical point of view, a set-theoretical cartesian
product, adirect product of groups, adirect product of abelian groups, and numerous other such
constructions are all instances of a categorical concept: the categorical product. What

characterizes the latter is auniversal property. Formally, a product for two objects A and B ina
category Cisan object P of € together with two morphisms called the projections

u:P-A and Vv:P_-B

such that the following universal property holds:

For all objects X with pairs of morphisms f: X - Aandg: X - B, thereisa
unique morphism h : X - P suchthat uch=f and voh=g.

Notice that we have defined A product for A and B and not THE product for A and B. Indeed,
products, and in fact all objects with universal properties are defined up to (a unique)
isomorphism. Thus, in category theory the actual process for carrying out a certain construction
isirrelevant, and the important point is the way an object is related to the other objects of the
category by the morphisms going in and the morphisms going out; i.e., how certain structures
can be mapped into or out of it and how it can map its structure into other structures of the same
kind.

Natural transfor mations

Two functorial constructions are often “naturally related” in some sense, and this leads to the
concept of natural transformation, which may be viewed as a “morphism of functors.”

Definition. If F and G are (covariant) functors from the category € to the category .2,
then anatural transformation from F to G associates to every object X in C amorphism #x :
F(X) = G(X)in .2 such that for every morphism f: X - Y in Cwe have

iy ° F(f) = G(f) ° nx.

The two functors F and G are said to be naturally isomorphic if there exists a natural

transformation from F to G such that #x is an isomorphism for every object X in C.

M odification for contravariant functors. If F and G are contravariant functors from

the category C tothe category P , thereisasimilar definition of natural transformation, the
only difference being that the final equation isreplaced by #x ° F(f) = G(f) © #y.




The need to understand natural equivalence was the basic motivation for S. Eilenberg and S.
MacL ane to develop the notions of category theory. Their original objective was to make the
notion of natural equivalence mathematically precise, and of course this was formulated in terms
of natural transformations. In order to give ageneral definition of the latter, they defined the
notion of functor, borrowing the terminology from Rudolf Carnap (atwentieth century
philosopher whose work dealt extensively with the philosophy of science and semantics), and in
order to give ageneral definition of functor, they defined the notion of category, borrowing this
time from Kant and Aristotle.

Examples

Double dual spaces. If F isafield, then for every vector space V over F we have a
“natural” linear evaluationmap €y :V — V** (= the double dual space of V) sending X [0 V
to the linear functional on VV* given by evaluation at X, and thisis an isomorphism of vector
spaces when V is finite-dimensional. These maps are “natural” in the following sense: The
double dual operation is a covariant functor, and the linear transformations determine a natural
transformation from the identity functor to the double dual space functor. In contrast, if V is
finite-dimensional then V isisomorphic to its own dual space V* , but in order to specify an
isomorphism one needs some extra “unnatural” structure like an ordered b asis or, over the real
numbers, an inner product.

Power set functors. Let Sbeaset, and let P, [-] bethe covariant power set functor
described earlier. Consider the function

6s: S - P[9

sending X [0 Sto the singleton set { X }, which is asubset of Sand thus an element of P[S].
The system of such functions can be viewed as a natural transformation

6:1 - P

where | denotes the identity functor on the category of sets, because of the commutativity
condition

By | (f)= P[f] - O«

which holds because the values of both sides at an arbitrary X [ Sareequal to{ f (x)} O Y.



Equivalence of categories

Intuitively, two categories are equivalent if they cannot be distinguished from the standpoint of
category theory.

Definition. Two categories € and .2 are said to be equivalent if there exist covariant
functorsF 1 € —» D and G : D — Csuchthat FGisnaturally isomorphic to 1.9 (where
1 denotesthe identity functor 2D - D which assigns every object to itself and every
morphism to itself) and GF is naturally isomorphic to 1le.

Final Remarks

The discussion above summarizes the el ementary concepts of category theory, but it does not get
into the most important and powerful notions of the subject, including the notion of adjoint
functors, which turns out to play akey role in many mathematical contexts. Such material goes
well beyond what is needed for first year graduate courses.



