More metrics on cartesian products

If (X;,d;) are metric spaces for 1 <4 < n, then in Section II.4 of the lecture notes we defined
three metrics on [, X; whose underlying topologies are the product topology. The purpose of this
note is to explain how one can interpolate a continuous family of metrics between these examples;
for each such metric, the underlying topology will be the product topology.

Throughout this discussion p > 1 will denote a fixed real number.

Let z,y € ][, X;, express them in terms of coordinates as (z1, - ,z,) and (y1, -+ ,yn)
respectively, and define d,, from [], X; x [], X; to R as follows:

d? (z,y) = (Zl di(ﬂﬂz’,yz‘)p)l/p

The cases where p = 1 or 2 were considered in the lecture notes.

It follows immediately that d{?) satisfies all the properties for a metric except perhaps the
fundamentally important Triangle Inequality. The latter is in fact a consequence of the following
basic result:

Minkowski’s Inequality. Suppose that we have u,v € R™ and we write these vectors in
coordinates as (u1, -+ ,up) and (vy, --- ,v,) respectively. Then we have

(3, o) < (3, k) (3, )

Here are some references for a proof of Minkowski’s Inequality:

W. Rudin, Real and Complex Analysis. (Third Edition. Mc-Graw-Hill Series in Higher
Mathematics.) McGraw-Hill, Boston-etc., 1987. ISBN: 0-07-054234-1.

http://www.planetmath.org/encyclopedia/MikowskiInequality.html

The incorrect spelling “Mikowski” needed to reach the planetmath link should be noted; the latter
also gives further links to the closely related Holder Inequality; in fact, one geneerally begins by
proving Hoélder’s Inequality and then derives Minkowski’s inequality from Hoélder’s Inequality.

Holder’s Inequality. Suppose that we have u,v € R™ as above with p > 1, and that we choose
q > 1 such that

1 1
S+ o= 1.
q P

(S et} < ()" - (5, )" -

Since each of the metrics d?? for p = 1,2, 00 defines the product topology, it is natural to
speculate that the same holds for all choices of p, and in fact this is true.

PROPOSITION. For each p > 1, the topology determined by the metric d'?) is the product
topology. Furthermore, the identity map from ([, X;, d(®) to ([1; Xi,d‘#) is uniformly continuous
for all choices of a, B such that 1 < a, 8 < 00.

Then we have



Proof. It suffices to prove the assertion in the second sentence, and the latter reduces to the
special case where one of a, 8 is oo; if we know the result in such cases, we can retrieve the general
case using the uniform continuity of the identity mappings

(fwar) = (a) = (1)

and the fact that a composite of uniformly continuous maps is uniformly continuous.

The uniform continuity statements are direct consequences of the following inequalities for
nonnegative real numbers u‘; for 1 <1 < n:

1/p
max; { u; } < <Z uf) < n-max; {u }

%

One can then apply the argument in the notes to show that the identity maps

1) () 1)

are uniformly continuous (and in fact the § corresponding to a given ¢ can be read off explicitly
from the inequalities!), and of course all composites of maps from this diagram are also uniformly
continuous.m

The limiting case

The following result is the motivation for setting d, equal to the maximum distance between
coordinates:

PROPOSITION. In the setting above we have

do = lim d,.

pP—00

Proof. This reduces immediately to proving the following result: If u € R™ as above then

1/p
max; {[u;[} = lim (Z qu‘\p> -

Let M denote the expression on the left hand side, and for each p > 1 let Y, denote the
value of the expression whose limit we wish to find. Clearly M < Y, for all p because M is
obtained by deleting all but one summand from Y),. However, since |u;| < M for all 4, we also have
Y, < (n- MP)Y? = M -n'/?. Now the limit of the right hand side as p — oo is equal to M, and
thus we have sandwiched Y), between two expressions, one of which is equal to M and the other of
which has a limit equal to M. It follows that the limit of Y, is also equal to M, which is exactly
the claim in the proposition.m

If one graphs the set of all points in r? whose p-diesance from the origin is equal to 1 for varoius
values of p > 1, the result is a collection of closed curves centered at the origin such that the area
enclosed by the curve increases with p and the limit of these curves is the square whose vertices
are the elements of the set {£1} x {£1}.



