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| ntroduction

Mathematicians use alarge number of methods to discover new results — trial and error,
computation o spedal cases, inspired guessng, puli ng results from thin air. The differencein
this and an astrologer, for example, is that we have an acceted method, cdl ed the aiomatic
method,for proving that these results are crred. Proofs give us asurancethat results are
corred. In many cases they aso give more general results. For example, the Egyptians and

Hindus knew by experiment that if atriangle has sdes of lengths 3, 4, and 5, it isthen aright
triangle. But the Greeks proved that if atriangle has sdes of lengths @, b and c, andif

a®+ b? = ¢

then the triangleis aright triangle. There is no amourt of chedking by experiment that could
give this general result. Prodfs give us insight into relationships among diff erent things that we
are studying, forcing us to organize our thoughtsin a herent way. If you gain nahing else from
the @murse than this, you have still gained the greaest gift that mathematics hasto dffer.

| wish to persuade youthat a cetain statement is true or false by pure reasoning. | could dothis
by showing you that the statement foll ows logicdly from some other statement that you may
arealy believe. | may have to convinceyou that that statement is also true, and foll ows from
ancther statement. This processmay continue until | reat a statement which you are willi ng to
believe, ore which does nat need justification. That statement plays the role of an axiom. If no
such statement exists, then | will be caight in an infinite regress, giving one proof after another
ad infinitum. There ae threerequirements that must be met before we can agreethat a proof is
corred.

Requirement 1
There must be mutual understanding of the words and symbals used in the discourse.



Requirement 2
There must be acceptance of certain statements called axioms without justification.
Requirement 3
There must be agreement on how and when one statement follows logically from
another; i.e., agreement on certain rules of reasoning.

There should be no problem in reaching mutual understanding so long as we use terms familiar
to both and use them consistently. If | use an unfamiliar term, you have the right to demand a
definition of this term. Definitions cannot be given arbitrarily; they are subject to the rules of
reasoning referred to in Requirement 2. Also, we cannot define every term that we use. In order
to define one term we must use other terms, and to define these terms we must use still other
terms, and so on. If we were not allowed to |eave some terms undefined, we would get involved
ininfinite regress.

Let us begin with this.

Sets

We need some basic information about setsin order to study the logic and the axiomatic method.
Thisisnot aformal study of sets, but consists only of basic definitions and notation.

Braces of the form

{ ad }

are used to name or enumerate sets. The roster method for naming setsis ssimply to list al of the
elements of a set between apair of braces. For example, the set of integers 1, 2, 3, and 4 could

benamed {1, 2, 3, 4}. Thisdoes not work well for sets containing alarge number of
elements, though it can be used. The more common method for this is known as the set builder

notation. A property is specified which is held by all objectsin aset. P(X), read P of X, will
denote a sentence referring to the variable X.  For example,

- X =23
- Xisanodd integer.
- 1< x< 4.

The set of all objects X such that X satisfies P(X) isdenoted by {x | P(X)}

Theset {1, 2, 3, 4} can be named

{x|1s x< 4, xOz}={x0OZ| 1< x< 4}.



Henceforth the words object, el ement, and member mean the same thing when referring to sets.
Sets will be denoted mainly by capital Roman letters and elements of the sets by small letters.
The following have the same meaning:

alA

aisinset A

aisamember of set A
. aisaneement of set A

Likewise, a [1 A meansthat a is NOT aneement of theset A.

The set A is said to be asubset of the set B if every element of A isalso an element of B. The
following have the same meaning:

Al B
Every element of A isan element of B

- ifal Athena B
« Aisincludedin B

« B contansA

« Alisasubset of B

Note that a set is always a subset of itself.

If A and B are sets, thenwesay that A = B if AandB represent the same set. The
following are equivalent ways of stating this:

A=B
« A and B are the same set
« Every dement of A isan element of B and vice versa
« A and B have the same members

A BadBO A

The set which contains no el ementsis known as the empty set, and is denoted by @. Note that
for each set A, we automatically have @ [1 A.

e Theintersection of two sets A and B isthe set of all elements common to both sets.
Theintersection issymbolizedby A n Bor {x | x A and a [0 B}.

The union of two sets A and B is the set of elementswhich arein A or B or both. The
unionissymbolizedby A 0 B or {x | x A or x 0 B}.



Universal Sets and Complements

When we ae working in an areaor ona cetan problem, we dways have aframe of referencein
which we ae working cdled a universal set; among other things, this avoids logicd difficulties
that ariseif we try to consider coll edions of objedsthat are “too kg’ towork with (for
example, we caana work with “the set of all sets’). In ou geometry course, it will be the set of
pointsthat lie onaplane. In caculus we consider the set of red numbers, the set of red
functions, the set of diff erentiable functions, and the set of continuous functions as universal sets.
Normally it isnot difficult to describe auniversal set that islarge enough to work inside but
small enough to avoid logicd problems that arise when ore triesto talk about things like “the set
of al posgble sets.”

The complement of aset A isdefined to be the set of all elements of the universal set which are
notin A, andis ymbolized by BA = A’ = A° Notethat A O0LA isawaysthe
universal set, whileA n CA = @.

Sentencesand Statements

Logic and mathematical proof can be studiesjust like algebra. In fact, much of symbolic logicis
just that. A declarative sentence which istrue or false, but not both, is called a statement . The
following are statements:

Babe Ruth hit 714 home runs.

Jack Nicklaus has won 20 magjor golf titles.
2+3=6

The 25,000" digit of 11 is 7.

The following are not statements:

Heisagolfer.
Why is aduck?
Xx+1=20
X—y=a

The sentence

Heisagolfer.



cannot be judged true or false because we do not know who Heis. If the word He is replaced by
Bobby Jones forming the sentence

Bobby Jonesisagolfer.
the sentence becomes atrue statement. Similarly, if X in the sentence
Xx+1=0
isreplaced by 2, forming the sentence
2+1=0
the sentence then becomes a fal se statement.

Theletter xisavariable inthe sentence X + 1 = 0. A letter or other symbol that can represent
various elements of auniversal set is called avariable. We can make a sentence a statement by
replacing its variables by elements of the universal set or by attaching phrases such as For every
or There exists to the sentence. For example,

X <3
is not a statement, but each of the following is a statement:

. 1<3

. 5<3

- For every rea number x, x < 3.

. Thereexistsarea number X, such that x < 3.

Replacements for variables of a sentence are always chosen from some universal set. Any
replacement which makes a sentence trueis called a solution. The set of all solutionsiscalled
the solution set of the sentence.



Sentence Connectives

If P andQ are sentences, then the sentence P and Q is cdled the conjunction of PandQ,
denoted by P 1 Q. For any statement there are just two passble truth values — either true
(T) orfase(F). 1f P and Q are both true, then P 0 Q istrue. If one or both of P and Q are
fase then P Q isfase. Thetruth table below definesthe truth valuesof P 1Q for all
possible truth value combinationsof P and Q.

P Q POQ
TIT|T
T|F| F
FIT| F
FIF| F

If P and Q are sentences, then the sentence P or Q iscaledthedigunction of Pand Q,
denoted by P 1 Q. In mathematicswe use aninclusiveor. Thatis, P 1 Q istruewhen P is
true, or Q istrue, or both aretrue, and P L1 Q isfase only when both P and Q arefalse. The
truth table for P [ Q isthus defined below.

M 444 0O

A negation, or denial, of asentenceisformed in many ways. For example the negation of
P : 2isrational.

is represented by each of the following:

~P
« ltisfasethat 2 isrational.
« 2isnotrationa.
2isirrational.



The truth table for negation is obvious.

Y ou need to realize that there are other symbols, besides ~, for negations that are in common
usage.

- a#b means ~(@ =Dhb)
- a=2Db mens ~@ < b)
- aldA mens ~(x 0O A)

If P and Q are sentences, the sentence
if P, then Q

isdenotedby P -~ Q or P O Q.Weconstruct atruthtablefor P 0 Q just asfor the

the other connectives [ [, and ~. However, the definition is not at all obvious. Consider the
sentence:

If | get an A in mathematics, then | will take the next course.

Suppose afellow student says this. When is the sentence true and when isit false? Let P denote
the statement

| get an A in mathematics

and let Q denote the statement
| will take the next course.
Consider the following four cases.

1. P (true): He gets an A in mathematics.

Q (true): He takes the next course.
2. P (true): He gets an A in mathematics.

Q (false): He does not take the next course.



3. P (false): He does not get an A in mathematics.

Q (true): He takes the next course.
4. P (false): He does not get an A in mathematics.

Q (false): He does not take the next course.

It is easy to see that (1) istrue and that (2) isfalse. Y ou cannot claim that the original statement
was false in (3) since he takes the next course even though he did not get an A. Likewise, in (4)

you cannot claim that the statement was false, since he did not get an A and he did not take the
next course. The truth table for this sentenceis as below:

PloPD Q
T

TIFl F
FT T
FEl T

Thesentence P O Q iscaledaconditional with P the antecedent and Q the consequent.
In mathematics the conditional is encountered in many forms. The following have the same
meaning:

PO Q
If P, then Q

« PimpliesQ

« QifP, PonlyifQ

«  Qprovided P

«  Qwhenever P, QwhenP

- Pisasufficient condition for Q.
Q isanecessary condition for P.

Biconditionals and Combinations of
Connectives

A sentence of the type

(PO QUQD P)



iscalled abiconditional, denoted P < Q. When P and Q are sentences, the truth table for
P - Q is

Q

—| M| m| |

In mathematics the biconditional is encountered in many forms. The following have the same
meaning:

P - Q
Pisequivaent to Q
Pif and only if Q
- Qifandonlyif P
. PiffQ
« If P, then Q and conversely
« 1If Q, then P and conversely
« Pisanecessary and sufficient condition for Q
Q isanecessary and sufficient condition for P.

Combinationsof ~, 0, <, [J, and O often occur. A facility at recognizing them is essential for
mathematical reading and proof. Consider the following statement:

If pisprime, thenif piseven P must be smaller than 7.

This breaks up into three statements:
P: pisprime.
-« Q: piseven.
« R pmust besmaller than 7.
We can then trandate the original statementinto (P O Q) O R.

Now consider the following statement:

If K is perpendicular to A and A is perpendicular to m, then K is parallel to m.

In this case, one can break the original statement into the following three smaller statements:



P: Kisperpendicular to A
- Q: A isperpendicular tom
R: Kisparale tom.

Then the sentencetrandatesas (P 0 Q) O R.

Quantifiers

Sentences involving the phrases For every ... and There exists ... aso play avery important role

in the structure of mathematical sentences. The symbol [, called the universal quantifier
denotes phrases such as For each, For every, For all. A sentence such as

For every X, P(X)
can be trand ated symbolically into

[x P(x), or 0x, P(x).

The following sentences have the same meaning:

. 0Ox, Xisaninteger O x U Q.
For every X, if X isan integer, then x [1 Q).
For all X, if X isan integer, then X [ ©).

. For each X, if X isan integer, then x [ ©).

Every integer belongsto X [1 @)
Every integer isarational number.

. If Xisaninteger, then x [ ©).

Note that in the last sentence the universal quantifier is understood and not written.

Thesymbol [J called the existential quantifier symbolizes phrases such as There exists, There
isat least one, For at least one, and Some. A sentence such as

There exists an x such that P(X)

trandates symbolically to X P(X), or X, P(x).



Ox P(x), or Ox, P(x).
The following have the same meaning:

. [K, Xisanatura number.

+ Thereexistsan X such that X is a natural number.
«  Some number is anatural number.
. Thereisat |least one natural number.

Quantifiers often appear together. Consider the following examples.
Ox Oy, x +y=0 ForeveryXandforeveryy, X +y=0.
Ox Oy, x +y=0 Forevery X thereexistsay sothat X +y = 0.

[k Oy, x +y=0 ThereexistsanX suchthat foraly, X +y=0.
[k Oy, x+y=0 Thereexistsan X and thereexistsay suchthat X +y = 0.

The following sentence

For every X, if X iseven, then thereexistsa Y suchthat X = 2y.

trandates as
[Ox (xiseven O Oy, X = 2y)

These quantifiers refer to some universal set, which if not explicitly given, must be easily
inferred from the context. We will be interested only in nonempty universal sets.

Definition: Thesentence X, P(X) is true if and only if the solution set of P(X) equals
the universal set. Thissentenceis false if the solution set isa proper subset of the universal

set; i.e, if thereis at least one element of the universal set for which P(X) isfalse.

Definition: Thesentence [X, P(X) is true if thesolutionset of P(X) isnonempty. This
sentenceis false if thesolution set of P(X) isempty; i.e, if for every replacement of X by a
member & of the universa set, P(a) isfalse.

For more complicated mathematical sentences containing more quantifierslet uslook at afew
examples.

Example: Supposethat P(X, Y) isasentencewith variablesX andy. Then the sentence



Ox Oy, P(x,y)

istrueif and only if for every replacement of X and Y by members a and b from the universal
set, the statement P(a, b) istrue. The sentence isfalse if there is areplacement for X or a
replacement for Y for which the statement is false.

Example: Thesentence [X [y, P(X,Yy) istrueif there exists areplacement a for X such
that [y, P(a,y) istrue Thissame a makesthe sentence P(a,b) truefor every b inthe
universa set. Note that the sentence [X [ly, X > Yy isfadse Thereisno replacement afor x
which makesthe sentence [ly, a> vy true

Rules of Reasoning

Mathematicians assume a certain class of sentences to be true before we ever prove any theorems
in amathematical system. We call these sentences rules of reasoning. They could be called
reasoning axioms.

An important class of these rules of reasoning are known as tautologies. A tautology is a
sentence which is true no matter what the truth value of its constituent parts.

- Example Thesentence P O P [0 Q isatautology, where P and Q represent
arbitrary mathematical sentences. We can show that thisis a tautology from atruth table.

PIQPOQPDPOQ
L L
‘_.‘i.‘ F o T
FIT] F T
FIF[ F | T

The way in which we do thisisto compute the truth valuesfor P [1 Q inthethird column
first, and then use columns one and three to compute the truth values in column four.

Logic Axiom 1: Every tautology is a rule of reasoning.

The following are tautologies that we commonly use. Y ou will find these listed in the Rules of
Logic that you have been given.

1. (PO Q) « (~Q O ~P) Law of the contrapositive



2. [PO(P O QJ]O Q Law of modus porens
3 [(PD QUE@QO R]JO(P O R) Lawof Silogism
4 ~PUQ - (~PO~Q)

5. ~(POQ) - (~P~Q) DeMorgansLaws
6

7

8

9

. ~POQ - (PU~Q

. ~(POQ - (~POQ

. (POQO P

. ~(~P) =« P

10. (POQ0O (POQ)

1. (PO ~Q O (QO ~P)

12. [~P 0 (R O ~R)] 0 P Lawof prodf by contradiction

13. [(PO~QUOR O~R)] o0 (P O Q) Lawof proof by contradiction

14. P[1~P Law of the Exduded Midde
5. PO P
16. P = P

17. [Po(QOR)] O [(P O~Q) O R]

18. [(PoO SO 0 SO...0620 S)OG 0 R]Jo(POR)
Extended Law of Syllogism

19. [(Po RO@QOo R)] o [(POQ) OR] Prodf by Cases
20. (P Q) - (Q OP)

2. (P 0 Q) - (Q O P) CommutativelLaws

2. [PO(RDQ]- [(PUOR)OQ]

23. [P OQUR)] - [(P UQ) OR]

24. [P OQ OR)] = [(P OQ) OR] AsxciativeLaws

25. [P OQOR)] - [(P O0Q) O(P OR)]

26. [P OQ OR)] - [(P O0Q) O(P OR)] DigtributiveLaws

27. [P - Q)0 ... OQu - Q) O(@Q - QI (P = Q




Valid Arguments

The tautologies in the preceding section are not al that there are. If you want to make a
deduction based on a sentence, check its truth table. If it is atautology, useit. Tautologies
provide lots of reasoning theorems before we ever start deduction within a mathematical system.

There are actually two branches of formal logic: the statement (or propositional) calculus,
involving statements and reasoning by tautology; and the predicate calculus, involving
guantified sentences. All we are doing is taking a quick guided tour through informal logic, and
so we will not study these areas in great detail. However, from the predicate cal culus we get
another collection of reasoning sentences, some of which are listed below. These cannot be
verified by tautology.

Logic Axiom 2: Let U be a universal set. Each of the following is a rule of reasoning.

1. [Ox, P(x) 0 Q(x)] O [Ox P(x) o Ox Q(X)].
2. OxP(X) = [P(a), forevery allU].
3. IKP(x) - [P(@@), forsome allU].

An argument is an assertion that from a certain set of sentences S;, S,, ... , S, (called
premises or assumptions) one can deduce another sentence Q (called an inference or

conclusion). Such an argument can bedenotedby S;, S,, ..., S, [ Q. Argumentsare
either valid (correct) or invalid (incorrect).

Definition 1: TheexpressionS,, S, ..., S, [ Qisavalid argument if and only if the
expression (S; S, ... S,) O Q isaruleof reasoning.

Logic Axiom 3: [RledSt tiom ] Suppose P =« Q. Then P and Q maybe
substituted for one another in any sentence.

Logic Axiom 4: Every sentence of thetype ~[X P(X) - [x ~P(X) istrue.
L ogic Axiom 5: Every sentence of thetype ~[X P(X) = [k ~P(X) istrue.

To prove a sentence of thetype [x P(X) fase, one could try to prove [X ~ P(X) true. This
isreferred to as providing a counter example.



L ogical Proofsin Mathematics
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Mathematical Systems

A mathematical system consists of the following:

aset of undefined concepts,

auniversal s,

aset of relations,

aset of operations,

aset of logical axioms,

aset of non-logical axioms--these axioms pertain to the elements being studied, the
relations, and the operations; and not to the logic being used,

aset of theorems,

aset of definitions,

an underlying set theory.

ourWNE

© N

In plane geometry the undefined concepts are those of point and line. The universal set was the
set of pointsin the plane. The relations were such concepts as equality, perpendicul arity, and
paralelism. We have mentioned the logical axioms. A non-logical axiom would be of the form:

Two different points are on exactly oneline.



Pr oof

Definition: Supposethat Aq, Ay, ...A ¢ areall the axioms and previously proved theorems of
amathematical system. A formal proof , or deduction, of a sentence P is a sequence of
statements S, S, ... Sy, where

1. S, is P, and one of thefollowing holds
2.

a S isoneof Ag, Ay, ...Ay or

b. § follows form the previous statements by avalid argument using the
rules of reasoning.

A theorem isany sentence deduced from the axioms and/or the previous theorems. The sameis
true of lemma and proposition. Theterm corollary is generally employed to denote a sentence
that follows from the preceding one very quickly. For some mathematicians thereis a hierarchy
of lemma, proposition, and theorem; with lemma being the easiest to prove and theorem the most
difficult, or longest. Other mathematicians view alemma as a statement that is useful in the proof
of a subsequent statement (or some collection of subsequent statements) that are viewed as more
significant; in this perspective the proof of alemmamay well be substantially longer or more
difficult than that of atheorem. Still other mathematicians make little or no distinction between
these objects and call everything atheorem.

Example: Suppose a mathematical system contains just the following axioms:

A]_:

a+b=c O [(x<y)O(2=3)].
A2:

at+b =c.

Thefollowing isaformal proof of X <'Y.

S a+b=c O [(x<y)O(@2=23)] byAs

S, atb=c , by Ao
S x<y)O@E=3) , by modus ponenson S;, S,
Sy x <y , by the tautology (PLIQ) O P

In practice mathematicians do not write formal proofs. They write informal proofs. An informal
proof is an argument which shows the existence of aformal proof. As such it gives enough of the
formal proof so that another person becomes convinced. Thus we might call an informal proof a



convincing argument. Mathematicians try to convince other mathematicians. Y ou will try to
convince your fellow students and me, your professor.

An informal proof of the above example runs as follows:

From A; and A, itfollowsthat (x < y) (2=3). Thus, x <.

Henceforth, we will be writing only informal proofs. The art of mathematicsis creating proofs.
Just as every other artisan, the mathematician has some basic modes of proof. We will now
consider afew of these.

Proving Conditionals

Y ou usually proved a sentence of thetype P O Q in plane geometry by assuming P and

deducing Q. You considered Q the conclusion. Inactualy, P O Q wasthe conclusion; it
was what you were trying to prove.

Toprove P O Q first assume P to betrue. Then using P and all other theorems and axioms
try to deduce Q. Once Q is deduced in this manner you have completed aproof of P O Q.
Y ou have not shown that Q istrue; you have only shown that Q istrueif P istrue. Whether P is

true is another question; whether Q istrue is another question. What you have shown to be true
isP O Q.

Thistechnigueis called the Rule of Conditional Proof or the Deduction Theorem. More
formally, suppose that A1, Ao, ...A  are the axioms and previously proved theorems. To prove
the statement P 0 Q isto show that

From A;, Ay, ...AxwecandeduceP O Q
isavalid argument. To do this temporarily assume P to be an axiom and show that

From Ay, Ay, ...A and P we can deduce Q

isavalid argument.

A second technique of proving P 0 Q isby the contrapositive. WecanproveP 0 Q by
proving~Q O ~P. Oftentherule of conditional proof is used to prove the contrapositive.



Proving Biconditionals
There are three modes of proof for biconditional sentences.

1. ProreP O QandQ O P.

2. ProreP O Qand~P O ~Q.
3. Provide an iff-string.

A word about the iff-string . We produce a string of equivalent sentences from P to Q. Thisis
the Law of Syllogism from the list of tautologies.

Proving statements of the form “[x, P(x)”

To prove [1x P(X) let X represent an arbitrary element of the universal set and prove that P(X)

istrue. Then since X was arbitrary element of the universal set, we may generalize that X P(X)
istrue. Thejustification is Logical Axiom 2

Proof by Cases

Proof by cases is used several ways and involves the connective Or. We will be trying to prove a
sentence of thetype (P OR) O Q. Thistype of proof utilizes the tautol ogy

(PO QUREOD Q] O [(POR OQ]
The proof is accomplished by proving the antecedent of this sentence:
PO QURD Q

Hence, P O Q and R O Q must be proved. Any mode of proof for conditional sentences
can be used.

Similarly, aproof by cases of

(P.OP,O...P)0 Q

isaccomplished by proving (P, O Q) 0. ..0O (P, O Q).

The art of producing a proof by cases lies in the discovery of what set of exhaustive casesis
appropriate.



Mathematical Induction

Thisisatechnique that is al too often overlooked in geometry. It isincluded here for the sake of

completeness. If P(n) is a sentence which is a statement for every n [ [\ ( = the natural
numbers or nonnegative integers), then the Principle of (Finite) Mathematical Induction is

[P(1) O Ok, P(k) 0 Pkk+1)] O On P(n).

If we can prove the antecedent of this statement, P(1) [ Ok, P(k) O P(k+1), then by
modus ponens we can deduce [In P(N). Thus there are two steps in the proof of [In P(n):

Basic Step.
Prove P(1).

Inductive Step.
Prove 0k, P(k) O P(k+1).

Note that its name is misleading. Mathematical induction is deductive reasoning not inductive
reasoning in the usual sense. Inductive reasoning is making a conjecture or guess based on
observations and one's previous mathematical (or nonmathematical!) experience.

Proof by Contradiction

A contradiction is a statement which is false no matter what the truth value of its constituent
parts. It can usually be expressed symbolicaly intheform R [1~R. A proof by contradiction
of astatement P isaproof that assumes ~P and yields a sentence of the type

R [J~R, where R is any sentence including P, an axiom, or any previously proved theorem.
Thisisjustified by the tautology

[~PO (RO~R)] O P.

Intuitively, P can only be true or false (since we are assuming only a two-valued logic). If we
assume its negation true and this yields another sentence both true and false, then ~P cannot be
true, so P must be true.



The phrases reductio ad absurdum and indirect proof both refer to proof by contradiction. The
importance of being able to form sentence negations is realized when doing proofs by
contradiction. To begin such proofs you must know how to form negations.

Comparing proof techniques we see that with the Rule of Conditional Proof we assume P with
the explicit intention of deducing Q. With the contrapositive we assume ~Q with the explicit
intention of deducing ~P. But in using Proof by Contradiction we assume BoTH P AND ~Q
and try to deduce any sentence R and its negation ~R.

Proofs of Existence and Uniqueness
The sentence
There exists an X such that P(X)
is denoted by [ X, P(X). The sentence
There exists exactly one X such that P(X)

isdenoted by [1 X, P(x) or O X, P(X). Therearetwo partsto proving a sentence of this
form.

1. ExistencePart. Provethat thereisan X such that P(X) istrue.

2. Uniqueness Part. Here you must prove that if there are two elements X and z such that
P(x) and P(z) are each true, then X = z. Insymbols: 0Ox Oz, [P(X) =P(z)] O X = z.

Proof Creativity

In the previous part of this chapter you learned several modes of proof. The intent is that these
will become part of your mathematical toolbox. Just because you have the tools does not
guarantee that you can create a proof. There are some helpful proceduresto follow asaidsin
creating a proof.

Trandateto Symbolic Logic: A typical comment made when proofs are attempted is

| do not know whereto start!!!!

This statement is made with a great gnashing of teeth and wringing of hands. One procedure to
follow is comparable to that of solving a problem in basic algebra.



First, translate what you are requested to prove into symbalic logic. Then seang the structure of
the trandated sentenceyou can seled amode of proof. Still, knoving a mode of proof that could
be used does not guaranteesuccess Suppcse you want to attempt to prove asentence of the type

P O Q byusingthe Rule of Conditional Proof. Youwant to assume P and ceduce Q. A
guestion dten asked is

How do | get fromP to Q?

Thereisno certain way. No ore way will alwayswork. Certainly, knowing to assume P and

deduce Q isastepintheright diredion. The mode of proof provides the structure for the proof;
building this dructure is usually amore aeaivetask. | can give afew hints.

Analogy: Animportant aid in carrying out proofs is to get ideas from other proofs. Thisis
suppased by comments of mathematicians who argue that to be goodat mathematics you reed
lots of pradice lots of expasure to diff erent proafs.

Analytic Process Thisisknown asworking backwards. Youwant to prove P O Q. Start
with Q andtrytofindanRsuchthat R O Q .ThentrytofindandSsuchthat S O R.
Thenlooktoseeif P O S. If nat, try tofill i n another step. Continue this until youfinda
sentence R,, suchthat P 0 R, and

Rn D Rn_l D ...D R D Q.

Do na be surprised if you do nd seethis processoutlined in atext or referencebook.It israre
that if this processed isused it is then explicitly mentioned. Usually the proof will be given as

P D Rn D Rn_l D ...D R D Q.

Do-Something Approach: Thisis smply trial-and-error. Youwant to prove P O Q by

asauming P and deducing Q. You have no particular way to get from P to Q; but start out, get
involved, dosomething, try different approaches, prove dl that you can. You do nd have to
show all of thisin your final version d your proaof, bu it can help you get started. When reading
proofs in mathematics texts and journals, you are not aware of the blind all eys and ursuccesdul
attempts precaling a successul proof. Thisleals youto think the establi shed mathematician
never follows awrong path or makes amistake. Tria and error is very much a part of
mathematicd credivity.

Use of Definitions: Another helpful procedureisto recdl all relevant definitions. It isa
tendency to read adefinition andignore its importancein later proofs.

Use of Previously Proved Theorems: It is helpful — indedd, it is esential in starting a proof to
examine dl previously proved theorems for results which might be relevant to the proof.




