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Introduction 
Mathematicians use a large number of methods to discover new results — trial and error, 
computation of special cases, inspired guessing, pulli ng results from thin air. The difference in 
this and an astrologer, for example, is that we have an accepted method, called the axiomatic 
method, for proving that these results are correct. Proofs give us assurance that results are 
correct. In many cases they also give more general results. For example, the Egyptians and 
Hindus knew by experiment that if a triangle has sides of lengths 3, 4, and 5, it is then a right 
triangle. But the Greeks proved that if a triangle has sides of lengths  a, b  and  c, and if   

a2 +  b 2   =   c2 

 then the triangle is a right triangle. There is no amount of checking by experiment that could 
give this general result. Proofs give us insight into relationships among different things that we 
are studying, forcing us to organize our thoughts in a coherent way. If you gain nothing else from 
the course than this, you have still gained the greatest gift that mathematics has to offer.  

I wish to persuade you that a certain statement is true or false by pure reasoning. I could do this 
by showing you that the statement follows logically from some other statement that you may 
already believe. I may have to convince you that that statement is also true, and follows from 
another statement. This process may continue until I reach a statement which you are willi ng to 
believe, one which does not need justification. That statement plays the role of an axiom. If no 
such statement exists, then I will be caught in an infinite regress, giving one proof after another 
ad infinitum. There are three requirements that must be met before we can agree that a proof is 
correct.  

Requirement 1  
There must be mutual understanding of the words and symbols used in the discourse.  

 



Requirement 2  
There must be acceptance of certain statements called axioms without justification.  

Requirement 3  
There must be agreement on how and when one statement  follows logically from 
another; i.e., agreement on certain rules of reasoning.  

   

There should be no problem in reaching mutual understanding so long as we use terms familiar 
to both and use them consistently. If I use an unfamiliar term, you have the right to demand a 
definition of this term. Definitions cannot be given arbitrarily; they are subject to the rules of 
reasoning referred to in Requirement 2. Also, we cannot define every term that we use. In order 
to define one term we must use other terms, and to define these terms we must use still other 
terms, and so on. If we were not allowed to leave some terms undefined, we would get involved 
in infinite regress.  

Let us begin with this.  

Sets 
We need some basic information about sets in order to study the logic and the axiomatic method. 
This is not a formal study of sets, but consists only of basic definitions and notation.  

Braces of the form 

{    and    } 

are used to name or enumerate sets. The roster method for naming sets is simply to list all of the 
elements of a set between a pair of braces. For example, the set of integers 1, 2, 3, and 4 could 
be named  {1, 2, 3, 4}.  This does not work well for sets containing a large number of 
elements, though it can be used. The more common method for this is known as the set builder 
notation. A property is specified which is held by all objects in a set. P(x),  read P of  x, will 
denote a sentence referring to the variable x.   For example,  

• x  =  23  
• x is an odd integer.  
• 1 <  x <  4 . 

The set of all objects  x  such that  x satisfies P(x) is denoted by  {x _ P(x)} 
 
 
The set {1, 2, 3, 4} can be named  

 

{x _ 1 ≤≤  x ≤≤  4,  x ∈∈  } = {x ∈∈  �_  1 ≤≤  x ≤≤  4}. 



Henceforth the words object, element, and member mean the same thing when referring to sets. 
Sets will be denoted mainly by capital Roman letters and elements of the sets by small letters. 
The following have the same meaning:  

• a  ∈∈  A 
• a is in set A  
• a is a member of set A 
• a is an element of set A 

Likewise,  a  ∉∉  A  means that  a  is   NOT   an element of the set  A.  

The set A is said to be a subset of the set B if every element of   A is also an element of  B. The 
following have the same meaning:  

• A  ⊂⊂   B 
• Every element of A is an element of B  

• If  a  ∈∈  A, then  a  ∈∈  B 
• A is included in B  
• B contains A  
• A is a subset of B 

Note that a set is always a subset of itself.  

If A and B are sets, then we say that  A  =  B  if  A and B  represent the same set.  The 
following are equivalent ways of stating this:  

• A  =  B 
• A and B are the same set  
• Every element of A is an element of B and vice versa 
• A and B have the same members  

• A  ⊂⊂   B  and  B  ⊂⊂   A 

The set which contains no elements is known as the empty set, and is denoted by  Ø. Note that 

for each set A,  we automatically have   Ø  ⊂⊂   A.  

• The intersection of two sets A and B is the set of all elements common to both sets. 

The intersection is symbolized by  A  ∩∩ �B  or  { x   |   x  ∈∈  A    and   a  ∈∈  B }.   

• The union of two sets A and B is the set of elements which are in A or B or both. The 

union is symbolized by  A  ∪∪  B  or   { x   |   x  ∈∈  A    or   x  ∈∈  B }.    



 

Universal Sets and Complements 
When we are working in an area or on a certain problem, we always have a frame of reference in 
which we are working called a universal set; among other things, this avoids logical diff iculties 
that arise if we try to consider collections of objects that are “too  big’’ to work with (for 
example, we cannot work with “ the set of all sets”).  In our geometry course, it will be the set of 
points that lie on a plane. In calculus we consider the set of real numbers, the set of real 
functions, the set of differentiable functions, and the set of continuous functions as universal sets.  
Normally it is not diff icult to describe a universal set that is large enough to work inside but 
small enough to avoid logical problems that arise when one tries to talk about things like “the set 
of all possible sets.”  

The complement of a set A is defined to be the set of all elements of the universal set which are 

not in A, and is symbolized by  &A   =   A′′   =   Ac.  Note that  A  ∪∪ &A   is always the 

universal set, while A  ∩∩ &A  =  Ø.  

 

Sentences and Statements 
Logic and mathematical proof can be studies just like algebra. In fact, much of symbolic logic is 
just that. A declarative sentence which is true or false, but not both, is called a statement . The 
following are statements:  

• Babe Ruth hit 714 home runs.  
• Jack Nicklaus has won 20 major golf titles.  
• 2  +  3  =  6  
• The 25,000th digit of ππ  is 7.  

The following are not statements:  

• He is a golfer.  
• Why is a duck?  
• x  + 1  =  0  
• x –  y  =  a 

The sentence  

He is a golfer. 
 



cannot be judged true or false because we do not know who He is. If the word He is replaced by 
Bobby Jones forming the sentence   
 

Bobby Jones is a golfer.  
 
the sentence becomes a true statement. Similarly, if  x  in the sentence 
 

x + 1 = 0 
 

is replaced by 2, forming the sentence  
 

2 + 1 = 0 
 
the sentence then becomes a false statement.  

The letter x is a variable  in the sentence  x + 1 = 0. A letter or other symbol that can represent 
various elements of a universal set is called a variable. We can make a sentence a statement by 
replacing its variables by elements of the universal set or by attaching phrases such as For every 
or There exists to the sentence. For example,   

x  <  3 

is not a statement, but each of the following is a statement:  

• 1  <  3  
• 5  <  3  
• For every real number x,  x  <  3.  
• There exists a real number x, such that x  <  3.  

Replacements for variables of a sentence are always chosen from some universal set. Any 
replacement which makes a sentence true is called a solution. The set of all solutions is called 
the solution set of the sentence. 



Sentence Connectives 
If  P and Q are sentences, then the sentence P and Q  is called the conjunction  of   P and Q, 

denoted by  P ∧∧ Q.   For any statement there are just two possible truth values  —  either true 
��77�� or false ��))�� .    If P and Q are both true, then P ∧∧ Q is true.  If one or both of P and Q are 

false, then   P ∧∧ Q  is false. The truth table below defines the truth values of  P ∧∧ Q   for all 
possible truth value combinations of   P and Q.  

P  Q  P ∧∧ Q    

T  T  T  

T  F  F  

F  T  F  

F  F  F  

 

If   P and Q are sentences, then the sentence  P or Q   is called the disjunction  of   P and Q, 

denoted by  P ∨∨ Q. In mathematics we use an inclusive or.  That is, P ∨∨ Q is true when P is 

true, or Q is true, or both are true,  and  P ∨∨ Q  is false only when both P and Q are false. The 

truth table for P ∨∨ Q  is thus defined below.  

P  Q  P ∨∨ Q   

T  T  T  

T  F  T  

F  T  T  

F  F  F  

A negation , or denial, of a sentence is formed in many ways. For example the negation of  

P : 2 is rational. 
 
is represented by each of the following:  

• aP 
• It is false that 2 is rational.  
• 2 is not rational.  
• 2 is irrational.  



The truth table for negation is obvious.  
 

 

 

You need to realize that there are other symbols, besides a, for negations that are in common 
usage.  

• a   ≠≠  b    means     a(a   =  b ) 

• a   ≥≥   b    means    a(a   <   b ) 

• a  ∉∉  A   means    a( x  ∈∈  A)  

If P and Q are sentences, the sentence  

if P, then Q 
 

is denoted by  P  →→  Q  or  P  ⇒⇒  Q. We construct a truth table for  P  ⇒⇒  Q   just as for the 

the other connectives ∧∧,  ∨∨, and  a.    However, the definition is not at all obvious. Consider the 
sentence:  
 
 

If I get an  $  in mathematics, then I will take the next course. 
 
 
Suppose a fellow student says this. When is the sentence true and when is it false?   Let P denote 
the statement  
 

I get an $ in mathematics 
 
and let Q denote the statement  
 

I will take the next course. 
 
Consider the following four cases.  

1. P (true): He gets an $ in mathematics. 

Q (true): He takes the next course.  
2. P (true): He gets an $ in mathematics. 

Q (false): He does not take the next course.  

�P a P 

T  F  

F  T  



3. P (false): He does not get an $ in mathematics. 

Q (true): He takes the next course.  
4. P (false): He does not get an $ in mathematics. 

Q (false): He does not take the next course.  

 
It is easy to see that (1) is true and that (2) is false. You cannot claim that the original statement 
was false in (3) since he takes the next course even though he did not get an $. Likewise, in (4) 
you cannot claim that the statement was false, since he did not get an $ and he did not take the 
next course. The truth table for this sentence is as below:  
 
 

P  Q  P ⇒⇒ Q    
T  T  T  

T  F  F  

F  T  T  

F  F  T  

The sentence P  ⇒⇒  Q   is called a conditional  with P the antecedent and Q the consequent. 
In mathematics the conditional is encountered in many forms. The following have the same 
meaning:  

• P  ⇒⇒  Q    
• If P, then Q  
• P implies Q  
• Q if P,   P only if Q  
• Q provided P 
• Q whenever P,   Q when P  
• P is a sufficient condition for Q.  
• Q is a necessary condition for P.  

Biconditionals and Combinations of 
Connectives 
A sentence of the type  

(P  ⇒⇒  Q) ∧∧ (Q  ⇒⇒  P) 
 



is called a biconditional, denoted   P  ⇔⇔  Q.  When P and Q are sentences, the truth table for  
P  ⇔⇔  Q   is: 

P Q P ⇔⇔ Q 

T T T 

T F F 

F T F 

F F T 

In mathematics the biconditional is encountered in many forms. The following have the same 
meaning:  

• P  ⇔⇔  Q    
• P is equivalent to Q  
• P if and only if Q  
• Q if and only if P  
• P iff Q  
• If P, then Q and conversely  
• If Q, then P and conversely  
• P is a necessary and sufficient condition for Q  
• Q is a necessary and sufficient condition for P.  

Combinations of  a, ⇒⇒, ⇔⇔, ∧∧, and ∨∨ often occur. A facility at recognizing them is essential for 
mathematical reading and proof. Consider the following statement:  

If  p is prime, then if p is even  p must be smaller than 7. 
 
This breaks up into three statements:  

• P:    p is prime.  
• Q:   p is even.  
• R:   p must be smaller than 7.  

We can then translate the original statement into  (P  ⇒⇒  Q)   ⇒⇒  R. 
 
Now consider the following statement: 
 

If k is perpendicular to λλ and λλ is perpendicular to m, then k is parallel to m. 
 
In this case,  one can break the original statement into the following three smaller statements: 



• P:    k is perpendicular to λλ 

• Q:   λλ  is perpendicular to m  
• R:   k is parallel to m.  

Then the sentence translates as  (P  ∧∧  Q)   ⇒⇒  R. 

 

Quantifiers 
Sentences involving the phrases For every ... and There exists ... also play a very important role 

in the structure of mathematical sentences. The symbol ∀∀, called the universal quantifier     , 
denotes phrases such as For each, For every, For all. A sentence such as  

For every  x, P(x) 
can be translated symbolically into   

 

∀∀x  P(x), or   ∀∀x, P(x). 
 
 
The following sentences have the same meaning:  

• ∀∀x,   x is an integer   ⇒⇒  x  ∈∈  .  

• For every x, if x is an integer, then  x  ∈∈  .      

• For all x, if x is an integer, then  x  ∈∈  .      

• For each x, if x is an integer, then  x  ∈∈  . 

• Every integer belongs to  x  ∈∈  . 
• Every integer is a rational number. 

• If x is an integer, then  x  ∈∈  .    .  

Note that in the last sentence the universal quantifier is understood and not written.  

The symbol   ∃∃, called the existential quantifier  symbolizes phrases such as There exists, There 
is at least one,   For at least one, and   Some. A sentence such as  

There exists an x such that P(x) 
 

translates symbolically to ∃∃ x  P(x), or   ∃∃ x, P(x). 



 

∃∃ x  P(x), or   ∃∃ x, P(x). 
 

The following have the same meaning:  

• ∃∃x, x is a natural number.  
• There exists an x such that x is a natural number.  
• Some number is a natural number.  
• There is at least one natural number.  

Quantifiers often appear together. Consider the following examples.  

∀∀x ∀∀y,  x + y = 0  For every x and for every y, x + y = 0. 

∀∀x ∃∃y,  x + y = 0  For every x there exists a y so that x + y = 0. 

∃∃x ∀∀y,  x + y = 0  There exists an x such that for all y, x + y = 0. 

∃∃x ∃∃y,  x + y = 0  There exists an x and there exists a y such that x + y = 0. 

The following sentence  

For every x, if x is even, then there exists a  y such that x  =  2y. 
 
translates as  

∀∀x (x is even  ⇒⇒  ∃∃y,  x  =  2y) 
 

These quantifiers refer to some universal set, which if not explicitly given, must be easily 
inferred from the context. We will be interested only in nonempty universal sets.  

Definition: The sentence  ∀∀x,  P(x)  is    true   if and only if the solution set of   P(x)  equals 
the universal set. This sentence is   false   if the solution set is a proper subset of the universal 
set; i.e., if there is at least one element of the universal set for which  P(x)  is false.  

Definition: The sentence   ∃∃x,  P(x)   is   true   if the solution set of  P(x)   is nonempty. This 
sentence is   false   if the solution set of  P(x)   is empty; i.e., if for every replacement of x by a 
member a  of the universal set, P(a) is false.  

For more complicated mathematical sentences containing more quantifiers let us look at a few 
examples.  

Example: Suppose that   P(x, y)   is a sentence with variables x and y.   Then the sentence   



∀∀x ∀∀y,  P(x, y) 

is true if and only if for every replacement of x and y by members a and b from the universal 
set, the statement P(a, b) is true. The sentence is false if there is a replacement for x or a 
replacement for y for which the statement is false.  

Example: The sentence  ∃∃x ∀∀y,  P(x, y)   is true if there exists a replacement  a  for x  such 

that  ∀∀y,  P(a, y)    is true. This same  a  makes the sentence P(a,b) true for every  b  in the 

universal set. Note that the sentence  ∃∃x ∀∀y,   x >  y    is false. There is no replacement a for x 

which makes the sentence  ∀∀y,   a >  y    true.  

 

Rules of Reasoning 
Mathematicians assume a certain class of sentences to be true before we ever prove any theorems 
in a mathematical system. We call these sentences rules of reasoning. They could be called 
reasoning axioms.  

An important class of these rules of reasoning are known as tautologies. A tautology is a 
sentence which is true no matter what the truth value of its constituent parts.  

• Example: The sentence  P  ⇒⇒  P  ∨∨  Q    is a tautology, where P and Q represent 
arbitrary mathematical sentences. We can show that this is a tautology from a truth table.  

P  Q  P  ∨∨  Q     P  ⇒⇒  P  ∨∨  Q     
T  T  T  T  

T  F  F  T  

F  T  F  T  

F  F  F  T 

The way in which we do this is to compute the truth values for   P  ∨∨  Q    in the third column 
first, and then use columns one and three to compute the truth values in column four.   

Logic Axiom 1: Every tautology is a rule of reasoning.  

The following are tautologies that we commonly use. You will find these listed in the Rules of 
Logic that you have been given.  

1. (P  ⇒⇒  Q)  ⇔⇔  (aQ  ⇒⇒  aP)   Law of the contrapositive 



2.  [P ∧∧ (P  ⇒⇒  Q)] ⇒⇒  Q  Law of modus ponens  

3.  [(P  ⇒⇒  Q) ∧∧ (Q  ⇒⇒  R)] ⇒⇒ (P  ⇒⇒  R)   Law of Syllogism  

4. a(P ∧∧ Q)  ⇔⇔  (aP ∨∨ aQ)     
5. a(P ∨∨ Q)  ⇔⇔  (aP ∧∧ aQ)  DeMorgan’s Laws 

6. a(P ⇒⇒ Q)  ⇔⇔  (P ∧∧ aQ)   
7. a(P ⇒⇒ Q)  ⇔⇔  (aP ∨∨ Q)   

8.  (P ∧∧ Q) ⇒⇒  P  
9. a(aP)  ⇔⇔  P 

10.  (P ∧∧ Q) ⇒⇒  (P ∨∨ Q)   
11.  (P  ⇒⇒  aQ)  ⇒⇒  (Q  ⇒⇒  aP) 

12.  [aP  ⇒⇒ (R  ∧∧  aR)] ⇒⇒  P   Law of proof by contradiction 

13.  [(P ∧∧ aQ) ∧∧ (R  ∧∧  aR)] ⇒⇒ (P  ⇒⇒  Q)   Law of proof by contradiction 

14.   P ∧∧ aP   Law of the Excluded Middle  
15.  P  ⇒⇒  P 
16.  P  ⇔⇔  P 

17.  [P  ⇒⇒ (Q  ∧∧  R)] ⇒⇒  [(P  ∧∧  aQ)  ⇒⇒ R] 

18.  [(P  ⇒⇒  S1) ∧∧ (S1  ⇒⇒  S2) ∧∧ . . . ∧∧ (Sn–1  ⇒⇒  Sn) ∧∧ (Sn  ⇒⇒  R)] ⇒⇒ (P  ⇒⇒  R)   
Extended Law of Syllogism  

19.  [(P  ⇒⇒  R) ∧∧ (Q  ⇒⇒  R)]  ⇒⇒  [(P  ∧∧  Q)  ⇒⇒ R]   Proof by Cases 

20.  (P  ∧∧  Q)  ⇔⇔   (Q  ∧∧  P)   
21.  (P  ∨∨  Q)  ⇔⇔   (Q  ∨∨  P)  Commutative Laws 

22.  [P  ⇒⇒ (R  ⇒⇒  Q)] ⇔⇔  [(P  ∧∧  R)  ⇒⇒ Q] 

23.  [P  ∧∧ (Q  ∧∧  R)] ⇔⇔  [(P  ∧∧  Q)  ∧∧ R]   
24.  [P  ∨∨ (Q  ∨∨  R)] ⇔⇔  [(P  ∨∨  Q)  ∨∨ R]  Associative Laws 

25.  [P  ∧∧ (Q  ∨∨  R)] ⇔⇔  [(P  ∧∧  Q)  ∨∨ (P  ∧∧  R)] 

26.  [P  ∨∨ (Q  ∨∨  R)] ⇔⇔  [(P  ∨∨  Q)  ∧∧ (P  ∨∨  R)]  Distributive Laws 

27.  [(P  ⇔⇔  Q1) ∧∧   . . .  ∧∧ (Qn–1  ⇔⇔  Qn) ∧∧ (Qn  ⇔⇔  Q)] ⇒⇒ (P  ⇔⇔  Q) 

 



Valid Arguments 
The tautologies in the preceding section are not all that there are. If you want to make a 
deduction based on a sentence, check its truth table. If it is a tautology, use it. Tautologies 
provide lots of reasoning theorems before we ever start deduction within a mathematical system.  

There are actually two branches of formal logic: the statement (or propositional) calculus, 
involving statements and reasoning by tautology; and the predicate calculus, involving 
quantified sentences. All we are doing is taking a quick guided tour through informal logic, and 
so we will not study these areas in great detail. However, from the predicate calculus we get 
another collection of reasoning sentences, some of which are listed below. These cannot be 
verified by tautology.  

Logic Axiom 2: Let U be a universal set. Each of the following is a rule of reasoning.  

1. [∀∀x,  P(x)  ⇒⇒  Q(x)] ⇒⇒ [∀∀x  P(x)  ⇒⇒  ∀∀x Q(x)].  
2. ∀∀x P(x)  ⇔⇔  [P(a),  for every   a ∈∈ U].  

3. ∃∃x P(x)  ⇔⇔  [P(a),  for some   a ∈∈ U].  

An argument is an assertion that from a certain set of sentences   S1, S2,  … , Sn (called 
premises or assumptions) one can deduce another sentence Q (called an inference or 
conclusion).   Such an argument can be denoted by   S1, S2,  … , Sn    �� Q�  Arguments are 
either valid (correct) or invalid (incorrect).  

Definition 1:  The expression S1, S2,  … , S n    �� Q is a valid argument if and only if the 

expression  (S1 ∧∧ S2 ∧∧  … ∧∧ Sn)    ⇒⇒�Q  is a rule of reasoning. 

Logic Axiom 3:   >5XOH�RI�6XEVWL WXWLRQ @�� �Suppose   P  ⇔⇔  Q.    Then   P   and   Q   may be 
substituted for one another in any sentence.  

Logic Axiom 4: Every sentence of the type a∃∃x P(x)  ⇔⇔  ∀∀x aP(x)  is true.  

Logic Axiom 5: Every sentence of the type  a∀∀x P(x)  ⇔⇔  ∃∃x aP(x)  is true. 

To prove a sentence of the type   ∀∀x P(x)  false, one could try to prove  ∃∃x a� P(x)  true. This 
is referred to as providing a counterexample.  

 
 
 
 



Logical Proofs in Mathematics 
 

 
   

• Mathematical Systems  
• Proof  

o Proving Conditionals  
o Proving Biconditionals  
o Proving “∀x,  P(x)”  
o Proof by Cases  
o Mathematical Induction  
o Proof by Contradiction  
o Proofs of Existence and Uniqueness  

• Proof Creativity  

 

Mathematical Systems 
A mathematical system  consists of the following:  

1. a set of undefined concepts,  
2. a universal set,  
3. a set of relations,  
4. a set of operations,  
5. a set of logical axioms,  
6. a set of non-logical axioms--these axioms pertain to the elements being studied, the 

relations, and the operations; and not to the logic being used,  
7. a set of theorems,  
8. a set of definitions,  
9. an underlying set theory.  

In plane geometry the undefined concepts are those of point and line. The universal set was the 
set of points in the plane. The relations were such concepts as equality, perpendicularity, and 
parallelism. We have mentioned the logical axioms. A non-logical axiom would be of the form:  

Two different points are on exactly one line. 
 



Proof 
Definition: Suppose that  A1, A2, … A k  are all the axioms and previously proved theorems of 
a mathematical system. A formal proof , or deduction, of a sentence P is a sequence of 
statements  S1, S2, … S k, where  

1. Sn  is  P, and one of the following holds  
2.  

a. Si   is one of  A1, A2, … A k, or  
b. Si  follows form the previous statements by a valid argument using the 

rules of reasoning.  

A theorem  is any sentence deduced from the axioms and/or the previous theorems. The same is 
true of lemma and proposition.  The term corollary is generally employed to denote a sentence 
that follows from the preceding one very quickly.  For some mathematicians there is a hierarchy 
of lemma, proposition, and theorem; with lemma being the easiest to prove and theorem the most 
difficult, or longest. Other mathematicians view a lemma as a statement that is useful in the proof 
of a subsequent statement (or some collection of subsequent statements) that are viewed as more 
significant; in this perspective the proof of a lemma may well be substantially longer or more 
difficult than that of a theorem.  Still other mathematicians make little or no distinction between 
these objects and call everything a theorem.  

Example: Suppose a mathematical system contains just the following axioms:  

A1:  

a + b = c  ⇒⇒  [(x <  y) ∧∧ (2 = 3)].   
A2:  

a + b  =  c.  

The following is a formal proof of  x <  y. 

S1:   a + b = c  ⇒⇒  [(x <  y) ∧∧ (2 = 3)]    , by A1 

S2:   a + b  =  c  , by A2 

S3:    (x  <  y) ∧∧ (2 = 3) , by modus ponens on S1, S2  

S4:   x  <  y  , by the tautology (P∧∧Q) ⇒⇒ P    

In practice mathematicians do not write formal proofs. They write informal proofs. An informal 
proof is an argument which shows the existence of a formal proof. As such it gives enough of the 
formal proof so that another person becomes convinced. Thus we might call an informal proof a 



convincing argument. Mathematicians try to convince other mathematicians. You will try to 
convince your fellow students and me, your professor.  

An informal proof of the above example runs as follows:  

From  A1  and A2  it follows that  (x <  y) ∧∧ (2 = 3).   Thus,   x  <  y .  

Henceforth, we will be writing only informal proofs. The art of mathematics is creating proofs. 
Just as every other artisan, the mathematician has some basic modes of proof. We will now 
consider a few of these.  

 

Proving Conditionals 
 
You usually proved a sentence of the type P  ⇒⇒  Q  in plane geometry by assuming P and 
deducing Q.  You considered Q the conclusion.  In actually, P  ⇒⇒  Q  was the conclusion; it 
was what you were trying to prove.  

To prove  P  ⇒⇒  Q  first assume P to be true. Then using P and all other theorems and axioms 
try to deduce Q.  Once Q is deduced in this manner you have completed a proof of  P  ⇒⇒  Q. 
You have not shown that Q is true; you have only shown that Q is true if P is true. Whether P is 
true is another question; whether Q is true is another question. What you have shown to be true 
is P  ⇒⇒  Q. 

This technique is called the Rule of Conditional Proof  or the Deduction Theorem . More 
formally, suppose that A1, A2, … A k are the axioms and previously proved theorems. To prove 
the statement P  ⇒⇒  Q  is to show that  

From  A1,  A2, … A k we can deduce P  ⇒⇒  Q 
 
is a valid argument. To do this temporarily assume P to be an axiom and show that  
 

From  A1,  A2, … A k  and P  we can deduce Q 
 
is a valid argument.  

A second technique of proving P  ⇒⇒  Q  is by the contrapositive . We can prove P  ⇒⇒  Q by 

proving aQ  ⇒⇒  aP.  Often the rule of conditional proof is used to prove the contrapositive.  

 

 



Proving Biconditionals 
There are three modes of proof for biconditional sentences.  

1. Prove P  ⇒⇒  Q and Q  ⇒⇒  P.  

2. Prove P  ⇒⇒  Q and aP  ⇒⇒  aQ.  
3. Provide an iff-string.  

A word about the iff-string . We produce a string of equivalent sentences from P to Q. This is 
the Law of Syllogism from the list of tautologies.  

 

Proving statements of the form  “ ∀∀x,  P(x)”  
To prove ∀∀x P(x) let x represent an arbitrary element of the universal set and prove that P(x) 
is true. Then since x was arbitrary element of the universal set, we may generalize that ∀∀x P(x) 
is true. The justification is Logical Axiom 2  

 

Proof by Cases 
 
Proof by cases is used several ways and involves the connective or. We will be trying to prove a 

sentence of the type  (P ∨∨ R)  ⇒⇒ Q. This type of proof utilizes the tautology  
 

[(P  ⇒⇒  Q) ∧∧ (R  ⇒⇒  Q)]  ⇒⇒  [(P  ∨∨  R)  ⇒⇒ Q] 
 
The proof is accomplished by proving the antecedent of this sentence:  

 

 (P  ⇒⇒  Q) ∧∧ (R  ⇒⇒  Q) 
 
Hence,  P  ⇒⇒  Q  and  R  ⇒⇒  Q  must be proved.  Any mode of proof for conditional sentences 
can be used.  

Similarly, a proof by cases of  

 

(P1 ∨∨ P2 ∨∨ … Pn) ⇒⇒  Q 

is accomplished by proving  (P1  ⇒⇒  Q) ∧∧ . . . ∧∧  (Pn  ⇒⇒  Q).  

The art of producing a proof by cases lies in the discovery of what set of exhaustive cases is 
appropriate.  



 

Mathematical Induction 
 
This is a technique that is all too often overlooked in geometry. It is included here for the sake of 

completeness. If P(n) is a sentence which is a statement for every n ∈∈   ( = the natural 
numbers or nonnegative integers), then the Principle of (Finite) Mathematical Induction is 
 

[P(1)  ∧∧  ∀∀k,  P(k)  ⇒⇒   P(k+1)]  ⇒⇒   ∀∀n  P(n). 
  
 

If we can prove the antecedent of this statement,  P(1)  ∧∧  ∀∀k,  P(k)  ⇒⇒   P(k+1), then by 

modus ponens we can deduce ∀∀n  P(n). Thus there are two steps in the proof of ∀∀n  P(n):  
 
Basic Step.  

Prove P(1).  
 

Inductive Step.  
Prove ∀∀k,  P(k)  ⇒⇒   P(k+1).  

 
Note that its name is misleading. Mathematical induction is deductive reasoning not inductive 
reasoning in the usual sense. Inductive reasoning is making a conjecture or guess based on 
observations and one’s previous mathematical (or nonmathematical!) experie nce.  

 

Proof by Contradiction 
 
A contradiction is a statement which is false no matter what the truth value of its constituent 

parts. It can usually be expressed symbolically in the form  R ∧∧ aR. A  proof  by  contradiction 

of a statement P is a proof that assumes aP and yields a sentence of the type   

R ∧∧ aR, where R is any sentence including P, an axiom, or any previously proved theorem. 
This is justified by the tautology  

 

[aP ⇒⇒ (R ∧∧ aR)]  ⇒⇒  P. 
 

Intuitively, P can only be true or false (since we are assuming only a two-valued logic). If we 

assume its negation true and this yields another sentence both true and false, then aP cannot be 

true, so P must be true.  



The phrases reductio ad absurdum  and indirect proof  both refer to proof by contradiction. The 
importance of being able to form sentence negations is realized when doing proofs by 
contradiction. To begin such proofs you must know how to form negations.  

Comparing proof techniques we see that with the Rule of Conditional Proof we assume P with 

the explicit intention of deducing Q. With the contrapositive we assume aQ with the explicit 

intention of deducing aP.  But in using  Proof by Contradiction we assume  BOTH P AND aQ 

and try to deduce any sentence R and its negation aR.  

Proofs of Existence and Uniqueness 
 
The sentence  

There exists an x such that P(x) 
 

is denoted by ∃∃x, P(x).    The sentence  

There exists exactly one x such that P(x) 
 
is denoted by ∃∃! x, P(x) or  ∃∃_� x, P(x).    There are two parts to proving a sentence of this 
form.  

1. Existence Part.   Prove that there is an x such that P(x) is true.  

       2.  Uniqueness Part.   Here you must prove that if there are two elements x and ] such that 

P(x) and P(]) are each true, then  x = ]�  In symbols:   ∀∀x ∀∀],  [P(x) = P(])] ⇒⇒ x = ]� 

  

Proof Creativity 
In the previous part of this chapter you learned several modes of proof. The intent is that these 
will become part of your mathematical toolbox. Just because you have the tools does not 
guarantee that you can create a proof. There are some helpful procedures to follow as aids in 
creating a proof.  

Translate to Symbolic Logic:  A typical comment made when proofs are attempted is  

I do not know where to start!!!! 
 
This statement is made with a great gnashing of teeth and wringing of hands. One procedure to 
follow is comparable to that of solving a problem in basic algebra.  



First, translate what you are requested to prove into symbolic logic. Then seeing the structure of 
the translated sentence you can select a mode of proof. Still , knowing a mode of proof that could 
be used does not guarantee success. Suppose you want to attempt to prove a sentence of the type 
P  ⇒⇒  Q  by using the Rule of Conditional Proof. You want to assume P and deduce Q. A 
question often asked is  

How do I get from P  to  Q? 
 
There is no certain way. No one way will always work. Certainly, knowing to assume P and 
deduce Q  is a step in the right direction. The mode of proof provides the structure for the proof; 
building this structure is usually a more creative task. I can give a few hints.  

Analogy:  An important aid in carrying out proofs is to get ideas from other proofs. This is 
supposed by comments of mathematicians who argue that to be good at mathematics you need 
lots of practice; lots of exposure to different proofs.  

Analytic Process:  This is known as working backwards. You want to prove P  ⇒⇒  Q.  Start 
with Q and try to find an R such that  R  ⇒⇒  Q  . Then try to find and S such that   S  ⇒⇒  R.  
Then look to see if  P  ⇒⇒  S.    If not, try to fill i n another step. Continue this until you find a 
sentence  Rn  such that P  ⇒⇒  Rn  and  

 
Rn    ⇒⇒  Rn–1   ⇒⇒  … ⇒⇒    R  ⇒⇒  Q . 

Do not be surprised if you do not see this process outlined in a text or reference book. It is rare 
that if this processed is used it is then explicitl y mentioned. Usually the proof will be given as  

P  ⇒⇒  Rn    ⇒⇒  Rn–1   ⇒⇒  … ⇒⇒    R  ⇒⇒  Q . 

Do-Something Approach:  This is simply trial-and-error. You want to prove  P  ⇒⇒  Q  by 
assuming P and deducing Q. You have no particular way to get from P to Q; but start out, get 
involved, do something, try different approaches, prove all that you can. You do not have to 
show all of this in your final version of your proof, but it can help you get started. When reading 
proofs in mathematics texts and journals, you are not aware of the blind alleys and unsuccessful 
attempts preceding a successful proof. This leads you to think the established mathematician 
never follows a wrong path or makes a mistake. Trial and error is very much a part of 
mathematical creativity.  

Use of Definitions:  Another helpful procedure is to recall all relevant definitions. It is a 
tendency to read a definition and ignore its importance in later proofs.  

Use of Previously Proved Theorems:  It is helpful — indeed, it is essential in starting a proof to 
examine all previously proved theorems for results which might be relevant to the proof.  


