Products, Relations and Functions

For avariety of reasons, in this course it will be useful to modify afew of the set-
theoretic preliminariesin the first chapter of Munkres. The discussion below explains
these differences specificaly.

Cartesian Products and Relations

Given two set-theoretic objectsa and b, there is a set-theoretic construction which yields
an

ordered pair (a, b)
which has the fundamental property
(a,b) =(c,d)ifandonlyifa=cand b =d.

Giventwo sets A and B, the Cartesian product A X B is defined to be the set of all
ordered pairs (a, b) wherea [J A and b [ B.

We shall define abinary relation from A to B to be atriple

R = (A, Ry, B)

where A and B are setsand Ry is asubset of A X B. Thisdiffers from the standard
definitions and the one in Munkres in two respects. First of al, the description in

Munkres requires A = B. Also, we take the sets A and B as specific pieces of extra
structure. Following standard notation we say that Ry isthe graph of ® , and fora [ A

and b O B we write

a®R b ifandonlyif (@, b) [0 Ryand say that a R bistrueor ais R -related to b.

If B = A then we often say that R isabinary relation on A. Important special cases of

binary relations including partial orderings and equivalence relations are discussed in
Munkres.

Functions

Formally speaking, afunction is a special type of relation. The main difference between
our definition and the standard one is that the source set A (formally, the domain) and the
target set B (formally, the codomain) are included explicitly as part of the structure. This



point is often ignored in discussions of set theory (but an equivalent piece of structureis
mentioned on page 16 of Munkres). Given the importance of the concept of function in
mathematics, we shall give a complete formal definition.

Definition. A functionisatriple f = (A, T, B) where A and B are setsand " is a
subset of A x B with the following property:

($$) For eacha O A thereisa unique element b [1 B such that (a, b) O T.

The sets A and B are respectively called the domain and codomain of f, and I is
called thegraph of f. Frequently wewrite f : A — B to denote afunction with
domain A and codomain B, and as usua we write b = f(a) if and only if (a, b) liesin
the graph of f.

Given afunction and a subset of its domain or codomain, we shall often need to work
with the image or inverse image of the subset as defined on page 19 or Munkres. Many
important properties of these constructions are summarized in the exercises on pages 20
and 21 of Munkres. One further property of the same sort is the following identity:

If f: A~ Bandg:B - C,theng( f(S) =[gef](S) foral SOA.

Conceptualy, the aucial point in ou definitionisthat it kegstradk of the cdamain.
Thisturnsout to be aucia for many mathematicd constructions (for example, the
fundamental groupthat is discussed in the second telf of Munkres' bookK). In particular,

if B isasubset of B* thenI" can be viewed asthe graph o afunction A —» B* aswell
asthegraph o afunction f: A - B.

Notation. If f: A - Bisafunctionwhoseimageliesin C [J B (i.e,, the graph of
f isacually asubset of A X C), then the associated function (A, I, C) will be denoted

by C | f andcdled the corestriction of f to C. The notationis meant to suggest that
thisis ssmehow complementary (or “dua”) to the nation d restriction defined on @ge
17 o Munkres; in ou notation the latter can be expressed as

f|S=(SIrn (SxB),B)

where S A.
Digoint unions

In many situationsit is useful or even necessary to have aset S creaed from digjoint
copies of two given sets A andB. Formally, the disioint sum (or disoint union) is



defined to be the set
ACB =AXB = Ax{l} O BX{Z}

and the standard injection mappings ia: A®*ALIB andig: B*ALIB are
defined by

ia(a) = (a 1) and is (b) = (b, 2)

respedively. By construction,the mapsia andig determine 1—1 correspondences from
A to ip (A) andfromB to i (B), theimagesof A andB aredisjoint (becaisethe
second coordinates of the ordered pairs are unequal), and their unionisal of A1 B ..

The Natural Numbers

It is nealy impossble to domuch mathematicd work at al withou using the natural
numbers (the nonregative integers) in ore way or ancther. At this point we shall only
need enough information abou them to work with finite sets and mathematicd induction,
andit will sufficeto view the natural numbers using the aioms for them formulated by
G. Peano.

PEANO AXIOMS. The natural numbers are given by apair (1], &) consisting of a set
] andafunctione: [N] — [\] with the foll owing properties [which refled the nature of
sigma @& a map taking ead natural number M to its “succesor” M + 1J:

(1) Thereisexactly one element (the zero element) not in the image of o.
(2) The map sigma is one-to-one.

(3) If Alisasubset of [\] such that

() OOA,
(i) foralk O, kOAimpliess(k) O A,
then A=\ .

The third axiom isjust the (weak) principle of finite mathematical induction.

The Peano axioms are sufficient to yield all the properties of natural numbers that are
used in Munkres. Strictly speaking, the proofs of results like Theorem 4.1 and 4.2
require our axioms for the real number system, but we shall not have any need for these
results until after the real number system has been introduced. All of the resultsin



Sedions 6 and 8 d Munkres — except those requiring the red numbers explicitly —
follow asin the text.

The Axiom of Choice and L ogical Consistency

Although set theory provides an effedive framework for discussng questions involving
finite sets, itsinitial and most important motivation came from questions abou infinite
sets. Asreseach onsuch sets progressed duing the late nineteenth and ealy twentieth
century, it eventualy becane evident that most of the underlying principles involved
constructing new sets from old ores and the existence of the set of natural numbers.
However, it also becane dea that some results depended uponthe Axiom of Choice

(&} , whichisan abstract and basically nonconstructive existence statement.

There are many equivalent ways of formulating set-theoretic assumptions that are
logically equivalent to the Axiom of Choice. Hereisalist of several that appear in
Munkres:

Axiom of Choice. If A isanonempty set and P, (A) denotes the set of all

nonempty subsets of A, thereisa function f: P, (A) ® A suchthat f(B) O B for
all nonempty B [ A..

“Zermelo’'s Well-ordering Theorem.” For every nonempty set A, thereisa
linear ordering such that each nonempty subset B of A has a least element (i.e., thereis
a well-ordering of A) .

Hausdor ff Maximal Principle. Every partially ordered set has a maximal linearly
ordered subset .

“Zorn’'sLemma.” If Alisapartially ordered set in which linearly ordered subsets
have upper bounds, then A has a maximal element .

For some time there was uncertainty whether the Axiom of Choiceshoud beincluded in
the akiioms for set theory. Concern ower this paint increased with the discovery of
apparent paradoxes in set theory aroundthe beginning of the twentieth century. One
example of thisinvolves attempts to dscussthe “set of all sets.” Most of the paradoxes
were resolved by a caeful foundition d the akioms for set theory, but it was not known

if adding &S might still | ead to alogica contradiction.

The discovery of the so-cdled Banach-Tarski paradox in the nineteen twenties

illustrated that AS  had extremely strong consequences that raised questions about
whether it shoud be taken as an axiom for set theory. Initsoriginal form, the result of S.



Banadh and A. Tarski statesthat if &S isassumed, then it is possble to take asolid ball
in 3-dimensional space cut it upinto finitely many pieces and, moving them using only
rotation and translation, reassembl e the pieces into two ball s the same size & the original
one!! At first glancethis may appea to violate the laws of physics, bu the setsin
guestion are mathematica rather than physicd objeds. In particular, thereisno
meaningful way to define the volumes of the individual pieces, and it isimpossgble to
cary out the anstruction ptysicdly becaise if one does cut the solid ball into pieces
physicdly (say with aknife or saw), ead piecehas a spedfic volume (physicdly, ore
can find the volumes by sticking the piecesinto alarge o/linder with the right amourt of
water). Even thouwgh the Banadch-Tarski paradox does not yield a cntradiction to the
axioms of set theory, it does raise two fundamenta questions:

1. If set theory with &G yields bizarre cnclusions like the existence of the sets
described abowe, isit possble that further pursuits will | ead to a cntradiction?

2. Isit worthwhil e to consider such ojeds, andif notisit appropriate to have an
axiomatic system for set theory that implies the existence of such physicdly
unred entiti es?

One way of answering the second questionisthat AS  aso impliesthe existence of many

things that mathematicians do want for a variety of reasons. For example, ore needs AC
to conclude that every (infinite-dimensional) vedor spacehas abasis. Although some
mathematicians think that the subjed shoud only consider objeds given by suitably

“constructive” methods, the existenceresults that follow from AS  are so useful that
mathematicians would prefer to include it as part of the akiomsiif at all possble.

Of course, if AS leadsto alogica contradiction, then it shoud na be part of the aiioms
for set theory, so this brings us badk to the first question. Two extemely important and
fundamental pieces of reseach by K. Godel in the nineteen thirties clarified the role of
AC . Thefirst of these was his work on the incompl eteness properties of axiomatic
systems, and the essential conclusion is that mathematics can never be sure that any
reasonable set of axioms for set theory islogically consistent. His subsequent result
showed that &S was relatively consistent with the other axioms for set theory;
specifically, if thereisalogica contradiction in set theory with the inclusion of AG

then thereis also alogical contradiction if one does not assume AC . If thereisan
internal contradiction in the axioms for set theory, it must arise either from the
assumptions about constructing sets by specifying them in terms of logical statements or
from the basic assumption that one can carry out fundamental set theoretic constructions

on [\ . Since most mathematicians would prefer to include as many objects as possible
in set theory so long as these objects do not lead to alogical contradiction, the effective

consegquence of relative consistency is that inclusion of &S in the axioms for set theory
iS appropriate.



Subsequent work of P. Cohen in the nineteen sixties completed our current understanding
of therole of A . Specifically, he showed that one can construct models for set theory

such that &S was true for some models and false for others.

The Continuum Hypothesis

Another question about set theory that arose very early in the study of the subject was the
Continuum Hypothesis :

(@) fAisaninfinite subset of thereal numbers R and there is no one-to-one
correspondence between A and the natural numbers [\ , then there is a one-to-one
correspondence between A and R.

Since there is a one-to-one correspondence between R and the set P (N ) of all

subsets of [\ , one can reformulate this as the first case of a more sweeping conjecture
known as the Generalized Continuum Hypothesis :

(@H fSisaninfinitesetand Tisasubset of P (S), theneither (i ) thereisa
one-to-one correspondence between T and a subset of S, or else (ii ) thereisa one-to-

one correspondence between T and P (S) :

G. Cantor originally formulated @4 in hiswork establishing set theory, the motivation
being that he could na find any subsets whase cadina numbers were between those of

NandR. Asinthe caeof A& thework of Godel showed that if a contradictionto
the aioms for set theory aroseif one asumes@ or G  then ore can also oltaina
contradiction withou such an extra assumption, and the work of P. Cohen shows that one

can construct models for set theory such that @4 was true for some models and false for
others. Infad, ore can construct models for which the number of cardinaliti es between

those of [N and R can vary to some extent (for example, there might be one or two



cadinaliti es between them). Because of Cohen’s work, most mathematicians are not
willingtoasume @ or @H  for the same reason that they are willi ng to assume

A2 They would prefer to include as many objects as possible in set theory so long as
these objects do not lead to alogical contradiction.



