SOLUTIONS TO EXERCISES FOR
MATHEMATICS 205A — Part 1

Fall 2005
I. Foundational material

I.1: Basic set theory

Additional exercise

1. Let X be a set and let A, B C X. The symmetric difference A @& B is defined by the
formula
A®B=(A-B) U (B—A)

so that A @ B consists of all objects in A or B but not both. Prove that @& is commutative and
associative on the set of all subsets of X, that A® () = A for all A, that A® A = () for all A, and that
one has the following distributivity relation for A, B, C C X:

AN(BaC) = (ANB) ® (ANC)

SOLUTION.

The commutativity law for @ holds because
BaA=(B-—A) U (A-B)

by definition and the commutativity of the set-theoretic union operation. The identity A® A = ()
follows because
ADA=(A-A) U (A-A) =10

and A ® ) = A because

A®D=(A-0) U W-A) =AU 0D=A.

In order to handle the remaining associative and distributive identities it is necessary to write
things out explicitly, using the fact that every Boolean expression involving a finite list of subsets
can be written as a union of intersections of subsets from the list. It will be useful to introduce
some algebraic notation in order to make the necessary manipulations more transparent. Let
X D AUBUC denote the complement of Y C X by Y (or by Y if Y is some compound algebraic
expression), and write P NQ simply as PQ. Then the symmetric difference can be rewritten in the
form (AB) U (BA). It then follows that

(A®B)oC = (AEUBE)@ U C(AEUBE)A:
AE@UBJ@UC((ZUB)(EUA)) :AﬁéLJBﬁéuc(XEuAB) —
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ABC U ABC U ABC U ABC .
Similarly, we have

A@(B@C):A(B@uc§y1(36u0§>2:

~

A«BUOMGUBDu352ua&$zm§6u3mu362ucﬁiz

ABC U ABC U ABC U ABC .
This proves the associativity of @ because both expressions are equal to the last expression displayed

above. The proof for distributivity is similar but shorter (the left side of the desired equation has
only one @ rather than two, and we only need to deal with monomials of degree 2 rather than 3):

A(B@®C)=A(BCUCB) = ABC U ABC

AB @ AC = (AB)(AC)"U (AC)(AB)" =

(AB(ZU 5)) U (AC(KU E)) = ABC U ABC

Thus we have shown that both of the terms in the distributive law are equal to the same set.m

I.2: Products, relations and functions

Problem from Munkres, § 6, p. 44

4(a). This is outlined in the course notes.

Additional exercises

1. Let X and Y be sets, suppose that A and C are subsets of X, and suppose that B and D
are subsets of Y. Verify the following identities:

(1)) Ax(BND)=(AxB)N(Ax D)

SOLUTION.

Suppose that (z,y) lies in the left hand side. Then z € A and y € BN D. Since the latter
means y € B and y € D, this means that

(z,y) e (AxB)N(Ax D) .

Now suppose that (z,y) lies in the set displayed on the previous line. Since (z,y) € A x B we have
xz € A and y € B, and similarly since (z,y) € A x D we have x € A and y € D. Therefore we have
z € Aand y € BN D, so that (z,y) € A x (BN D). Thus every member of the the first set is a
member of the second set and vice versa, and therefore the two sets are equal.m

(i1) Ax (BUD)=(AxB)U(AxD)



SOLUTION.
Suppose that (z,y) lies in the left hand side. Then z € A and y € BUD. If y € B then
(z,y) € Ax B, and if y € D then (z,y) € A X D; in either case we have
(z,y) e (AxB)U(Ax D) .

Now suppose that (z,y) lies in the set displayed on the previous line. If (z,y) € A x B then z € A
and y € B, while if (z,y) € A x D then z € A and y € D. In either case we have z € A and
y € BU D, so that (z,y) € A x (BN D). Thus every member of the the first set is a member of
the second set and vice versa, and therefore the two sets are equal.m

(1i1) Ax(Y—-D)=(AxY)—-(AxD)
SOLUTION.
Suppose that (z,y) lies in the left hand side. Then z € A and y € Y — D. Since y € Y we
have (z,y) € A x Y, and since y ¢ D we have (z,y) ¢ A x D. Therefore we have
Ax(Y -D) Cc (AxY)—(AxD) .

Suppose now that (z,y) € (A x Y)—(A x D). These imply that z € Aandy € Y but (z,y) € AxD;
since x € A the latter can only be true if y € D. Therefore we have that t € Aand y € Y — D, so
that

Ax(Y -D) D (AxY)—-(AxD) .

This proves that the two sets are equal.m
(iv) (AxB)N(CxD)=(ANC)x (BND)
SOLUTION.

Suppose that (z,y) lies in the left hand side. Then we have z € A and y € B, and we also
have £ € C and y € D. The first and third of these imply z € AN C, while the second and fourth
imply y € BN D. Therefore (z,y) € (AN C) x (BN D) so that

(AxB)Nn(CxD) Cc (AnC)x(BND).

Suppose now that (z,y) lies in the set on the right hand side of the displayed equation. Then
z€ ANC and y € BND. Since z € A and y € B we have (z,y) € A x B, and likewise since z € C
and y € D we have (z,y) € C x D, so that

(AxB)N(CxD) > (ANC) x (BN D) .

Therefore the two sets under consideration are equal.m
(v) (AxB)U(CxD) Cc (AuC)x (BUD)
SOLUTION.

Suppose that (z,y) lies in the left hand side. Then either we have x € A and y € B, or else we
have £ € C and y € D. The first and third of these imply z € A U C, while the second and fourth
imply y € BU D. Therefore (z,y) is a member of (AU C) x (B U D) so that

(AxB)U(CxD) Cc (AUC)x(BUD,) .
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Supplementary note: To see that the sets are not necessarily equal, consider what happens if
ANC = BND = ( but all of the four sets A, B, C, D. Try drawing a picture in the plane to
visualize this.m

(i) (X xY) = (AxB)= (X x (Y —B))U((X —A) xY)
SOLUTION.

Suppose that (z,y) lies in the left hand side. Then z € X and y € Y but (z,y) ¢ A x B. The
latter means that the statement

re€Aand ye B
is false, which is logically equivalent to the statement
eitherx ¢ Aory ¢ B.

If z ¢ A, then it follows that (z,y) € ((X — A) x Y), while if y ¢ B then it follows that
(z,y) € (X x (Y — B)). Therefore we have

(XxY)-(AxB) ¢ (Xx(Y-B))U((X-A)xY).

Suppose now that (z,y) lies in the set on the right hand side of the containment relation on the
displayed line. Then we have (z,y) € X x Y and also

eitherx ¢ Aory ¢ B.
The latter is logically equivalent to
re€Aandye B

and this in turn means that (z,y) ¢ A x B and hence proves the reverse inclusion of sets.m

1.3 : Cardinal numbers

Problem from Munkres, § 7, p. 51

4. (a) A real number is said to be algebraic if it satisfies some polynomial equation of positive
degree with rational (equivalently, integer) coefficients. Prove that the set of all algebraic numbers is
countable; you may use the fact that a polynomial of degree n has at most n distinct roots.

SOLUTION.

Let Q[t] denote the ring of polynomials with rational coefficients, and for each integer d > 0
let Q[t]4 denote the set of polynomials with degree equal to d. There is a natural identification of
QJt]4 with the subset of Q?*+! consisting of n-tuples whose last coordinate is nonzero, and therefore
Q|[t]4 is countable. Since a countable union of countable sets is countable (Munkres, Theorem 7.5,
pp- 48-49), it follows that Q[t] is also countable.

Given an algebraic number «, there is a unique monic rational polynomial p(t) of least (pos-
itive) degree such that p(a) = 0 (the existence of a polynomial of least degree follows from the
well-ordering of the positive integers, and one can find a monic polynomial using division by a
positive constant; uniqueness follows because if p; and ps both satisfy the condition then p; — ps
is either zero or a polynomial of lower degree which has « as a root). Let p, be the polynomial
associated to « in this fashion. Then p may be viewed as a function from the set A of algebraic
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numbers into Q[t]; if f is an arbitrary element of degree d > 0, then we know that there are at
most d elements of A that can map to p (and if f = 0 the inverse image of {f} is empty). Letting
Ay be the inverse image of f, we see that A = Uy Ay, so that the left hand side is a countable
union of finite sets and therefore is countable.n

(b) A real number is said to be transcendental if it is not algebraic. Prove that the set of
transcendental numbers is uncountable. [As Munkres notes, it is surprisingly hard to determine whether
a given number is transcendental.]

SOLUTION.

Since every real number is either algebraic or transcendental but not both, we clearly have
2% — |R| = |algebraic| + |transcendental| .

We know that the algebraic numbers are countable, so if the transcendental numbers are also count-
able the right hand side of this equation reduces to Ny + Np, which is equal to Ny, a contradiction.
Therefore the set of transcendental numbers is uncountable (in fact, its cardinality is 2%° but the
problem did not ask for us to go any further).n

Problem from Munkres, § 9, p. 62

5. (a) Use the Axiom of Choice to show that if f : A — B is surjective then it has a right
inverse.

SOLUTION.

For each b € B let Ly, C A be the inverse image f~({b}). Using the axiom of choice we
can find a function g that assigns to each set L a point g*(L;) € L,. Define g(b) = g*(Ls); by
construction we have that g(b) € f~1({b}) so that f(g(b)) = b. This means that f°g = idg and
that g is a right inverse to f.=

(b) Show that if A # 0 and f : A — B is injective, then f has a left inverse. Is the Axiom of
Choice needed here?

SOLUTION.

Given an element z € A define a map g, : B — A as follows: If b = f(a) for some a let
g.(b) = a. This definition is unambiguous because there is at most one a € A such that f(a) = b.
If b does not lie in the image of f, set g,(b) = z. By definition we then have g,(f(a)) = a for all
a € A, so that g,°f = ida and g, is a left inverse to f. Did this use the Axiom of Choice? No.
What we actually showed was that for each point of A there is an associated left inverse. However,
if we had simply said, “pick some point zy € A and define g using zy,” then we would have used
the Axiom of Choice.n

Problem from Munkres, § 11, p. 72

8.  As noted in Munkres and the course notes, one standard application of Zorn’s Lemma is to
show that every vector space has a basis. A possibly infinite set A of vectors in the vector space V is
said to be linearly independent if each finite subset is in the sense of elementary linear algebra, and such
a set is a basis if every vector in V is a finite linear combination of vectors in A.

(a) If A is linearly independent and 8 € V' does not belong to the subspace of linear combinations
of elements of A, prove that A U {3} is linearly independent.



SOLUTION.

Note first that 8 ¢ A for otherwise it would be a linear combination of elements in A for trivial
reasons.

Suppose the set in question is not linearly independent; then some finite subset C' is not linearly
independent, and we may as well add 8 to that subset. It follows that there is a relation

zgf + Z zyy =0

yEANC

where not all of the coefficients zg or z, are equal to zero. In fact, we must have zg # 0 for
otherwise there would be some nontrivial linear dependence relationship in A N C, contradicting
our original assumption on A. However, if 3 # 0 then we can solve for 3 to express it as a linear
combination of the vectors in A N C, and this contradicts our assumption on 3. Therefore the set
in question must be linearly independent.m

(b) Show that the collection of all linearly independent subsets of V' has a maximal element.
SOLUTION.

Let X be the partially ordered set of linearly independent subsets of V', with inclusion as
the partial ordering. In order to apply Zorn’s Lemma we need to know that an arbitrary linearly
ordered subset L C X has an upper bound in in X. Suppose that L consists of the subsets A;; it
will suffice to show that the union A = U; A; is linearly independent, for then A will be the desired
upper bound.

We need to show that if C is a finite subset of A then C is linearly independent. Since each
A; is linearly independent, it suffices to show that there is some r such that C' C A,, and we do
this by induction on |C|. If |C| = 1 this is clear because o € A implies a € A; for some t. Suppose
we know the result when |C| = k, and let D C A satisfy |D| = k + 1. Write D = Dy U y where
v & Dy. Then there is some u such that Dy C A, and some v such that v € A,. Since L is linearly
ordered we know that either A, C A, or vice versa; in either case we know that D is contained
in one of the sets A, or A,. This completes the inductive step, which in turn implies that A is
linearly independent and we can apply Zorn’s Lemma.n

(c) Show that V has a basis.
SOLUTION.

Let A be a maximal element of X whose existence was guaranteed by the preceding step in
this exercise. We claim that every vector in V is a linear combination of vectors in A. If this were
not the case and B was a vector that could not be expressed in this fashion, then by the first step
of the exercise the set A U {3} would be linearly independent, contradicting the maximality of A.m

Additional exercises

1. Show that the set of countable subsets of R. has the same cardinality as R.
SOLUTION.

Let X be the set in question, and let Y C X be the subset of all one point subsets. Since there
is a 1-1 correspondence between R and Y it follows that 2% = |R| = |Y| < | X|. Now write X as
a union of subfamilies X,, where 0 < n < oo such that the cardinality of every set in X,, is n if
n < oo and the cardinality of every set in X, is N.
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Suppose now that n < oo. Then X, is in 1-1 correspondence with the set of all points
(1, --- ,xp) in R™ such that z; < --- < =z, (we are simply putting the points of the subset
in order). Therefore |Xy| = 1 and |X,,| < 2% for 1 < n < oo, and it follows that U< X, has
cardinality at most

Ry - 280 < oRo.9¥0 — 9No

So what can we say about the cardinality of X,,7 Let S be the set of all infinite sequences in R
indexed by the positive integers. For each choice of a 1-1 correspondence between an element of
X, and Nt we obtain an element of S, and if we choose one correspondence for each element we

obtain a 1-1 map from X, into S. By definition |S| is equal to (ZNO)NO, which in turn is equal to
2R0xRo — 9%o. therefore we have | Xoo| < 2%°. Putting everything together we have

1X| = | Uncoo Xn|+ |Xoo| < 280 4 280 = 2%

and since we have already established the reverse inequality it follows that | X| = 20 as claimed.n
IMPORTANT FOOTNOTE.

The preceding exercise relies on the generalization of the law of exponents for cardinal numbers
B
,yaﬂ — (,Ya)

that was stated at the end of Section 1.3 of the course notes without proof. For the sake of
completeness we shall include a proof.

Choose sets A, B, C so that |A| = f, | B| = « (note the switch!!) and |C| =, and let F(S,T)
be the set of all (set-theoretic) functions from one set S to another set 7. Wiht this terminology
the proof of the cardinal number equation reduces to finding a 1-1 correspondence

F(Ax B,C) +— F(4, F(B,C)) .

In other words, we need to construct a 1-1 correspondence between functions A x B — C and
functions A — F(B, C). In the language of category theory this is an example of an adjoint functor
relationship.

Given f : Ax B — C, construct f*: A — F(B,C) by defining f*(a) : B — C using the

formula,
[f*(a)] (b) = f(a,b) .

This construction is onto, for if we are given h* : A — F(B,C) and we define f : A x B — C by
the formula

f(a;b) = [h(a)] (b)

then f* = h by construction; in detail, one needs to check that f*(a) = h(a) for all a € A, which
amounts to checking that [f*(a)](b) = [h(a)](b) for all a and b — but both sides of this equation
are equal to f(a,b). To see that the construction is 1-1, note that f* = ¢* < f*(a) = g *(a)
for all a, which is equivalent to [f*(a)](b) = [¢*(a)](b) for all a and b, which in turn is equivalent to
f(a,b) = g(a,b) for all a and b, which is equivalent to f = g. Therefore the construction sending f
to f* is 1-1 onto as required.m

For the record, the other exponential law

(B-7)" =p>-y*



may be verified by first noting that it reduces to finding a 1-1 correspondence between F(A, B x C)
and
F(A,B) xF(A,C) .

This simply reflects the fact that a function f : A — B x (' is completely determined by the ordered
pair of functions pg° f and pc°f where pg and p¢ are the coordinate projections from B x C' to
B and C respectively.n

2. Let o and S be cardinal numbers such that & < 3, and let X be a set such that | X| = .
Prove that there is a subset A of X such that |[A| = .

SOLUTION.

The inequality means that there is a 1-1 mapping j from some set Ay with cardinality «
to a set B with cardinality 8. Since the cardinality of X equals g it follows that there is a 1-1
correspondence f : B — X. If we take A = j(f(A))), then A C X and |A| = c.m

II. Metric and topological spaces

II.1: Metrics and topologies

Problem from Munkres, § 13, p. 83

3.  Given a set X, show that the family T, of all subsets A such that X — A is countable or
X — A = X defines a topology on X. Determine whether the family T, of all A such that X — A is
infinite or empty or X forms a topology on X.

SOLUTION.

X lies in the family because X — X = () and the latter is finite, while () lies in the family
because X — ) = X. Suppose U, lies in the family for all @ € A. To determine whether their union
lies in the family we need to consider the complement of that union, which is

X—UUa = ﬂX—Ua.

Each of the sets in the intersection on the right hand side is either countable or all of X. If at least
one of the sets is countable then the whole intersection is countable, and the only other alternative
is if each set is all of X, in which case the intersection is X. In either case the complement satisfies
the condition needed for the union to belong to T.. Suppose now that we have two sets U; and U,
in the family. To decide whether their intersection lies in the family we must again consider the
complement of U; N Us, which is

(X —U)U(X —Uy) .

If one of the two complements in the union is equal to X, then the union itself is equal to X, while
if neither is equal to X then both are countable and hence their union is countable. In either case
the complement of U; N Us satisfies one of the conditions under which U; N Us belongs to T..
What about the other family? Certainly () and X belong to it. What about unions? Suppose
that X is an infinite set and that U and V lie in this family. Write £ = X —U and F = X — V; by
assumption each of these subsets is either infinite or empty. Is the same true for their intersection?
Of course not! Take X to be the positive integers, let E be all the even numbers and let F be all
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the prime numbers. Then F and F' are infinite but the only number they have in common is 2. —
Therefore the family T, is not necessarily closed under unions and hence it does not necessarily
define a topology for X .m

Additional exercises

1. In the integers Z let p be a fixed prime. For each integer a > 0 let U,(n) = {n +
kp®, some k € Z}. Prove that the sets U,(n) form a basis for some topology on Z. [Hint: Let vp(n)
denote the largest nonnegative integer k such that p* divides n and show that

1
d,(a,b) = —
P ) pup(a—b)

defines a metric on Z].
SOLUTION.

In the definition of d, we tacitly assume that a # b and set dy(a,a) = 0 for all a. The
nonnegativity of the function and its vanishing if and only if both variables are equal follow from
the construction, as does the symmetry property d,(a,b) = d,(b,a). The Triangle Inequality takes
more insight. There is a special class of metric spaces known as ultrametric spaces, for which

d(z,y) < max{d(z,2),d(y,2)}

for all z, y, z € X; the Triangle Inequality is an immediate consequence of this ultrametric inequal-
ity.

To establish this for the metric d,, we may as well assume that = # y because if z = y the
ultrametric inequality is trivial (the left side is zero and the right is nonnegative). Likewise, we
may as well assume that all three of z, y, z are distinct, for otherwise the ultrametric inequality
is again a triviality. But suppose that d,(z,y) = p~" for some nonnegative integer r. This means
that £ — y = p"q where ¢ is not divisible by p. If the ultrametric inequality is false, then p~™" is
greater than either of either d,(z, 2) and d(y, z), which in turn implies that both z — z and y — 2
are divisible by p"T!. But these two conditions imply that z — vy is also divisible by p"*!, which is
a contradiction. Therefore the ultrametric inequality holds for d,,.

One curious property of this metric is that it takes only a highly restricted set of values; namely
0 and all fractions of the form p~" where r is a nonnegative integer.a

2. Let A C X be closed and let U C A be open in A. Let V' be any open subset of X with
U C V. Prove that U U (V — A) is open in X.

SOLUTION.

Since U is open in A there is an open subset W in X such that U = W N A, and since U C V
we even have U =V NU =V NWNA. But VN W is contained in the union of U =V NW N A
and V — A, and thus we have

UUuU(V-A) c (VnW)U(V-A4) c (UU(V-A)U(V-A) Cc UU((V-A)
sothat UU(V — A) = (VNW)U(V — A). Since A is closed the set V — A is open, and therefore
the set on the right hand side of the preceding equation is also open; of course, this means that the

set on the left hand side of the equation is open as well.n
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3. Let F be a subset of the topological space X. Prove that every open subset A C F is also
open in X if and only if E itself is open in X.

SOLUTION.

(=) If A= E then FE is open in itself, and therefore the first condition implies that E is
open in X. (<) If Eis any subset of X and A is open in E then A = U N E where U is
open in X. But we also know that F is open in X, and therefore A = U N F is also open in X .=
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