SOLUTIONS TO EXERCISES FOR
MATHEMATICS 205A — Part 4

Fall 2003
IV. Smooth mappings

IV.1: Linear approximations

Problems from Edwards, §§ 11.1, p. 75

2.6 Use the derivative approximation to evaluate the following:

(a) [(3.02)2 + (1.97)2 + (5.98)2]

SOLUTION.

Take f(z,y,z) = z? +y? + 22, so that Vf(v) = 2v. The general approximation rule is

h(v+ Av) = h(v) + (Vh(v), Av)

and in this special case h = f, v = (3,2,6) and Av = (0,02,—0.03, —0.02). Thus the formula
specializes to

[(3.02)% + (1.97)2 + (5.98)%] = [3% + 22 + 62] + ((6,4, 12), (0,02, —0.03, —0.02))

which simplifies to 48.76; for the sake of comparison, we note that the actual value is 48.7617 .=
(b) (e*)/*0 =exp ((1.1)2 — (0.9)?)
SOLUTION.

Take f(z,y) = 2 — y2, so that Vf(z,y) = (23065”2_?/2, —2ye‘”2_y2). This provides some of the
substitutions needed in the general approximation rule described above. The remaining pieces are
v={(1,1), f1,1) =1 and Av = (0.1,—0.1). Thus the formula specializes to

(64)1/10 = exp ( (1_1)2 _ (0_9)2) ~ 612_12 4. (0'1) ‘ 612_12 14

For the sake of comparison, we note that the actual value is 1.4918247 to seven decimal places.n

2.8 Let f: R™ — R be differentiable. If f(0) = 0 and f(¢tz) = tf(z) for all ¢ and = prove
that f(z) = (Vf(0),z) for all z; i.e., f is linear. Consequently, any nonlinear function g satisfying the
conditions ¢g(0) = 0 and g(tz) = tg(z) for all ¢ and z is not differentiable although it has directional
derivatives in all directions at the origin (why?).

SOLUTION.

Let z € R™ be an arbitrary vector; then

DFO)@) = lm - (fi) ~£(0) = lim f(z)

t—0
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and the latter is just f(z). Since the left hand side is a linear function of u the same is true of the
right hand side. But this means that f(z) = (Vf(0),z) for all z.

If g is a nonlinear function satisfying the conditions g(0) = 0 and g(tz) = tg(z) for all ¢ and z,
the right hand side of the displayed formula shows that g has directional derivatives in all directions
through the origin, but if it were differentiable it would have to be linear. Therefore g cannot be
linear.s

Problems from Edwards, §§ 11.2, pp. 88 — 90

3.3 let F, G : R™ — R"™ be differentiable mappings and let h : R™ — R be a differentiable
function. Given u, v € R™ show the following:

(a) Dy(F +G) = Dy(F) + Du(G)

(b) Dyto(F) = Dy(F) + Dy(F)

(¢) Dy(hF)= Dy(h)-F +h-D,(F)

SOLUTION.

On page 65 of Edwards, D, F(a) is defined to be the ordinary derivative of ¢g(t) = F(a+tu) at
t = 0. With this definition the verifications of (a) and (c) become exercises in the differentiation
of vector valued functions of a single real variable; we shall not give the details. Part (b) requires
Theorem 2.1 on pages 68—-69 of Edwards. The latter proves that D,, f(z) = [Df(z)](w). The sum
formula is then an immediate consequence of the linearity of D f(z).

3.16  Define f : R? — R by

zy(z? —y?)

f(xay) = 72 +y2

for (z,y) # (0,0) and f(0,0) = 0.
(a) Show that D;f(0,y) = —y and Dy f(z,0) = z for all  and y.
SOLUTION.

We have L iy — ) s s
L yit—y°) .. yt"—y
DifOy) = fims = = s
for all y. If y # 0 then this limit can easily be evaluated as —y. On the other hand if y = 0 then
we have f(z,0) =0 so that the first partial is 0 = —y.

Similarly,

.1 at(z? —12) . z(z? —1?)
Dof@0) = Im: v = WMoy

for all z. If £ # 0 then this limit can easily be evaluated as z. On the other hand if z = 0 then we
have f(0,y) = 0 so that the first partial is 0 = z.u

(b) Conclude that D1 D5f(0,0) and D2 D f(0,0) exist but are not equal.
SOLUTION.

Since Dy f(z,0) = z it follows that D1D>f(0,0) = 1, and since Dy f(0,y) = —y it follows that
Dlef(O, 0) =—1m



FOOTNOTE.

One easy way to see the continuity of f at the origin is to write it in terms of polar coordinate;
in these terms the value of the function is

r2sin 40
4

(verify this), and continuity at the origin is clear from this reformulation.m

IV.2: Properties of smooth functions

Problems from Edwards, § 11.3, pp. 88 — 90

3.4  Show that each of the following is a solution of the heat equation

0%u

da?

ou
o = F
(where k is a constant):

(a) exp(—k2a?t)sinax

SOLUTION.

Direct computations show that both sides of the partial differential equation are equal to
—k2a? exp(—k2a’t) sinaz.a

(b) exp(—a?/4k?t)/VE

SOLUTION.

Direct but significantly more tedious computations show that both sides of the partial differ-
ential equation are equal to
% — 2k (—a? /4k21)
W eXp\—x .
3.11 (a) If f(z) = g(p) where p = |z| and the number n of variables is at least 3, show that

n

Vif = ;19’(p)+g”(p)

for z # 0.
SOLUTION.

We need to compute the second partials with respect to each variable z; and add them up. By
the Chain Rule
of op

_ !
and the second factor of the right hand side is equal to

Z;
p
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1/2
because p = (Z i :1:?) . We must next differentiate this function

z; g'(p)
P
once again with respect to z; and see what happens.

Pf_ 0 (zd _ 9 (g g _
%_Bzvz'(p)_wlaxi(p)_l_ B

K2

d (g’(p)> z; AT (g”(p) 3 g’(ﬂ)) z7 A
= 2

do\ p ) p p p p p p

If we add these expressions over all ¢ such that 1 <7 < n, we obtain the Laplacian of f. Since

z?

Z=p
P

n
1—1

(recall that Y, z2 = p?) the sum of all the second partial derivatives that gives the Laplacian is

equal to
z": (9”(p) B g’(p)) w2 . 90
i—1 P p?

which simplifies to

and the latter simplifies further to the expression at the end of the exercise.n

(b) Using the formula displayed above, prove that if V2f = 0 then

a
= ———+b
f(‘T) ‘$|n—2 +
where £ # 0 and a and b are constants.
SOLUTION.

By the formula from the preceding exercise we have

n—1

5 g +4'(p = 0

which reduces to a separable first order differential equation in ¢’ whose associated general solution
for g(p) = f(x) has the indicated form.

3.12 Verify that the functions 7™ cos™6 and r"sin™ @ satisfy the 2-dimensional Laplace
equation in polar coordinates. [Exercise 3.9 on the same page gives the formula for the Laplacian in
polar coordinates.]



SOLUTION.

The polar form of the Laplacian is

0%¢g 1 0% 1 0g
o T e Trar

If we substitute g(r,0) = 7™ cos™ @ into this expression we obtain

2 2 2

n(n—1)r"2cosnf — n’*""2cosnd + nr"2cosnd

which is equal to O.m
3.13  If f(z,y,2) = g(t — p/c) / p where p = (22 + 4> 4+ 2%)'/2 and ¢ is a constant, show that
f satisfies the 3-dimensional wave equation
10%f
c2 o2’

Vif =

SOLUTION.

The idea again is to compute both sides explicitly and note that they are equal. For this
purpose it will be helpful to use the formula for the Laplacian in spherical coordinates that is given
in Exercise 3.10(b) on the same page as the problem we are working. If we write f(z,y,2) as
F(p,0,¢) and F does not depend upon € or ¢ (as in our case), the Laplacian formula in spherical

coordinates reduces to
0’F 2 OF

% T pop

Computing the right hand side of the wave equation for our choice of f is trivial:

Vif =

10%f 1 4g'(t—plc)

a2 2 P

What about the left hand side? Of course the first step is to compute the partial derivative with

respect to p:
oF 1 (1) 1
5y = 5o 9tel) = elt=pld

If we take partial derivatives with respect to p again we obtain the following:
0’F 11 11 1 (-1

v _ ——”t— __/t_ =t
G = 5t e/t 5 =)o)

2
g'(t—p/c)+ = g(t—p/o)
c p
If we substitute these into the expression for the Laplacian in spherical coordinates we obtain the
same function that we obtained for the right hand side of the wave equation.s

3.14  The following shows the hazards of denoting functions by real variables. Let w = f(z,y, 2)
and z = g(z,y). Then

ow Oow dr Ow Jdy Ow @ ow Ow %

95 0z 0s Oyor  0z05  on | 0z om



because the partials of £ and y with respect to z are 1 and 0 respectively. Therefore

ow 0 _
0z 0

But if w=xz+y+ 2z and z = 2+ y then the expression on the left hand sideis 1-1 = 1, so that 0 = 1.
Where is the mistake?

SOLUTION.

Since the point of this fallacy is to show the need to write things down less casually, we should
begin by doing so. The symbol w is actually being used for two separate functions; namely, f(z,y, z)
and B(z,y) = f(x,y, g(z,y) ). The application of the Chain Rule in the first line then becomes

0B _ 0f i
or Oz 0z Ox

which is consistent with the previous displayed line. The mistake leading to the fallacy is that one
cannot assume that the partial derivatives of B and f with respect to x are equal; these are two
separate functions, and in fact the given example illustrates this fact very clearly.s

Problems from Edwards, §§ 111.2, p. 180

2.1  Let a and 3 be norms on R™ and R" respectively. Prove that yo(z,y) = a(z) + B(y) and
71 (z,y) = max (a(z), B(y)) define norms on R™*™" =~ R™ x R™.

SOLUTION.

In the section on Cartesian products in the course notes we showed that functions of this sort
defined metrics on a product. The proof that the functions described here are norms is similar.m

2.8 Let 7 : R® — R™ be a 1 — 1 linear mapping. Prove that there is an € > 0 such that if
S :R™ — R™ is linear and satisfies |S —T'|| < €, then S is also 1 — 1. [The wording has been changed
significantly to allow more flexibility in proving the main statement of the exercise.]

SOLUTION.

By the results on equivalences of norms, it suffices to prove the result for any norm on the space
of m x n matrices. For the sake of definiteness we shall use the norm associated to the standard
inner product on the space of all m x n matrices viewed as R™". Denote this norm by |...|2.

Suppose that A is an m X n matrix representing 7'; it is enough to show that all matrices
sufficiently close to A have rank n if (as is the case here) A has rank n. Since the rank of A is n,
one can choose n rows from A to obtain an n x n matrix ¢(A) that is invertible. We know that
the set of invertible square matrices is open, so there is a § > 0 such that |C' — ¢(A4)|2 < ¢ implies
that C is invertible. Since |p(B) — ¢(A)|2 < |B — A|; this implies that the rank of B is at least n
if |B — Al2 < 4. Since the rank of B is at most n, it follows that the rank is exactly n under the
given condition and hence that the linear transformation associated to B is 1-1.m

Additional exercises

1. (a) Suppose that X and Y are subsets of R™ and R™ respectively and that f: X — Y
and g : Y — RP are maps that satisfy Lipschitz conditions. Prove that the composite g° f also satisfies
a Lipschitz condition.



SOLUTION.
To be inserted.

(b) Suppose that X C R"™, and let f, g: X — R™ and h : X — R satisfy Lipschitz conditions.
Prove that f + g satisfies a Lipschitz condition and if X is compact then h - f also satisfies a Lipschitz
condition. If A > 0 and X is compact, does 1/h satisfy a Lipschitz condition? Prove this or give a
counterexample.

SOLUTION.

Let A and B be Lipschitz constants for f and g respectively. Furthermore, let C be a Lipschitz
constant for h.
We verify first that f + g satisfies a Lipschitz condition:

[f +gl(z) = [f +gl(@")| = |f(z) + g(z) — f(z') = g(z")| < [f(z) = fz')| +Ig(z) —g(z)] <
A-lz—2'|+B-|lzr—2'| = (A+B)|z—1|

In order to prove that h - f satisfies a Lipschitz condition we need to use the upper bounds
for |f| and || which are guaranteed by compactness. Call these bounds P and @ respectively. We
then have that

() f(z) = h(&) [ (&) = |h(@)f () = h(z)f(z") + h(z) (') — h(z') f ()] <
h(@)f () = h(2) f ()] + |P(2) f(z') = h(z") f ()] < Q- |f(z) — f(2)] + P+ |h(z) — h(a)] <
QAlz —2'|+ PClz—12'| = (QA+PC)|z— 2|

and hence the product satisfies a Lipschitz condition.
Finally, 1/h does satisfy a Lipschitz condition, and here is the proof: In addition to the
preceding let m be the minimum value of |h| on X. Then we have

‘; I

h(z)  h(=)|
|h(z") = h(=)]
|h () - h(z")]

The denominator is at least m?2, and the numerator is at most C - |z — 2’|, and therefore Cm=2 is
a Lipschitz constant for 1/h.m

(¢) Suppose that X C R"™, and let f : X — R™ be given. Prove that f satisfies a Lipschitz
condition if and only if all of its coordinate functions do.

SOLUTION.

( == ) If f satisfies a Lipschitz condition with Lipschitz constant A and f; is the i*® coordinate
function, then

fi(x) = fi(y)] < [f(2) = Fly)] < A-|z—yl]

for all z and y.=

( <) If each coordinate function f; satisfies a Lipschitz condition, then one can write f =
>, fie; where e; is the standard i*® unit vector; therefore the conclusion follows from the first part
of the exercise and finite induction.=



2. In the notation of the preceding exercise, suppose that X = AU B and that f is continuous
and satisfies Lipschitz conditions on A and B as well as on an open neighborhood of AN B. Does
f satisfy a Lipschitz condition on A U B? Prove this or give a counterexample. What happens if we
assume A and B are compact? Justify your answer.

SOLUTION.

The answer to the first question is no. Consider the function on R — {0} that is 1 for positive
numbers and —1 for negative numbers. This satisfies a Lipschitz condition on A and B as well as an
open neighborhood of AN B = (). However, if we take z and z’ to be £1/n then |f(z) — f(z')] = 2
while |z — 2’| = 2/n, and hence any Lipschitz constant for f on AU B would have to be at least n
for every positive integer n. Therefore f does not satisfy a Lipschitz condition on AU B.

The answer to the second question is yes. Let U be an open neighborhood of AN B on which
f satisfies a Lipschitz condition, and let K, be the associated Lipschitz constant. Similarly, let K
and K5 be Lipschitz constants for f on A and B respectively.

Formally, there are initially 64 cases to consider depending upon whether or not u lies in A,
B or U (a total of 8 possibilities), and likewise for v. However, many of the formal possibilities
are inconsistent with the conditions that u and v belong to A U B. In particular, we cannot have
u ¢ Aand u ¢ B and we cannot have u € A, u € B, but u € U D AN B. This brings us down to 5
possibilities each for u and v. Here is the list of possibilities for u:

[ul] u¢g¢ A,u € Band u g U
w2l u¢ A,uce BandueU
[u3) ue A, u g BandugU
[ud] u€e A, u g Band u e U
[ub) ue A, u€ BandueU

Of course, there is a similar list for v, and the set of all 25 possibilities is given by taking one from
each list.

Fortunately, separate arguments are not needed for each of the 25 cases. In particular, the
four cases obtained by combining the first two possibilities for v and v involve situations where
both points lie in B and therefore |f(u) — f(v)| < K |u — v|. Likewise, the nine cases obtained by
combining the last three possibilities for u and v involve situations where both points lie in A and
therefore |f(u) — f(v)| < K1 |u — v|.

This leaves us with twelve cases; six are given by taking one of the first two possibilities for u
and one of the last three possibilities for v, and six are given by switching the roles of v and v. If
we do the latter, we are down to six cases.

The cases [u2] + [v2] and [u2] + [v3] are situations where both point belong to U and therefore
|f(u) — f(v)] < Ko |u—v|. In each of the remaining cases, at least one of u or v does not belong
to U. Consider the continuous function on

((AUB)x (AUB)) —UxU

defined by the quotient
70~ f)]

|u— |

Since the domain of this function is compact, it has a maximum value K3, and thus we have
|f(u) — f(v)| < K3 |u—v| if (u,v) lies in the set described above.

If we take K to be the largest of the numbers K; for 0 < ¢ < 3, then K will be a Lipschitz
constant for f on AU B.m



IV.3: Inverse Function Theorem

Problems from Edwards, §§ 111.3, pp. 194 — 196

3.1. Show that

_ z Y
f(w7y) - (Iz_l_yz? I2+y2>

is locally invertible near every point except the origin. Compute the inverse explicitly.
SOLUTION.

Since the problem asks for an explicit computation of the inverse, one reasonable way to start
is to see what happens if one tries to solve the system of equations given in vector form by

(’ ? ’) ? y

(this is easier than writing out two separate equations for u and v in terms of z and y). Next, think
about what this map does geometrically. Given a nonzero point in the plane, it sends this point to
a positive multiple of itself; if as usual we write r? = 22 + y?, the exact multiple is 1/r2. Formally
one can see this by verifying the identity

1
2 2 _
u“+v = 7$2+y2.

Using this formula it follows immediately that f maps the nonzero points of the plane to themselves
in a 1-1 onto fashion and is equal to its own inverse. Since f is a C! function, it follows in particular
that the function is globally invertible on the set of nonzero points of the plane.m

3.3.  Consider the map : R3 — R? defined by f(z,y,2) = (7,43, 2°). Note that f has a global
inverse g despite the fact that D f(0) is not invertible. What does this imply about the differentiability
of g at 07

SOLUTION.

The map cannot be differentiable at the origin, for if it were then it would be an inverse to
Df(0) and the latter does not have an inverse. Of course the global continuous inverse to f is the
function g(u,v,w) = (u,v'/3,w'/%)..

3.4. Show that the mapping (u,v,w) : R® — R?2 defined by u = z + ¢¥, v = y + €* and
w = z + €* is everywhere locally invertible.
SOLUTION.

Compute the Jacobian:

1 e 0
0 1 e = 14T £ (O
e 0 1

3.14. Let f: R2 — R3 and g: RS — R3 be C! inverse functions. Show that

% 8(f21f3) J= a(f17f25f3)

1
oy1  J 0(xa,z3) O(z1,2,13)



and obtain similar formulas for the other derivatives of coordinate functions of g.
SOLUTION.

By construction Dg and Df are 3 x 3 matrices that are inverse to each other. By Cramer’s
Rule, if B and A are mutually inverse 3 x 3 matrices, then

1

b _ G292 Q23
1,1 =
det A

as2 G33

and the formula for the partial derivative as a quotient ot two Jacobians follows immediately from
this. Similar considerations hold for all the partial derivatives of coordinate functions; since writing
things out would make the solution about eight times longer and the details are mechanical, we
shall not do so.=

Additional exercises

0. Prove that F(z,y) = (e +y, z — y) defines a C* homeomorphism of R? with a C*®
inverse.

SOLUTION.
To be inserted.

1. Prove that F(z,y) = (ze¥ +y, ze¥ — y) defines a C>® homeomorphism of R? with a C*®
inverse.

SOLUTION.
By the Inverse Function Theorem it suffices to show that F is 1-1 onto C*° and has a nonzero

Jacobian everywhere. The C* condition is immediate, and one can compute the Jacobian directly:

ey zxze¥+1
ey zxze¥-—1

‘:—263/750

To show that f is 1-1 onto we need to show that for each choice of u and v there is a unique
solution to the system of equations

u = ze¥+y, v = ze¥ —y.

Here is an elementary way of doing so. Subtacting the second equation from the first shows that
y = (u—v)/2, and adding the two equations together yields

2zeY = u+tw.

Since we can solve uniquely for y, this equation shows that we can also solve uniquely for z.
Therefore F' is 1-1 onto, and it is also C* with everywhere nonvanishing Jacobian as required.m

2. Prove that

T T
F(z,y,z) = (m + ye*, W —ye®, 2ye” -I—z)

defines a C* homeomorphism of R® with a C™ inverse.

10



SOLUTION.

Use the same approach as in the previous problem. The map is C* by construction, and its
Jacobian is the following 3 x 3 determinant:

1/2+y%) —2zy/2+y*)>+e  ye
1/2+y?) —2zy/(2+y?)? —¢  —ye?
0 2e* 2ye* +1

One can use row and column operations to simplify the computation before writing everything out
algebraically, but in any case the Jacobian is equal to

—2¢?
2 + y?

The next step is to show that one can find unique solutions to the system of equations

(u,v,w) = (2 ny + ye?, 2—|:f—y2 —ye®, 2ye® + z)
and here is a summary of how this can be done: Subtracting the second equation from the first
yields 2y e* = u — v, and by the third equation the left hand side is equal to w — z. Therefore we
can solve for z uniquely in terms of u, v and w. If we substitute this result into 2y e* = u — v we
also get a unique solution for y in terms of u, v and w. Finally, if we add the original first and
second equations we obtain u+v = 2z/(2+2). Since we already know that we can solve uniquely
for y, this equation implies that we also get a unique solution for z terms of u, v and w.m

3. Let f(z,y) = (z +vy,z% +y). Check that f meets the conditions to have a local inverse near
f(1,0) = (1,1), and if g is this local inverse find Dg(1,1) without finding a formula for the inverse
function explicitly.

SOLUTION.

One again begin by writing down the Jacobian:

1 1
2z 1

‘ = 1—2z

The right hand side is nonzero at (1,0) and the derivative matrix Df(1,0) is equal to

1 1

2 1) °
By the Chain Rule, Dg(1,1) = [Df(1,0)]~', and by either Cramer’s rule or one’s favorite matrix
inversion technique the latter is equal to

(5 ) -

4.  Consider the mapping f : R?> — R? given by f(z,y) = (22 + y?,2zy). Show that the
Jacobian vanishes on the lines y = + . What is the image of f7 [Hint: Try using polar coordinates.]

11



The Inverse Function Theorem guarantees that f has a local inverse at f(1,0) = (1,0). Find the inverse
explicitly and describe a region on which it is defined.

SOLUTION.
Once again, compute the Jacobian:

2z 2y

2 2
9% 2 2(z" —y7)

This clearly vanishes on the lines y = £ z. To find the image, use the hint to rewrite f(z,y) = g[r,0] =
(r2,r2sin20), where parentheses refer to rectangular coordinates and square brackets refer to polar
coordinates. The polar expressions tell us that the image consists of all points (u,v) for which v > 0
and |v| < u.

To find the local inverse explicitly write u = 22 + 32 and v = 2zy. Solving this system of
simultaneous quadratic equations is essentially an exercise in high school algebra. Since we are solving
near (1,0) we may divide by  more or less freely. It turns out that the solution for z and y in terms of
u and v such that (z,y) = (0,1) when (u,v) = (0,1) is given by

U+ Vu2 — v2 v
2

We have not expressed z explicitly in terms of u and v in the second equation, but substitution of the
first equation into the second enables one to write y explicitly in terms of u and v. This formula is valid
for all (u,v) such that u > 0 and |v| < u.m

5. Let f:R? — R? be defined by f(v,w) = (v+w + e*®,w + 2v + e~"™). Prove that there is
a local inverse at f(0,0) = (1,1) and if

g(z,y) = (v(z,y), w(z,y))

show that

ov ow ov
— — 1) = —(1,1) .
S+ 5 (1,1) = L)

SOLUTION.

In this problem (z,y) = f(v,w) and g is supposed to be a local inverse to f at the indicated
point. We need to check first that D f(0,0) is invertible, so we evaluate it explicitly:

(14 we’™ 1+4wve’™ (11
Df(v’w)_(2_wevw 1—’1)6”“’) Df(O,O)—(2 1)
The determinant of the latter is nonzero, so the map is locally invertible and Dg(1, 1) is the inverse

of Df(0,0):
Dg(1,1) = (_21 _11)

Using this it is elementary to verify the equation in the exercise.m

12



V. Constructions on spaces

V.1: Quotient spaces

Problem from Munkres, § 22, pp. 144 — 145

4. (a) Define an equivalence relation on the Euclidean coordinate plane by defining (29, y0) ~
(z1,%1) if and only if zg + y2 = 1 + y2. It is homeomorphic to a familiar space. What is it? [Hint:
Set g(z,y) =z +y°]

SOLUTION.

The hint describes a well-defined continuous map from the quotient space W to the real
numbers. The equivalence classes are simply the curves g(z,y) = C for various values of C, and
they are parabolas that open to the left and whose axes of symmetry are the z-axis. It follows that
there is a 1-1 onto continuous map from W to R. How do we show it has a continuous inverse? The
trick is to find a continuous map in the other direction. Specifically, this can be done by composing
the inclusion of R in R? as the z-axis with the quotient projection from R2 to W. This gives the
set-theoretic inverse to R? — W and by construction it is continuous. Therefore the quotient space
is homeomorphic to R with the usual topology.=

(b) Answer the same question for the equivalence relation (zg,%0) ~ (z1,y1) if and only if
zg +y§ = 2% +yi.

SOLUTION.

Here we define g(z,y) = 22 +y? and the egivalence classes are the circles g(z,y) = C for C > 0
along with the origin. In this case we have a continuous 1-1 onto map from the quotient space V
to the nonnegative real numbers, which we denote by [0,00) as usual. To verify that this map is a
homeomorphism, consider the map from [0, c0) to V given by composing the standard inclusion of
the former as part of the z-axis with the quotient map R? — V. This is a set-theoretic inverse to
the map from V to [0,00) and by construction it is continuous.m

Additional exercises

0. Suppose that X is a space with the discrete topology and R is an equivalence relation on X.
Prove that the quotient topology on X /R is discrete.

SOLUTION.

We claim that every subset of X/R is both open and closed. But a subset of the quotient is
open and closed if and only if the inverse image has these properties, and every subset of a discrete
space has these properties.n

1. If Ais a subspace of X, a continuous map 7 : X — A is called a retraction if the restriction
of r to A is the identity. Show that a retraction is a quotient map.

SOLUTION.

We need to show that U C A is open if and only if 7~ (U) is open in X. The ( = ) implication
is immediate from the continuity of r. To prove the other direction, note that r°i = id4 implies
that

U = i'[r'U)] = Anr '(U)
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and thus if the inverse image of U is open in X then U must be open in A.x

2. Let R be an equivalence relation on a space X, and assume that A C X contains points
from every equivalence class of R. Let R be the induced equivalence relation on A, and let

j:A/Ry — X/R

be the associated 1 — 1 correspondence of equivalence classes. Prove that j is a homeomorphism if
there is a retraction r : X — A sending R-equivalent points of X to Rg-equivalent points of A. such
that each set r=1({a}) is contained in an R-equivalence class.

SOLUTION.

Let px and p4 denote the quotient space projections for X and A respectively. By construction,
j is the unique function such that j°ps = px|A and therefore j is continuous. We shall define an
explicit continuous inverse k : X/R — A/Ry. To define the latter, consider the continuous map
pacr: X — A/Ro. If yRz holds then r(y)Rqr(z), and therefore the images of y and z in A/R,
are equal. Therefore there is a unique continuous map k of quotient spaces such that kepx = paer.
This map is a set-theoretic inverse to j and therefore j is a homeomorphism.s

3. (a) Let 0 denote the origin in R%. In R® — {0} define Ry if y is a nonzero multiple of =
(geometrically, if z and y lie on a line through the origin). Show that R is an equivalence relation; the
quotient space is called the real projective plane and denoted by RP2.

SOLUTION.

The relation is reflexive because £ = 1 - x, and it is reflexive because y = ax for some a # 0
implies z = o !y. The relation is transitive because y = az for a # 0 and z = By for y # 0 implies
z = Bax, and Ba # 0 because the product of nonzero real numbers is nonzero.s

(b) Using the previous exercise show that RP? can also be viewed as the quotient of $? modulo
the equivalence relation z ~ y <= y = +z. In particular, this shows that RP? is compact. [Hint:
Let r be the radial compression map that sends v to |v|~!v.]

SOLUTION.

Use the hint to define r; we may apply the preceding exercise if we can show that for each
a € S? the set 7~1({a}) is contained in an R-equivalence class. By construction r(v) = |v|~v, so
r(z) = a if and only if z is a positive multiple of a (if z = pa then |z| = p and r(z) = a, while if
a = r(z) then by definition a and z are positive multiples of each other). Therefore if Ry then
r(z) = £ r(y), so that r(z)Ro r(y) and the map

S?/[x = +z2] — RP?

is a homeomorphism.m

4. In D? = {z € R? | |z| < 1}, consider the equivalence relation generated by the condition
zR'y if |z| = |y = 1 and y = —x. Show that this quotient space is homeomorphic to RP2.

[Hints: Use the description of RP? as a quotient space of S2 from the previous exercise, and let

h : D? — S? be defined by
h(z,y) = (z,y,V1—22—9y?).

Verify that h preserves equivalence classes and therefore induces a continuous map h on quotient spaces.
Why is & a 1 — 1 and onto mapping? Finally, prove that RP? is Hausdorff and % is a closed mapping.]
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SOLUTION.
Needless to say we shall follow the hints in a step by step manner.

Let h : D?> — S? be defined by

h(x,y) = (maya \% 1—x2 _y2 )

Verify that h preserves equivalence classes and therefore induces a continuous map h on
quotient spaces.

To show that h is well-defined it is only necessary to show that its values on the R/-equivalence
classes with two elements are the same for both representatives. If = : $2 — RP? is the quotient
projection, this means that we need w°h(u) = weh(v) if |u| = |v] = 1 and v = —v. This is
immediate from the definition of the equivalence relation on S? and the fact that h(w) = w if
lw| = 1.

Why is h a 1 — 1 and onto mapping?

By construction & maps the equivalence classe of points on the unit circle onto the points of
S? with z = 0 in a 1-1 onto fashion. On the other hand, if v and v are distinct points that are
not on the unit circle, then h(u) cannot be equal to &+ h(v). The inequality h(u) # —h(v) follows
because the first point has a positive z-coordinate while the second has a negative z-coordinate.
The other inequality h(u) # h(v) follows because the projections of these points onto the first two
coordinates are u and v respectively. This shows that h is 1-1. To see that it is onto, recall that
we already know this if the third coordinate is zero. But every point on S? with nonzero third
coordinate is equivalent to one with positive third coordinate, and if (z,, z) € S? with z > 0 then
simple algebra shows that the point is equal to h(z,y).

Finally, prove that RP? is Hausdorff and h is a closed mapping.

If the first statement is true, then the second one follows because the domain of & is a quotient
space of a compact space and continuous maps from compact spaces to Hausdorff spaces are always
closed. Since h is already known to be continuous, 1-1 and onto, this will prove that it is a
homeomorphism.

So how do we prove that RP? is Hausdorff? Let v and w be points of §% whose images in
RP? are distinct, and let P, and P, be their orthogonal complements in R3 (hence each is a 2-
dimensional vector subspace and a closed subset). Since Euclidean spaces are Hausdorff, we can find
an ¢ > 0 such that N.(v) NP, =0, N.(w) NP, =0, N.(v) N N.(w) = 0, and N.(—v) N N (w) = 0.
If T denotes multiplication by —1 on R3, then these conditions imply that the four open sets

Ns(v)’ Ns(w)a Ns(_’u):T(Ns(’U))’ Ns(_w):T(Ns(w))

are pairwise disjoint. This implies that the images of the distinct points 7(v) and 7(w) in RP? lie in
the disjoint subsets 7 (N, (v)) and 7 (N, (w)) respectively. These are open subsets in RP? because
their inverse images are given by the open sets N, (v) U N.(—v) and N, (w) U N.(—w) respectively.m

5. Suppose that X is a topological space with topology T, and suppose also that Y and Z are
sets with set-theoretic maps f : X — Y and g : Y — Z. Prove that the quotient topologies satisfy the
condition

(9°f)«T = g« (fT) .

(Informally, a quotient of a quotient is a quotient.)
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SOLUTION.
To be inserted.

6. If Y is a topological space with a topology T and f; X — Y is a set-theoretic map, then
the induced topology f*T on X is defined to be the set of all subsets W C X having the form f=1(U)
for some open set U € T. Prove that f*T defines a topology on X, that it is the unique smallest
topology on X for which f is continuous, and that if A : Z — X is another set-theoretic map then

(f°h)"T =h* (f*T) .

SOLUTION.

The object on the left hand side is the family of all sets having the form (f°h)~(V) where V
belongs to T. As in the preceding exercise we have

(fom)= (V) =hr~" (F71(V))

so the family in question is just h* (f*T).m

7. Let X and Y be topological spaces, and define an equivalence relation R on X X Y by
(z,y) ~ (z',9') if and only if z = z’. Show that X x Y/R is homeomorphic to X.

SOLUTION.

Let p: X XY — X be projection onto the first coordinate. Then uRv implies p(u) = p(v) and
therefore there is a unique continuous map X xY/R — X sending the equivalence class of (z,y) to
x. Set-theoretic considerations imply this map is 1-1 and onto, and it is a homeomorphism because
p is an open mapping.m

8. Let R be an equivalence relation on a topological space X, let 'z be the graph of R, and
let 7 : X — X/R be the quotient projection. Prove the following statements:

(a) If X/R satisfies the Hausdorff Separation Property then I'z is closed in X x X.
SOLUTION.

To be inserted.

(b) If 'z is closed and 7 is open, then X/R is Hausdorff.

SOLUTION.

To be inserted.

(c) f 'z is open then X/R is discrete.

SOLUTION.

To be inserted.

V.2: Sums and cutting and pasting

Additional exercises
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1. Let {A, | @ € A} be a family of topological spaces, and let X =[] A,. Prove that X is
locally connected if and only if each A, is locally connected.

SOLUTION.

(=) If X is locally connected then so is every open subset. But each A, is an open subset,
so each is locally connected.m

( <) We need to show that for each z € X and each open set U containing z there is an
open subset V' C U such that x € V and V is connected. There is a unique « such that z = iy (a)
for some a € A,. Let Uy =4, (U). Then by the local connectedness of A, and the openness of Uy
there is an open connected set V such that z € Vo C Up. If V =1i,(V}), then V has the required
properties.m

2. In the preceding exercise, formulate and prove necessary and sufficient conditions on A and
the sets A, for the space X to be compact.

SOLUTION.
To be inserted.

3. Prove that RP? can be constructed by identifying the edge of a M&bius strip with the edge
circle on a closed 2-dimensional disk by filling in the details of the following argument: Let A C S? be
the set of all points (z,y,2) € S? such that |z| < 3, and let B be the set of all points where |z > 1.
If T(z) = —z, then T(A) = A and T(B) = B so that each of A and B (as well as their intersection)
can be viewed as a union of equivalence classes for the equivalence relation that produces RP?. By
construction B is a disjoint union of two pieces By consisting of all points where sign(z) = £ 1, and
thus it follows that the image of B in the quotient space is homeomorphic to By = D2. Now consider
A. There is a homeomorphism h from St x [—1,1] to A sending (z,y,1) to (a(t)z, a(t)y, 3t) where

and by construction h(—v) = —h(v). The image of A in the quotient space is thus the quotient of
S* x [=1,1] modulo the equivalence relation u ~ v <= u = 4v. This quotient space is in turn
homeomorphic to the quotient space of the upper semicircular arc Si (all points with nonnegative
y-coordinate) modulo the equivalence relation generated by setting (—1,0,¢) equivalent to (1,0, —t),
which yields the Mobius strip. The intersection of this subset in the quotient with the image of B is just
the image of the closed curve on the edge of B, which also represents the edge curve on the Mobius
strip.

FURTHER DETAILS.
We shall fill in some of the reasons that were left unstated in the sketch given above.

Let A C S? be the set of all points (z,y,z) € S? such that |z| < 1, and let B be the set of all
points where |z| > 3. If T(z) = —z, then T(A) = A and T(B) = B [etc.]

This is true because if T'(v) = w, then the third coordinates of both points have the same
absolute values and of course they satisfy the same inequality relation with respect to %

By construction B is a disjoint union of two pieces By consisting of all points where sign(z) =
+1,

This is true the third coordinates of all points in B are nonzero.
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There is a homeomorphism h from S* x [—1,1] to A sending (z,y,t) to (a(t)z, a(t)y, 1t) where

One needs to verify that h is 1-1 onto; this is essentially an exercise in algebra. Since we are
dealing with compact Hausdorff spaces, continuous mappings that are 1-1 onto are automatically
homeomorphisms.

This quotient space [S* x [—1, 1] modulo the equivalence relation u ~ v <= u = +v] is in turn
homeomorphic to the quotient space of the upper semicircular arc S_1|_ (all points with nonnegative
y-coordinate) modulo the equivalence relation generated by setting (—1,0,t) equivalent to (1,0, —t),
which yields the Mobius strip.

Let A and B be the respective equivalence relations on S} x [—1,1] and S* x [—1,1], and let A
and B be the respective quotient spaces. By construction the inclusion St x [-1,1] € S* x [-1,1]
passes to a continuous map of quotients, and it is necessary and sufficient to check that this map
is 1-1 and onto. This is similar to a previous exercise. Points in §* — S% all have negative second
coordinates and are equivalent to unique points with positive second coordinates. This implies
that the mapping from A to B is 1-1 and onto at all points except perhaps those whose second
coordinates are zero. For such points the equivalence relations given by A and B are identical, and
therefore the mapping from A to B is also 1-1 and onto at all remaining points.m

4. Suppose that the topological space X is a union of two closed subspaces A and B, let
C=ANB,let h:C — C be a homeomorphism, and let A U;, B be the space formed from A LI B by
indentifying z € C' C A with h(z) € C C B. Prove that AU}, B is homeomorphic to X if h extenhds
to a homeomorphism H : A — A, and give an example for which X is not homeomorphic to A Uy, B.
[Hint: Construct the homeomorphism using H in the first case, and consider also the case where
X =S1uSt, with Ay == 81 USL; then C = {£1} x {1,2}, and there is a homeomorphism from h
to itself such that A, Up A_ is connected.]

SOLUTION.

The first part will be posted later. We can and shall view X as A Uy B.

To construct the example where X is not homeomorphic to A U, B, we follow the hint and
try to find a homeomorphism of the four point space {1} x {1,2} to itself such that X is not
homeomorphic to A Uy, B is connected; this suffices because we know that X is not connected.
Sketches on paper or physical experimentation with wires or string are helpful in finding the right
formula.

Specifically, the homeomorphism we want is given as follows:
(-1,1) e Ay — (1,2) € A_
1,1) e Ay — (1,1) € A_
(1,2) € Ay, — (—1,1) € A_
(-1,2) € Ay — (~1,2) € A_
The first of these implies that the images of S} x {2} and S x {1} lie in the same component of
the quotient space, the second of these implies that the images of S x {1} and S x {1} both lie
in the same component, and the third of these implies that the images of S1 x {2} and S* x {2}
also lie in the same component. Since the entire space is the union of the images of the connected
subsets S1 x {1} and S1 x {2} it follows that A U, B is connected.

FOOTNOTE.
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The argument in the first part of the exercise remains valid if A and B are open rather than
closed subsets.m

5. One-point unions. One conceptual problem with the disjoint union of topological spaces
is that it is never connected except for the trivial case of one summand. In many geometrical and
topological contexts it is extremely useful to construct a modified version of disjoint unions that is
connected if all the pieces are. Usually some additional structure is needed in order to make such
constructions.

In this exercise we shall describe such a construction for objects known as pointed spaces that are
indispensable for many purposes (e.g., the definition of fundamental groups as in Munkres). A pointed
space is a pair (X, x) consisting of a topological space X and a point z € X; we often call x the base
point, and unless stated otherwise the one point subset consisting of the base point is assumed to be
closed. If (Y,y) is another pointed space and f : X — Y is continuous, we shall say that f is a base
point preserving continuous map from (X, z) to (Y,y) if f(z) = y, In this case we shall often write
f:(X,z) — (Y,y). Identity maps are base point preserving, and composites of base point preserving
maps are also base point preserving.

Given a finite collection of pointed spaces (X;, z;), define an equivalence relation on [, X; whose
equivalence classes consist of [[;{z;} and all one point sets y such that y & [[{z;}. Define the one

point union or wedge
n

V&jz) = (Xp,z)V e V (X, z0)

i=1

to be the quotient space of this equivalence relation with the quotient topology. The base point of this
space is taken to be the class of [ {z;}.

(a) Prove that the wedge is a union of closed subspaces Y; such that each Y} is homeomorphic to
X and if j # k then Y; NY} is the base point. Explain why Vy, (X}, z,) is Hausdorff if and only if each
X is Hausdorff, why Vi, (X}, z) is compact if and only if each X; is compact, and why Vj (X}, zx)
is connected if and only if each X is connected (and the same holds for arcwise connectedness).

SOLUTION.

For each j let in; : X; — [], X} be the standard injection into the disjoint union, and let

P: HXk — \/(Xk,.’L‘k)

k k

be the quotient map defining the wedge. Define Y; to be P°in;(X;). By construction the map
Pein; is continuous and 1-1; we claim it also sends closed subsets of X; to closed subsets of the
wedge. Suppose that F' C X, is closed; then Pein;(F) is closed in the wedge if and only if its
inverse image under P is closed. But this inverse image is the union of the closed subsets in;(F’)
and [[,{zx} (which is a finite union of one point subsets that are assumed to be closed). It follows
that Y; is homeomorphic to X 4 j. The condition on Y}, NY} for k # £ is an immediate consequence
of the construction.

The assertion that the wedge is Hausdorff if and only if each summand is follows because a
subspace of a Hausdorff space is Hausdorff, and a finite union of closed Hausdorff subspaces is
always Hausdorff (by a previous exercise).

To verify the assertions about compactness, note first that for each j there is a continuous
collapsing map ¢; from Vy, (X, zr) to (X;,z;), defined by the identity on the image of (X;,z;)
and by sending everything to the base point on every other summand. If the whole wedge is
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compact, then its continuous under ¢;, which is the image of X;, must also be compact. Conversely
if the sets X; are compact for all j, then the (finite!) union of their images, which is the entire
wedge, must be compact.

To verify the assertions about connectedness, note first that for each j there is a continuous
collapsing map g; from Vy, (X, zi) to (X, z;), defined by the identity on the image of (X, ;) and
by sending everything to the base point on every other summand. If the whole wedge is connected,
then its continuous under g¢;, which is the image of X;, must also be connected. Conversely if
the sets X; are connected for all j, then the union of their images, which is the entire wedge,
must be connected because all these images contain the base point. Similar statements hold for
arcwise connectedness and follow by inserting “arcwise” in front of “connected” at every step of
the argument.m

(b) Let ¢; : (Xj,2;) = Vi (Xg, i) be the composite of the injection X; — [], X with the
quotient projection; by construction ¢; is base point preserving. Suppose that (Y,y) is some arbitrary
pointed space and we are given a sequence of base point preserving continuous maps Fj : (X;,z;) —
(Y,y). Prove that there is a unique base point preserving continuous mapping

F:vy (Xk,zi) = (Y,y)

such that F'ep; = Fj for all .
SOLUTION.

To prove existence, first observe that there is a unique continuous map F: [, Xx = Y such
that in;°F = F}; for all . This passes to a unique continuous map F on the quotient space
Vi (X, zk) because F' is constant on the equivalence classes associated to the quotient projection

P. This constructs the map we want; uniqueness follows because the conditions prescribe the
definition at every point of the wedge.m

(c) In the infinite case one can carry out the set-theoretic construction as above but some care is
needed in defining the topology. Show that if each X; is Hausdorff and one takes the so-called weak
topology whose closed subsets are generated by the family of subsets ¢, (F') where F' is closed in X
for some 7, then [1] a function h from the wedge into some other space Y is continuous if and only if
each composite h°y; is continuous, [2] the existence and uniqueness theorem for mappings from the
wedge (in the previous portion of the exercise) generalizes to infinite wedges with the so-called weak
topologies.

SOLUTION.

Strictly speaking, one should verify that the so-called weak topology is indeed a topology on
the wedge. We shall leave this to the reader.

To prove [1], note that ( = ) is trivial. For the reverse direction, we need to show that if E is
closed in Y then h=!(E) is closed with respect to the so-called weak topology we have defined. The
subset in question is closed with respect to this topology if and only if h=(E) N p(X;) is closed
in ¢(X;) for all j, and since ¢; maps its domain homeomorphically onto its image, the latter is
true if and only if ¢~!1°h~!(E) is closed in X; for all j. But these conditions hold because each of
the maps ¢, °h is continuous. To prove [2], note first that there is a unique set-theoretic map, and
then use [1] to conclude that it is continuous.s

(d) Suppose that we are given an infinite wedge such that each summand is Hausdorff and contains
at least two points. Prove that the wedge with the so-called weak topology is not compact.

SOLUTION.

20



For each j let y; € X; be a point other than z;, and consider the set E of all points y;. This
is a closed subset of the wedge because its intersection with each set ¢(X;) is a one point subset
and hence closed. In fact, every subset of E is also closed by a similar argument (the intersections
with the summands are either empty or contain only one point), so E is a discrete closed subset of
the wedge. Compact spaces do not have infinite discrete closed subspaces, and therefore it follows
that the infinite wedge with the weak topology is not compact.m

Remark. |If each of the summands in (d) is compact Hausdorff, then there is a natural candidate
for a strong topology on a countably infinite wedge which makes the latter into a compact Hausdorff
space. In some cases this topology can be viewed more geometrically; for example, if each (X, z;)
is equal to (S1,1) and there are countably infinitely many of them, then the space one obtains is the
Hawaiian earring in R? given by the union of the circles defined by the equations

1)° ) 1

As usual, drawing a picture may be helpful. The &*® circle has center (1/2%, 0) and passes through the
origin; the y-axis is the tangent line to each circle at the origin.

SKETCHES OF VERIFICATIONS OF ASSERTIONS.

If we are given an infinite sequence of compact Hausdorff pointed spaces { (X,,z,) } we can
put a compact Hausdorff topology on their wedge as follows. Let W} be the wedge of the first &k
spaces; then for each k there is a continuous map

Qk3\/(Xn,iEn) — Wk

(with the so-called weak topology on the wedge) that is the identity on the first £ summands and
collapses the remaining ones to the base point. These maps are in turn define a continuous function

q:\/(Xn,a:n) — HWk
n k

whose projection onto Wy, is gx. This mapping is continuous and 1-1; if its image is closed in the
(compact!) product topology, then this defines a compact Hausdorff topology on the infinite wedge
Vo ( Xy ).

Here is one way of verifying that the image is closed. For each k let ¢ : Wy — Wy_1 be the
map that is the identity on the first (kK — 1) summands and collapses the last one to a point. Then
we may define a continuous map C on [],-, Wy by first projecting onto the product [[,, W
(forget the first factor) and then forming the map [],~, Wj. The image of q turns out to be the
set of all points x in the product such that C(x) = x. Since the product is Hausdorff the image set
is closed in the product and thus compact.

A comment about the compactness of the Hawaiian earring E might be useful. Let Fj be the
union of the circles of radius 277 that are contained in E, where j < k, together with the closed
disk bounded by the circle of radius 2~(**1) in E. Then F}, is certainly closed and compact. Since
E is the intersection of all the sets F} it follows that F is also closed and compact.m
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