
 

 

Uniqueness of the Real Numbers 
 
The objective of the axiom system for the real numbers is to characterize this system 
completely.  In the preceding discussion we noted that the axioms allow one to derive 
some important and familiar properties of real numbers.  However, in order to conclude 
that the axioms are a complete characterization of the real numbers, we need to show that 
all systems satisfying the axioms are “the same for all practical purposes.”  A more 
formal way of expressing this is to say that if we are given two systems satisfying the 
axioms there is a one-to-one correspondence between them that preserves all the relevant 
algebraic structure; such a map is called an isomorphism.  More precisely, we have the 
following definition: 
 
Definition.  Let (X, AX, MX, OX) and (Y, AY, MY, OY) be two systems satisfying the 
axioms for the real numbers, where A and M denote the respective additions and 
multiplications and O denotes the respective linear orderings.   An isomorphism is a one-

to-one correspondence  f : X →→ Y such that for all  u, v  ∈∈ X we have the following 
relations: 
 

(1)  f (AX(u, v)) = AY(f(u), f(v)).  [Less formally, f(u + v) = f(u) + f(v), or  
f is additive.] 

 

(2)  f (MX(u, v))  = MY(f(u), f(v)).   [Less formally, f(u v) = f(u) f(v), or f 
is multiplicative.] 

   

(3)  If (u, v) ∈∈ OX, then (f(u), f(v)) ∈∈ OY.  [Less formally, if u < v, then 
f(u) <  f(v), or  f is order preserving.] 

 
We say that that X is  isomorphic  to Y if there is an isomorphism from X to Y.  It is an 
elementary exercise to verify that if  f defines an isomorphism from X to Y, then the 
inverse function  f –1 defines an isomorphism from Y to X.  In particular, if X is 
isomorphic to Y, then Y is isomorphic to X and one can simply say that X and Y are 
isomorphic.  We can now state the main result. 
 

Uniqueness Theorem.   If  X and Y are two systems satisfying the axioms for the 

real numbers, then X and Y are isomorphic. 
 
PROOF.   The construction of an isomorphism starts with its definition for natural 
numbers and the proceeds to its definition for the (signed) integers, the rational numbers 
and ultimately the real numbers. 
 
The proof itself is relatively straightforward and elementary but somewhat tedious; 
however, it is absolutely necessary if we want to talk about THE real number system.  A 



 

 

detailed argument is included here because most textbooks simply refer to the result or 
leave it to the reader as an exercise.   
 
First step.   We have already noted that there are (unique) embeddings of the natural 
numbers —  say eX and eY   —   into X and Y sending the least element 0 of   to the 
zero elements 0X and 0Y of X and Y  respectively and satisfying the basic conditions 
 

eX(1(n)) = eX(n) + 1X,     eY(1(n)) = eY(n) + 1Y 
 
where 1X and 1Y are the unit elements of X and Y respectively.  For each x ∈∈ X there is 

at most one n ∈∈  such that  x  = eX(n), and therefore we can construct a well-defined 
function  
 

f1 : eX( ) →→ eY( ) 
 

by setting  f1(eX(n)) = eY(n) for n ∈∈  .  By construction this defines a one-to-one 

correspondence between eX( )  and eY( ). 
 
Claim:  The map f1 satisfies the conditions 
 

f1(AX(u, v)) = AY(f1(u), f1(v)),   
 

f1(MX(u, v)) = MY(f1(u), f1(v)), 
 

if (u, v) ∈∈ OX,  then (f1(u), f1(v)) ∈∈ OY 
 

for all u, v ∈∈ .  Using the maps eX and eY  we may rewrite these conditions as  
 
 

f1(AX(eX(m), eX(n) )) = AY(f1(eX(m)), f1(eX(n))),   
 

f1(MX(eX(m), eX(n) )) = MY(f1(eX(m)), f1(eX(n))), 
 

if (eX(m),eX(n)) ∈∈ OX, then (f1(eX(m)), f1(eX(n))) ∈∈ OY 
 

for all m, n ∈∈ .  We shall verify the first two of these by induction on n; in order to 
simplify the notation and stress the underlying ideas we shall use the standard algebraic 
terminology to denote the addition, multiplication and linear orderings on X and Y. 
 
Addition.   Suppose that  n = 0.  Then  
 



 

 

f1(eX(m) + eX(0)) = f1(eX(m) + 0X) = f1(eX(m)) = eY (m) + 0Y =  
eY (m) + eY (0) = f1(eX(m))  + f1(eX(0)). 

 
Thus the equation is true for n = 0 and all  m.  Suppose now that it is true for n = k  and 
all m;  we need to show it is true for n = 1(k) and all m.  But  
 

f1(eX(m) + eX(1(k))) = f1(eX(m) + eX(k) + 1X) = f1(eX(m) + eX(k) + 1X) = 

 f1(eX(m) + 1X + eX(k)) = f1(eX(1(m)) + eX(k)) 
 
and by the induction hypothesis the last expression is equal to  
 

f1(eX(1(m))) + f1(eX(k)). 
 
The latter in turn is equal to  
 

eY(1(m)) + eY(k)  = eY(m) + 1Y + eY(k) = eY(m) + eY(1(k)) = 
  f1(eX(m)) + f1(eX(1(k))). 

 
This completes the verification of the inductive step. 
 
Multiplication.   Suppose that n = 0.  Then  
 

f1(eX(m) ⋅⋅ eX(0)) = f1(eX(m) ⋅⋅ 0X) =  f1(0X) =  0Y  = eY(m) ⋅⋅ 0Y = eY(m) ⋅⋅ eY(0) 

= f1(eX(m)) ⋅⋅  f1(eX(0)). 
 
Thus the equation is true for n = 0 and all  m.  Suppose that we know the equation is 
true for  n = k  and all  m;  we need to show it is true for n = 1(k) and all m.  But  
 

f1(eX(m) ⋅⋅ eX(1(k))) = f1(eX(m) ⋅⋅ eX(k) + eX(m)) = 

f1(eX(m)  ⋅⋅ eX(k)) + f1(eX(m)) 
 
because we have already verified that  f1 is additive, and by the induction hypothesis the 

last expression is equal to  f1(eX(m))  ⋅⋅ f1(eX(k))) + f1(eX(m)).  The latter in turn is 
equal to  
 

eY(m) ⋅⋅ eY(k) + eY(m) = eY(m) ⋅⋅ eY(1(k)) =  f1(eX(m)) ⋅⋅ f1(eX(1(k))). 
 
As before, this completes the verification of the inductive step. 
 



 

 

Ordering.   If eX(m) <  eX(n) then there is a nonzero natural number c ∈∈  such that 

eX(m) + eX(c) = eX(n). Since  f1 is one-to-one, it follows that eY(c) =  f1(eX(c)) ≠≠ 
0Y, so that eY(c) > 0Y .  By the additivity of  f1 it follows that  
 

f1(eX(m)) = eY(m) = eY(m) + 0Y   <  eY(m) + eY(c) = 

 f1(eX(m) + eX(c)) = f1(eX(n)) 
 
as required. 
 
Notational conventions.    Let F  be a system satisfying the axioms for the real number 

system, and let eF :   →→ F be the embedding of the natural numbers that has been used 
extensively in the preceding step of the proof.  We define the integers in F  to be the set 
of all objects of the form eF(a) – eF(b) for some a, b ∈∈ , and we shall denote this set 

by  (F).  Similarly, we define the rational numbers or rationals in F  to be the set of 

m�n where m and n are integers in F  and n is nonzero,  and we shall denote this set by 

 (F).  If we are dealing with one fixed system in a given context we shall omit the 
“(F)” to simpli fy and standardize the notation.  
 
 
Second step.  We need to extend  f1 to negative integers.  Clearly we want a definition 

sending a negative number of the form – eX(n) ∈∈ X to – eY(n) = – f1(eY(n)), but we 
shall take a slightly less direct approach that will be helpful in verifying the crucial 
properties of the extended map without a succession of case by case arguments.   
 

By the preceding definition, every integer n ∈∈ X can be represented as a difference 

eX(a) – eX(b) for some a, b ∈∈ ; this representation is not unique, but it is elementary 
to check that eX(a) – eX(b) = eX(c) – eX(d) if and only if  
 

eX(a) + eX(d) = eX(b) + eX(c). 
 
We shall extend  f1 to a map  f2 on integers by setting   
 

f2 (eX(a) – eX(b)) = eY(a) – eY(b) =  f1(eX(a)) – f1(eX(b)). 
 
Before proceeding any further we need to show that  f2  is well -defined; in other words, 
we need to verify that  
 

if eX(a) – eX(b) = eX(c) – eX(d),  then  eY(a) – eY(b) = eY(c) – eY(d).    
 
Equivalently, we need to show that  



 

 

 
if eX(a) + eX(d) = eX(b) + eX(c),  then eY(a) + eY(d) = eY(b) + eY(c).    

 
To see the latter, apply  f1 to both sides of the first equation and note that the additivity of 

f1 on  implies that  
 

eY(a) + eY(d) =  f1(eX(a)) +  f1(eX(d)) =  f1(eX(a) + eX(d)) =  

 f1(eX(b) + eX(c)) =  f1(eX(b)) + f1(eX(c)) =  eY(b) + eY(c) 
 
so that  f2  is well-defined.   
 
Throughout the remainder of this step in the proof we shall consider two integers in X of 
the form m =  eX(a) – eX(b) and n = eX(c) – eX(d).   
 
We must now show that   f2  is one-to-one.  To see this, suppose that   f2 (m) = f2 (n).  
By construction it follows that eY(a) – eY(b) =  eY(c) – eY(d) so that eY(a) + eY(d) = 
eY(b) + eY(c).   The identities of the previous paragraph now imply that 
 

f1(eX(a) + eX(d)) = f1(eX(b) + eX(c)) 
 
and since  f1 is one-to-one it follows that eX(a) + eX(d) = eX(b) + eX(c).  But the latter 
implies eX(a) – eX(b) = eX(c) – eX(d) which in turn implies that m = n.  By 
construction it follows that the image of   f2   is the set of all differences of elements in 
the image of eY ; in other words,  f2 maps the integers in X onto the integers in Y.     
 
We next verify that  f2  is additive:  
 

f2 (m + n) = f2 (eX(a) – eX(b) + eX(c) – eX(d)) =  

f2 (eX(a) + eX(c) – eX(b) – eX(d)) =  

f2 ((eX(a) + eX(c)) – (eX(b) + eX(d))) =  

f1(eX(a) + eX(c)) – f1(eX(b) + eX(d)) =  

(eY(a) + eY(c)) – (eY(b) + eY(d)) =  
eY(a) – eY(b) + eY(c) – eY(d) =  

f2 (m) + f2 (n). 
 

The verification that  f2  is multiplicative proceeds similarly: 
 

f2 (m ⋅⋅ n) = f2 ((eX(a) – eX(b))  ⋅⋅  (eX(c) – eX(d))) = 



 

 

 f2 ((eX(a) ⋅⋅ eX(c) + eX(b) ⋅⋅ eX(d)) – (eX(a  ⋅⋅ eX(d) + eX(b) ⋅⋅ eX(c)))  =  

f1(eX(a) ⋅⋅ eX(c) + eX(b) ⋅⋅ eX(d)) – f1(eX(a) ⋅⋅ eX(d) + eX(b) ⋅⋅ eX(c))  =  

( f1(eX(a)) ⋅⋅ f1(eX(c)) +  f1(eX(b)) ⋅⋅ f1(eX(d))) –  

( f1(eX(a)) ⋅⋅ f1(eX(d)) + f1(eX(b)) ⋅⋅ f1(eX(c)))   =  

(eY(a) ⋅⋅ eY(c) + eY(b) ⋅⋅ eY(d))  –  (eY(a) ⋅⋅ eY(d) + eY(b) ⋅⋅ eY(c)) = 

(eY(a) – eY(b)) ⋅⋅ (eY(c) – eY(d)) = f2 (m) ⋅⋅ f2 (n).  
 

To prove that  f2  is order preserving, suppose that m <  n, so that we have  
 

eX(a) – eX(b)  <   eX(c) – eX(d). 
 
Adding eX(b) – eX(d) to both sides of this inequality yields 
 

eX(a) + eX(d)  <  eX(b) + eX(c) 
 
and since  f1 is order preserving the latter in turn implies 
 

eY(a) + eY(d) = f1(eX(a)) +  f1(eX(d)) = f1(eX(a) + eX(d)) < 

 f1(eX(b) + eX(c))  =  f1(eX(b)) + f1(eX(c)) = eY(a) + eY(c).   
 
If we now subtract eY(b) + eY(d) from both sides of the outside inequality we obtain the 
desired conclusion: 
 

f2 (m) =  eY(a) – eY(b) < eY(c) – eY(d) = f2 (n) 
 
This completes the second step of the proof. 
 

Third step.  We need to extend  f2  to rational numbers of the form a�b where a and b 

are integers and b is nonzero.  Recall from elementary algebra that two fractions a�b 
and c�d (with b and d nonzero) are equal if and only if ad = bc.   
 

The idea is to consider a number q ∈∈ X of the form a�b, where a and b are integers in 

X and b is nonzero, and to define  f3(q) = f2(a)�f2(b).  In order to show that this is a 
valid definition we need to check two things.  First of all, since f2 is one-to-one it follows 
that  f2(b) is nonzero if b is nonzero, so the quotient is actually defined.  Second, we 
need to show that the value obtained by the formula is the same if we write q as a 

quotient of integers in two different ways.  In other words, we need to show that if a�b = 
c�d (with b and d nonzero) then we also have f2(a)�f2(b) = f2(c)�f2(d).  To do this, 



 

 

begin with the previous observation that ad = bc and apply  f2 to both sides of the 

equation to obtain  f2(a) ⋅⋅ f2(d) = f2(b) ⋅⋅ f2(c). If we then divide both sides of this 

equation by f2(b) ⋅⋅ f2(d) we obtain  f2(a)�f2(b) = f2(c)�f2(d) as required. 
 

By construction the image of  f3 consists of all expressions of the form  u�v where u and 
v are in the image of  f2 and v is nonzero; in other words,  f3 maps the rationals in X 
onto the rationals in Y.  We claim that  f3 is also one-to-one. 
 
Throughout the remainder of this step in the proof we shall consider two rational numbers 

in  X of the form p =  a�b and q =  c�d where a, b, c, d are integers in X and b and d 
are nonzero.   
 
To prove that  f3  is one-to-one suppose that  f3 (p) = f3 (q).  By construction it follows 

that  f2(a)�f2(b) = f2(c)�f2(d), which is equivalent to  f2(a) ⋅⋅ f2(d) = f2(b) ⋅⋅ f2(c) .   
Since  f2 is multiplicative we have  
 

f2(ad) =  f2(a) ⋅⋅ f2(d) =  f2(b) ⋅⋅ f2(c) =  f2(bc) 
 

and since  f2 is one-to-one this implies ad = bc, which in turn implies a�b = c�d and 
hence that  f3  is one-to-one. 
 
The verification that   f3  is additive follows from the string of equations 
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Similarly, the verification that   f3  is multiplicative follows from the somewhat different 
string of equations 
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Finally we need to show that  f3 is order preserving.   We shall do this using the fact that 

a fraction a�b is positive if and only if the product of the number and denominator ab is 
positive (the second number is the product of the first with the positive number b2).  
Therefore suppose that p  <  q ; then  p – q is positive, and by the observation on the 

signs of fractions in the previous sentence it follows that the integer (bc – ad) ⋅⋅ bd is 
also positive.  Since  f2  is order preserving it follows that  
 

f2 ((bc – ad) ⋅⋅ bd) = ( f2 (b) ⋅⋅ f2 (c) – f2 (a) ⋅⋅ f2 (d)) ⋅⋅ ( f2 (b) f2 (d)) 
   
is also positive.  But the right hand side of this equation is equal to f3(q) –  f3(p) , so the 
preceding observations imply that f3(q)  >  f3(p) as required. 
 

Fourth step.   We need to extend  f3 to all elements of X .   Given a number r ∈∈ X ,  
consider the set  D(r) of all rational numbers q ∈∈ X such that q  <  r.  Let k be a 

positive integer that is greater than r, and consider the set  f3 (D(r)) ⊂⊂ Y.  Since f3  is 
order preserving it follows that  f3(k) is an upper bound for  f3 (D(r))  and therefore by 
completeness the set  f3 (D(r)) has a (unique) least upper bound; we take f(r) to be this 
least upper bound.  This definition may be rewritten as follows: 
 

f(r) = L.U.B. q < r   f3 (q)  
 
The first order of business is to show that  f3 (r) = f(r) if r is rational.  If r is rational 

and q ∈∈ D(r), then by the previous work we know that  f3 (q) <  f3 (r), so that f3(r) is 
an upper bound for  f3 (D(r)) and consequently is greater than or equal to the least upper 
bound, which is  f(r).  Suppose now that  f(r) <  f3 (r).  It follows that there is a rational 

number t ∈∈ X such that  
 

f(r) <  f3 (t) <  f3 (r).   
 
But f3  is order preserving, and therefore the second inequality implies that t < r.  The 

latter in turn implies that t ∈∈ D(r) and hence that  f3 (t) ≤≤  f(r), which when combined 
with the previously displayed inequality  f(r) <  f3 (t) yields a contradiction.  It follows 
that  f(r) =  f3 (r).   
 
To show that   f  is one-to-one, assume that r and s are real numbers in X such that r  <  
s.  Choose rational numbers p and q such that r  <  p  <  q  <  s.  As before, it follows 

that f3(p) is an upper bound for f3(D(r)) and therefore f(r) ≤≤  f3(p) = f(p).  
Furthermore, since f3 = f  for rational numbers it follows that f(p) < f(q), and since q 



 

 

∈∈ D(s) it follows that f(q) = f3(q) ≤≤  f(s).  If we put these inequalities together we 
find that  f(r)  <  f(s) and consequently that f is one-to-one.   
 
Note that this argument also shows that   f  is order preserving.  
 

We shall next verify that the function  f  maps X onto all of Y.  Let  y ∈∈ Y be arbitrary, 

and let D*(y) be the set of all rational numbers q ∈∈ Y such that q < y; by construction 
y is an upper bound for D*(y), and in fact  y is the least upper bound of D*(y) because 
if  ] < y then there is a rational number p such that  ] < p < y.  As before there is a 

positive integer k ∈∈ Y such that y < k, and since the function  f3  is order preserving it 
follows that  k0 = f3

–1(k) is an upper bound for the set  f3
–1(D*(y)).  Therefore the 

latter set has an upper bound that we shall denote by x.  We claim that  f(x) = y, and we 

shall do this by showing that  y ≤≤  f(x) and strict inequality does not hold.   To show the 

inequality, suppose that q < y, and choose a rational number p ∈∈ Y such that q < p < y. 
If we write q0 = f3

–1(q) and p0 = f3
–1(p) then q0 < p0, and since both belong to the set  

f3
–1(D*(y)) it follows that q0 < p0 < x.  Since the function  f is order preserving the 

identities p = f3(p0) = f(p0) and q = f3(q0) = f(q0) imply  that  q  < p  < f(x).  Thus  
f(x) is an upper bound for D*(y); since y is the least upper bound D*(y) we must have 

y  ≤≤  f(x).  The proof that  y = f(x)  thus reduces to showing that f(x) is not strictly 
greater than  y.   
 
Assume the contrary.  Then there is a rational number q satisfying  y < q < f(x), and 
write  q =  f3(q0) =  f(q0) as before.  Since the function  f is order preserving, it follows 
that  q0 < x.  But the definition of x as a least upper bound implies the existence of a 
rational number p0 such that    q0 < p0 and p = f3

–1(p0) lies in D*(y); i.e., p < y.  
Once again we have 
 

q = f3(q0)  <  f3(p0) = p 
 
and if we combine this with the other inequalities we obtain the string of inequalities  
 

y  <  q  <  p  <  y 
 
which is a contradiction.  This completes the proof that  y = f(x). 
 
The next step is to show that  f  is additive.  Let u and v be arbitrary real numbers in X.    
 
Consider first the special case where one of these numbers (say v) is rational.  In this case 
the set D(u + v) is the set of all numbers expressible as sums  
 

f3 (q) + f3 (v) =   f3 (q) +  f(v) 



 

 

 
where q ∈∈ D(u), and therefore we have  
 

f(u + v) = L.U.B. q < u + v   f3 (q) =  (L.U.B. p < u   f3 (p)) + f(v)   =  f(u) + f(v)  
 
and hence  f is additive if v is rational and u is arbitrary.   
 
 
We now consider the general case.  If q is a rational number such that  q  <  v, then  
 

f(u) + f(q)  =  f(u + q)  <  f(u + v)  
 
because  f is order preserving and it is also additive if one of the summands is rational.  
Therefore q  <  v implies that  
 

f3 (q)  =   f(q)  <  f(u + v) –  f(u)  
 
and consequently we have 
 

f(v) =  L.U.B. q < v   f3 (q) ≤≤  f(u + v) –  f(u).  
 
Additivity will follow if we can show that  f(v)  <  f(u + v) –  f(u) is impossible, so 

assume that it does hold.  In this case there is a rational number r ∈∈ Y such that  
 

f(v)  <  r  <  f(u + v) –  f(u)  
 

and because  f  is onto we may write r  =   f(q)  for some rational number q ∈∈ X .  
Since  f is order preserving we know that  v  <  q, and consequently the order preserving 
and partial additivity properties of  f  imply that  
 

f(q) = r  <  f(u + v) –  f(u)  <  f(u + q) –  f(u)  =  f(u) + f(q) –  f(u)  =  f(q) 
 
which is a contradiction. Therefore the assumption  f(v)  <  f(u + v) –  f(u)  must be 
incorrect, and by the preceding discussion it follows that  f  must be additive. 
 
At this point, the only statement that remains to be established is that   f  is 
multiplicative.  We first observe that  f  is multiplicative if at least one of the factors is 0 

or ±± 1.   If one of the factors is + 1, this is immediate because  f(1X) = 1Y .  If one of 
the factors is zero, this follows quickly because the product of anything with zero is zero 
and  f (0X) =  0Y .  If one of the factors is – 1, this will follow provided we can show 

that   f(– a) = – f(a) for all  a ∈∈ X , for then we have  
 



 

 

f(– 1X) = – f(1X) = – 1Y  
 
and furthermore  
 

f ((– 1X) ⋅⋅ a) =  f(– a) = – f(a) = (–1Y) ⋅⋅ f(a) = f(–1X) ⋅⋅ f(a). 
 
To see that  f(– a) = – f(a), let b = – a.  Since  f  is additive we have that  
 

0Y  = f(0X ) = f(a + b) = f(a) + f(b) 
 
and the latter implies that  f(b) = – f(a) as required.  We shall need the basic identity 
f(– a) = – f(a) in order to complete the final step in the verification that  f  is 
multiplicative.  
 
The next step in verifying that  f  is multiplicative is to show this is true if both of the 
factors are positive.  The proof of this fact is very similar to the proof of additivity (since 
the exponential map defines an order preserving isomorphism from the additive group of 
real numbers to the multiplicative group of positive real numbers, this should not be 
surprising).  Let u and v be arbitrary positive  real numbers in X.   Since f  is order and 
zero preserving it follows that both f(u) and f(v) are positive.  
 
Consider first the special case where one of these numbers (say v) is rational (and 

positive!).  In this case, the set D(u⋅⋅v) is the set of all real numbers expressible as sums 

f3 (q) ⋅⋅ f3 (v) =   f3 (q) ⋅⋅ f(v) where q ∈∈ D(u), and therefore we have  
 

f(u⋅⋅ v) = L.U.B. q < u⋅⋅v  f3 (q) =  (L.U.B. p < u   f3 (p)) ⋅⋅ f(v)   = f(u) ⋅⋅ f(v)  
 
and hence  f is multiplicative if v is rational and u is arbitrary.   
 
 
We now consider the general case.  If  q is a rational number such that  q  <  v, then  
 

f(u) ⋅⋅ f(q)  =  f(u ⋅⋅ q)  <  f(u ⋅⋅ v)  
 
because  f  is order preserving and it is also additive if one of the summands is rational.  
Therefore q  <  v implies that  
 

f3 (q)  =   f(q)  <  f(u ⋅⋅ v)�f(u) 
 
and consequently we have 
 

f(v) =  L.U.B. q < v   f3 (q) ≤≤  f(u ⋅⋅ v)�f(u).  



 

 

 

Multiplicativity will follow if we can show that  f(v)  <  f(u ⋅⋅ v)�f(u) is impossible, so 

assume that it does hold.  In this case there is a rational number r ∈∈ Y such that  
 

f(v)  <  r  <  f(u ⋅⋅ v)�f(u) 
 

and because f  is onto we may write r  =   f(q)  for some rational number q ∈∈ X. Since 
f is order preserving we know that  v  <  q, and consequently the order preserving and 
partial multiplicativity properties of  f  imply that  
 

f(q) = r  <  f(u ⋅⋅ v)�f(u) <  f(u ⋅⋅ q)�f(u)  =  f(u) ⋅⋅ f(q)�f(u)  =  f(q)   
 

which is a contradiction. Therefore the assumption  f(v)  <  f(u ⋅⋅ v)�f(u) must be 
incorrect, and by the preceding discussion it follows that  f  must be multiplicative. 
 
Finally, we need to verify that  f  is multiplicative in all cases.   Given a nonzero real 
number a, set εε(a) equal to + 1 if a is positive and – 1 if  a is negative.  Then we may 

express a = εε(a) ⋅⋅ |a| where the absolute value |a| is positive.  Using the multiplicativity 

of  f  for the product  |u|⋅⋅|v| and the identity  f(εε ⋅⋅ a) = εε  ⋅⋅ f(a)  for εε = ±± 1 we have  
 

f(u ⋅⋅ v) = f ((εε (u) ⋅⋅ |u|) ⋅⋅ (εε (v) ⋅⋅ |v|)) = 

f (εε (u) ⋅⋅ εε (v) ⋅⋅ |u| ⋅⋅ |v|) =  (εε (u) ⋅⋅ εε (v)) ⋅⋅ f(|u| ⋅⋅ |v|) =  

(εε (u) ⋅⋅ εε (v)) ⋅⋅ f(|u|) ⋅⋅ f(|v |) =  (εε (u) ⋅⋅ f(|u|)) ⋅⋅ (εε (v) ⋅⋅ f(|v|)) =     

(f(εε (u) ⋅⋅ |u|)) ⋅⋅ (f(εε (v) ⋅⋅ |v|))  =    f(u) ⋅⋅  f(v)  
 
and this completes the proof that f is multiplicative.� 
 
 

Rigidity of the Real Numbers 
 
It turns out that the isomorphism constructed above is unique.  This is equivalent to 
saying that the only automorphism of 4 with itself that preserves addition, multiplication 
and ordering is the identity.  In fact, it turns out that there is only one automorphism from 
4 to itself that preserves addition and multiplication. 
 

Theorem.   If  f : �4 →→ 4 is a one-to-one correspondence that is additive and 
multiplicative, then f is the identity. 
 
PROOF.   The proof begins with a couple of simple observations: 
 



 

 

(a) The only element u ∈∈ 4 such that xu = x  for all x ∈∈ 4 is the unit element. 
 

(b) The only element ] ∈∈ 4 such that x�] = ]  for all x ∈∈ 4 is the zero element. 
 

These follow because u = 1 ⋅ u  = 1 and  0 = 0 ⋅ ]  = ] .  Since  f  sends elements with 
properties (a) and (b) into elements with the corresponding properties, it follows that we 
must have  f (1) = 1 and  f (0) = 0. 
 
We shall also need two other standard elementary properties of automorphisms (and 
isomorphisms):   
 

(c)  For all  x ∈∈ 4�we have  f(– x) = – f(x) . 
 

(d)  For all nonzero x ∈∈ 4�we have  f(x–1) =  f(x) –1 . 
 
The proof of (c) is the same argument that was used in the uniqueness proof, and the 
proof of (d) is based upon similar considerations: 
 

1 = f (1) = f(x x–1) = f(x) f(x–1)  ⇒⇒  f(x–1) =  f(x) –1 
 
The main idea behind the proof is to show successively that  f must be the identity on 
each of the following: 
 

1. The natural numbers . 
2. The integers  .   
3. The rational numbers  . 
4. All real numbers. 

 
Predictably, we take these in the order listed. 
 

The natural numbers.   Let e :    →→�4 be the embedding described in the section on 

axioms for the real numbers.  We shall show that f(e(n)) =  e(n)  by induction on n; we 
have already verified this if n = 0 or n = 1.  Suppose that this is known for n = k.  
Then by the additivity of  f  and the inductive hypothesis we have  
 

f (e(1(k) )) =  f (e(k) + 1) = f (e(k)) + 1 = e(k) + 1 = e(1(k) ), 
 
and hence f is the identity on the natural numbers (more correctly, on the image of the 
natural numbers in the reals). 
 

The integers.   Given an integer n ∈∈ write n = e(a) – e(b) where a, b ∈∈  .  Then 



 

 

by the preceding step in the proof, additivity and property (c) above we have  
 

f(n)  =  f (e(a) – e(b)) = f (e(a)) –  f (e(b)) = e(a) – e(b) = n 
 
as required. 
 
The rational numbers.   Given a rational number q ∈∈ express q as a quotient a b –1 

where a, b ∈∈ and b is nonzero.  As before, by the immediately preceding step in the 
proof, the multiplicativity of   f  and property (d) above we have  
 

f(q)  =  f(a b –1)  =   f(a) f(b –1)  =   f(a) f(b)–1  =  a b –1  =  q 
 
as required. 
 
The set of all real numbers.   The crucial step in the proof is to show that   f   is order 

preserving.   Suppose that a, b  ∈∈ 4  satisfy  a  !  b .  If   c  =  a – b  then  c  !  0 
and therefore c has a unique positive square root that we shall call  d.   If we apply f to 
both sides of the equation  d 

2  =  a – b  we obtain the equation 
 

f(d) 2  =  f(d 
2)  =  f(a – b)  =  f(a)  –  f(b); 

 
this quantity is nonzero because f is one-to-one (look at the right hand side), and it is 
nonnegative because it is a square (look at the left hand side).  Therefore the quantity in 
question is positive as claimed. 
 

To conclude the proof, let  a  ∈∈ 4  be arbitrary.  We need to show that neither of the 

strict inequalities  a  !  f(a)  or     a  �  f(a)  can hold.  The proofs in both cases are 

similar so we shall do them simultaneously.  Suppose that a  !  f(a)   or  a  �  f(a)  is 
true, and in the respective cases choose a rational number q such that   
 

a  !  q  !  f(a)  or    a  �  q  �  f(a) . 
 

Since  f  is order preserving and is the identity on rational numbers, these inequalities 
respectively imply 
 

f(a) !� f(q)  =  q  !  f(a)  and    f(a) ��   f(q)  =  q  �  f(a) . 
 
In either case we obtain a contradiction, and therefore we must  have  f(a)  =  a. �  


