Uniqueness of the Real Numbers

The objedive of the aiom system for the red numbersisto charaderize this g/stem
completely. In the precading discusson we noted that the akioms all ow oneto derive
some important and familiar properties of red numbers. However, in arder to conclude
that the akioms are a omplete charaderization d the red numbers, we need to show that
al systems stisfying the akioms are “the same for all practical purposes.” A more
formal way of expressng thisisto say that if we ae given two systems satisfying the
axioms there is a one-to-one @rrespondence between them that preserves all the relevant
algebraic structure; such amap is cdled an isomorphism. More predsely, we have the
foll owing definiti on:

Definition. Let (X, Ax, Mx, Ox) and (Y, Ay, My, Oy) be two systems satisfying the
axioms for the real numbers, where A and M denote the respective additions and
multiplications and O denotes the respective linear orderings.  An isomorphism is a one-

to-one correspondence f : X = Y suchthat for al u, v 0 X we have the foll owing
relations:

(1) f (Ax(u, v)) = Ay(f(u), f(v)). [Lessformally, f(u + v) = f(u) + f(V), or
f is additive]

2) f (Mx(u,Vv)) =My(f(u), f(v)). [Lessformally, f(u v) = f(u) f(v), or f
ismultiplicative.]

(3) 1f (u, v) O Ox, then (f(u), f(v)) O Oy. [Lessformally, if U <V, then
f(u) < f(v), or fisorder preserving.]

We say that that X is isomorphic to Y if thereis an isomorphism from X to Y. Itisan
elementary exercise to verify that if f defines anisomorphism from X to Y, then the
inverse function f ~ defines an isomorphism from Y to X. In particular, if Xis

isomorphicto Y, then Y isisomorphic to X and ore can simply say that X and Y are
isomorphic. We can now state the main result.

Uniqueness Theorem. 1f X and Y aretwo systems satisfying the axioms for the
real numbers, then X and Y are isomorphic.

PROOF. The monstruction o an isomorphism starts with its definition for natural
numbers and the proceals to its definition for the (signed) integers, the rational numbers
and dtimately the red numbers.

The proof itself isrelatively straightforward and elementary but somewhat tedious;
however, it is absolutely necessary if we want to talk abou THE red number system. A



detail ed argument isincluded here becaise most textbooks smply refer to the result or
leaveit to the reader as an exercise.

First step. We have drealy noted that there ae (unique) embeddings of the natural
numbers — say € andey — into X and 'Y sending the least element O of [\ to the
zero elements Oy and Oy of X and Y respedively and satisfying the basic condtions

ex(a(n)) = ex(n) + 1x, ev(o(n)) = ev(n) + 1y
where 1y and 1y are the unit elements of X and Y respectively. For each X [1 X thereis

at most onen O [\ suchthat X = ex(n), and therefore we can construct a well-defined
function

f1:ex(10) - ev(lY)

by setting f1(ex(n)) = ey(n) for n O[N] . By construction this defines a one-to-one
correspondence between ex([\]) and ey([\)).

Claim: The map f; satisfies the conditions
f1(Ax(u, v)) = Ay(fa(u), f1(v)),
fi(Mx(u, v)) = My(f(u), f1(v)),
if (u, v) O Ox, then (fx(u), f1(v)) O Oy

foral u, v O . Using the maps e and €, we may rewrite these conditions as

f1(Ax(ex(m), ex(n) ) = Av(fu(ex(m)), fx(ex(n))),
f1(Mx(ex(m), ex(n) )) = My(f1(ex(m)), fa(ex(n))),
if (ex(m),ex(n)) O Ox, then (fu(ex(m)), f1(ex(n))) O Oy
foral m, n O 0. Weshall verify the first two of these by induction on n; in order to
simplify the notation and stress the underlying ideas we shall use the standard algebraic

terminology to denote the addition, multiplication and linear orderingson X and Y.

Addition. Supposethat N = 0. Then



f1(ex(m) + ex(0)) = fu(ex(m) + Ox) = fa(ex(m)) = ey (M) + Oy =
ey (M) + ey (0) = fi(ex(m)) +fi(ex(0)).

Thus the equation istruefor N = 0 and all M. Suppose now that itistruefor n =k and
al m; we need to show it istruefor n = ¢(k) and al m. But

f1(ex(m) + ex(a(K))) = f1(ex(M) + ex(k) + 1x) = f1(ex(m) + ex(k) + 1x) =
fa(ex(m) + Lx+ &x(K)) = fa(ex(a(m)) + ex(K))
and by the induction hypothesis the last expression is equal to
fi(ex(a(m))) + fi(ex(k)).

Thelatter in turnisequal to

ev(o(m)) + ev(k) = ev(m) + 1y + ev(k) = e(m) + ey(a(k)) =
f1(ex(m)) + f1(ex(a(K))).

This completes the verification of the inductive step.

Multiplication. Supposethat n = 0. Then

fa(ex(m) [Bx(0)) = fa(ex(m) M) = f1(0x) = Oy = ey(m) My = e/(M) [By(0)
= f1(ex(m)) Df1(ex(0)).

Thus the equation istruefor N = 0 and all M. Suppose that we know the equation is
truefor N =K andal m; we need to show it istruefor n = ¢(k) and all m. But

f1(ex(m) Cex(o(k))) = f1(ex(m) Oex(k) + ex(m)) =
fa(ex(m) Tex(k)) + f1(ex(m))

because we have already verified that f; is additive, and by the induction hypothesis the

last expression is equal to fl(ex(m)) Efl(ex(k))) + fl(ex(m)). Thelatter inturnis
equal to

ev(m) Cey(k) + ev(m) = ey(m) Tev(a(k)) = f1(ex(m)) Fa(ex(a(k)).

As before, this completes the verification of the inductive step.



Ordering. If ex(m) < ex(n) then thereis anorzero natural number ¢ O [] such that
ex(m) + ex(c) = ex(n). Since f; isone-to-one, it follows that ey(C) = fi(ex(c)) #
Oy, so that ey(C) > Oy. By the alditivity of f; it foll ows that

f1(ex(m)) = e((m) = e((m) + 0y < ey(m) +ey(c) =
f1(ex(m) + ex(c)) = f1(ex(n))

asrequired.

Notational conventions. Let F be asystem satisfying the acioms for the red number
system, andlet &- : [Nl = F bethe embedding of the natural numbers that has been used
extensively in the precaling step of the proof. We definetheintegersin F to be the set
of al objeds of the form e=(a) — e-(b) for some a, b [ [\ , and we shall denate this st
by ZZ (F). Similarly, we define the rational numbers or rationalsin F to be the set of
m/n wherem andn areintegersin F andn is norzero, andwe shall denate this st by
© (F). If we are deding with ore fixed system in a given context we shall omit the
“(F)” to smplify and standardize the notation.

Second step. We neal to extend f4 to negative integers. Clealy we want a definition

sending a negative number of the form —ex(n) [ X to—ey(n) = — fl(ey(n)), but we
shall take adightly lessdired approach that will be helpful in verifying the qucia
properties of the extended map withou asuccesson d case by case aguments.

By the precading definition, every integer N L1 X can be represented as a diff erence
ex(a) — ex(b) for somea, b [0 [\ ; this representationis nat unique, bu it is elementary
to chedk that ex(a) — ex(b) = ex(c) — ex(d) if and oy if

ex(a) + ex(d) = ex(b) + ex(c).
We shall extend f, toamap f, onintegers by setting
f2 (ex(a) —ex(b)) = e(@) —ev(b) = fi(ex(@)) - f1(ex(b)).

Before procealing any further we need to show that f, iswell-defined; in ather words,
we ned to verify that

if ex(a) — ex(b) = ex(c) —ex(d), then ey(a) —ey(b) = ev(c) —ey(d).

Equivalently, we need to show that



if ex(a) + ex(d) = ex(b) + ex(c), then ey(a) + ey(d) = ev(b) + ey(c).

To seethe latter, apply f4 to both sides of the first equation and note that the additivity of
f1 on [N implies that

ev(a) + e(d) = fi(ex(a)) + fi(ex(d)) = fi(ex(@) + ex(d)) =
f1(ex(b) + ex(c)) = f1(ex(b)) + f1(ex(c)) = ev(b) + ev(c)

sothat f, iswell-defined.

Throughout the remainder of this step in the proof we shall consider two integersin X of
theformm = ex(a) — ex(b) and n = ex(c) — ex(d).

We must now show that f;, isone-to-one. To seethis, supposethat f, (m) =f, (n).
By construction it follows that ey(a) —ey(b) = ey(c) —ey(d) sothat ey(a) + ey(d) =
ey(b) + e/(c). Theidentities of the previous paragraph now imply that

f1(ex(@) + ex(d)) = f1(ex(b) + ex(c))

and since f; isone-to-oneit followsthat ex(a) + ex(d) = ex(b) + ex(c). But thelatter
implies ex(a) — ex(b) = ex(c) —ex(d) whichinturnimpliesthat m = n. By
construction it follows that theimage of f, isthe set of all differences of elementsin
the image of ey ; in other words, f> mapstheintegersin X onto theintegersin Y.

We next verify that f, isadditive:

f, (M + n) = f, (ex(a) — ex(b) + ex(c) — ex(d)) =
f, (ex(a) + ex(c) — ex(b) — ex(d)) =
£, ((ex(@) + ex(©)) — (ex(b) + ex(d))) =
f.1(ex(@) + ex(c)) —f(ex(b) + ex(d)) =

(ev(a) + ev(c)) — (ev(b) + ev(d)) =
ev(a) —ev(b) + ev(c) —ev(d) =
fo (m) +f5(n).

The verification that f, ismultiplicative proceeds similarly:

f (m [h) = f, ((ex(@) —ex(b)) O(ex(c) —ex(d))) =



5 ((ex(8) CBx(c) + ex(b) Tex(d)) — (ex(@ Cx(d) + ex(b) [Bx(C))) =
f1(ex(@) Cex(c) + ex(b) Tax(d)) —f1(ex(@) Tex(d) + ex(b) Tbx(c)) =
( fi(ex(@)) Ta(ex(0) + fa(ex(b)) Tha(ex(d))) —

( f1(ex(@)) Ta(ex(d)) + fa(ex(b)) Tu(ex(c))) =
(ev(a) Tov(c) + ev(b) Tav(d)) — (ev(a) Tav(d) + ev(b) (By(0)) =
(ev(a) —ev(b)) Hev(c) —ex(d)) = f, (m) D ().

To provethat f, isorder preserving, supposethat m < n, so that we have
ex(@) —ex(b) < ex(c) —ex(d).
Adding ex(b) — ex(d) to both sides of thisinequality yields

ex(a) + ex(d) < ex(b) + ex(c)

and since f; isorder preserving the latter in turn implies

ev(a) + ey(d) = f1(ex(a)) + fi(ex(d)) = f1(ex(a) + ex(d)) <
f1(ex(b) + ex(c)) = fi(ex(h)) + fi(ex(c)) = ev(a) + ex(c).

If we now subtract ey(b) + ey(d) from both sides of the outside inequality we obtain the
desired conclusion:

f2 (M) = ev(a) —ev(b) <ev(c) —ex(d) =f,(n)

This completes the second step of the proof.

Third step. We need to extend f5 to rational numbers of the form a/b whereaand b
areintegers and b is nonzero. Recall from elementary algebrathat two fractions af b
and ¢/ d (with b and d nonzero) are equal if and only if ad = bc.

Theideaisto consider anumber ¢ L1 X of the form a/b, whereaand b areintegersin
X and b is nonzero, and to define f3(q) = f2(a)/f2(b). In order to show that thisisa
valid definition we need to check two things. First of all, since f, is one-to-oneit follows
that f,(b) isnonzeroif b isnonzero, so the quotient is actually defined. Second, we
need to show that the value obtained by the formulaisthe sameif wewrite q asa
quotient of integers in two different ways. In other words, we need to show that if afb =
c/d (with b and d nonzero) then we also have f,(a) /fo(b) = f2(c) /fo(d). Todo this,



begin with the previous observation that ad = bc and apply f5 to both sides of the
equation to obtain (@) [F,(d) = fo(b) [F2(C). If we then divide both sides of this
equation by fo(b) [F,(d) we obtain fo(a)/f.(b) = f(c)/f,(d) asrequired.

By construction theimage of f3 consists of all expressions of theform u/v where u and
vV areintheimage of f, and Vv isnonzero; in other words, f3 mapstherationalsin X
onto therationalsin Y. Weclaim that f3 is also one-to-one.

Throughout the remainder of this step in the proof we shall consider two rational numbers

in X of thefomp = af/bandg= c/dwherea, b, ¢, d areintegersin X and b and d
are nonzero.

To provethat f3 isone-to-one supposethat f3(p) = f3((). By construction it follows
that fo(a)/f2(b) = f2(c)/f2(d), whichisequivalent to fx(a) [Fo(d) = fo(b) [Fx(C) .

Since f5 is multiplicative we have
fo(ad) = f(a) OFa(d) = fo(b) Ox(c) = fo(bc)

and since f, isone-to-onethisimpliesad = bc, which in turnimpliesa/b = ¢/d and
hencethat f5 isoneto-one.

The verification that f3 isadditive follows from the string of equations

% CH=f @d+bcH_ f,(ad +bc) _ f,(a) f,(d) + f,(b) f,(c) _

0 bd f_(bd) f.(b) f,(d)

f,@ , f. _ 1@% f%@.

f,(b)  T,(d)

Similarly, the verification that 3 is multiplicative follows from the somewhat different
string of equations

_ ¢ pacp_ f,(ac) _ f,(a)f,(c) _
ot o - 1 -

f,(bd)  f,(b) T,(d)

f.@) T(0) g%% g%@

f,(b) f,(d)




Finally we need to show that 3 isorder preserving. We shall do this using the fact that
afraction af b is positive if and only if the product of the number and denominator ab is
positive (the second number is the product of the first with the positive number b2).
Therefore supposethat p < (; then p — ( is positive, and by the observation on the
signs of fractions in the previous sentence it follows that the integer (bc — ad) [hd is
also positive. Since f, isorder preserving it follows that

f2 ((be —ad) Thd) = ( f2 (b) 02 (6) - f2 (a) T2 (d)) C{ 2 (b) f2(d))

isalso positive. But the right hand side of this equation is equal to f3(Q) — f3(p) , sothe
preceding observations imply that f3(q) > f3(p) asrequired.

Fourth step. Weneed to extend f3toal elementsof X . Givenanumberr (1 X,
consider the set D(r) of all rational numbersq [ X suchthatq < r. Letk bea
positive integer that is greater than r, and consider theset 3 (D(r)) O Y. Sincefs is
order preserving it followsthat f3(K) isan upper bound for f3(D(r)) and therefore by

completeness the set 3 (D(r)) has a (unique) least upper bound; we take f(r) to be this
least upper bound. This definition may be rewritten as follows:

f(r) =L.U.B.q<r T3(Q)

Thefirst order of businessisto show that f3(r) =f(r) if r isrationa. If r isrational
and O D(r), then by the previous work we know that f3(q) < f3(r), sothat f5(r) is
an upper bound for f3(D(r)) and consequently is greater than or equal to the least upper
bound, whichis f(r). Suppose now that f(r) < f(r). Itfollowsthat thereis arational
number t [1 X such that

f(r) < f3(t) < f3(r).

But f3 isorder preserving, and therefore the second inequality impliesthat t <r. The
latter in turn impliesthat t [ D(r) and hencethat f3(t) < f(r), which when combined

with the previously displayed inequality f(r) < f3(t) yieldsacontradiction. It follows
that f(r) = f3(r).

Toshowthat f isoneto-one, assumethat I and Sarereal numbersin X suchthat r <
S. Chooserational numberspand qsuchthatr < p < q < S. Asbefore, it follows
that f3(p) isan upper bound for f3(D(r)) and therefore f(r) < f3(p) = f(p).
Furthermore, sincef3 = f for rationa numbers it follows that f(p) < f(q), and sinceq




[ D(s) it follows that f(q) = f3(q) < f(S). If we put these inequalities together we
findthat f(r) < f(s) and consequently that f is one-to-one.

Note that this argument also showsthat f isorder preserving.

We shall next verify that the function f maps X ontoall of Y. Let y (1Y be arbitrary,
and let D* (y) bethe set of all rational numbers g [ Y such that < Y; by construction
y is an upper bound for D* (y), and in fact Y isthe least upper bound of D* (y) because
if z <Yy thenthereisarationa number psuchthat z < p <Yy. Asbeforethereisa
positiveinteger K 0 Y such that y < K, and since the function f3 is order preserving it
followsthat ko = f5(K) isan upper bound for the set f5(D*(y)). Therefore the
|atter set has an upper bound that we shall denote by X. We claimthat f(X) =y, and we
shall do this by showing that y < f(X) and strict inequality does not hold. To show the
inequality, suppose that <Y, and choose arational number p 1 Y suchthat < p <.
If we write Go = f5(q) and Po = f5 () then 0o < Po, and since both belong to the set
f5(D*(y)) it followsthat o < Po < X. Sincethefunction f isorder preserving the
identities p = f3(Po) = f(Po) and q = f3(qo) = f(qo) imply that q <p <f(x). Thus
f(X) isan upper bound for D* (y); sincey isthe least upper bound D* (y) we must have
y < f(X). Theproof that y = f(X) thusreduces to showing that f(X) is not strictly
greater than Y.

Assume the contrary. Then thereis arational number ( satisfying y < q < f(x), and
write = f3(do) = f(Qo) asbefore. Sincethefunction f isorder preserving, it follows
that Qo < X. But the definition of X as aleast upper bound implies the existence of a
rational number Po suchthat Qo < Po and p = f3(Po) liesin D*(y): i.e, p<YV.
Once again we have

q="3(do) < fa(po) =p

and if we combine this with the other inequalities we obtain the string of inequalities
y<qgq<p-<y
which isacontradiction. This completes the proof that Yy = f(X).

The next step isto show that f isadditive. Let U and V be arbitrary real numbersin X.

Consider first the specia case where one of these numbers (say V) isrational. In this case
the set D(U + V) isthe set of all numbers expressible as sums

fs(Q) +fs3(v) = f3(g) + f(v)



where g O D(u), and therefore we have

f(U+V) = L.UB. qeusy f3(0) = (L.UB. p<y f2(p)) + (V) = f(u) +f(v)

and hence f isadditiveif visrational and U is arbitrary.

We now consider the general case. If (isarational number suchthat q < V, then
f(u) +f(a) = f(u+q) < fu+v)

because f isorder preserving and it is also additive if one of the summandsis rational .
Thereforeq < Vimpliesthat

fs(a) = (@) < f(u+v)-f(u)

and consequently we have
f(V) = L.UB.q<v f3(Q) < f(u+v)— f(u).

Additivity will follow if we can show that f(v) < f(u + v) — f(u) isimpossible, so
assumethat it does hold. In this casethereisarational number r 1Y such that

f(v) <r < flu+v)- f(u)

and because f isonto we may writer = f(q) for somerational number q [0 X .
Since f isorder preserving we know that v < (, and consequently the order preserving
and partial additivity propertiesof f imply that

f(@=r < flu+v)-f(u) < f(u+qg)— f(u) = f(u) +f(q) - f(u) = f(q)

which is a contradiction. Therefore the assumption f(v) < f(u +v) — f(u) must be
incorrect, and by the preceding discussion it followsthat f must be additive.

At this point, the only statement that remains to be established isthat f is
multiplicative. Wefirst observethat f ismultiplicativeif at least one of the factorsis O
or £ 1. If oneof thefactorsis+ 1, thisisimmediate because f(1yx) = 1y. If oneof
the factorsis zero, this follows quickly because the product of anything with zero is zero
and f (Ox) = Oy. If oneof thefactorsis— 1, thiswill follow provided we can show
that f(—a) =—f(a) foral al X, for then we have




f(— 1)() = —f(lx) = - lY
and furthermore
f (-1 Ob) = f(-a) =—f(a) = (-1v) O(a) = f(-1x) T(a).
Toseethat f(—a) =—f(a), leeb=—a. Since f isadditive we have that
Oy =f(0x) =f(a+b) =f(a) + f(b)

and the latter impliesthat f(b) = —f(a) asrequired. We shall need the basic identity

f(—a) =—1f(a) in order to complete the fina step in the verification that f is
multiplicative.

The next step in verifying that f is multiplicative isto show thisistrueif both of the
factors are positive. The proof of thisfact isvery similar to the proof of additivity (since
the exponential map defines an order preserving isomorphism from the additive group of
real numbers to the multiplicative group of positive real numbers, this should not be
surprising). Let U and V be arbitrary positive real numbersin X. Sincef isorder and

zero preserving it follows that both f(u) and f(Vv) are positive.

Consider first the specia case where one of these numbers (say V) isrationa (and
positive!). Inthis case, the set D(UDI) is the set of all real numbers expressible as sums
f3(q) Os(v) = f3(q) OF(v) whereq OO D(u), and therefore we have

f(UDV) = L.U.B. q< ug f2(q) = (L.U.B.p<y f3(p)) O(v) =f(u) (V)

and hence f ismultiplicativeif Visrational and U is arbitrary.

We now consider the general case. If Qisarational number suchthat < V, then

f(u) O(q) = f(ul) < f(uly)

because f isorder preserving and it is also additive if one of the summandsis rational.
Thereforeq < Vimpliesthat

fs(@) = f(a) < f(u B)/f(u)

and consequently we have

f(V) = L.UB.qev fa(q) < f(u B)/F().



Multiplicativity will follow if we can show that f(v) < f(u Ov)/f(u) isimpossible, so
assumethat it does hold. In this casethereisarational number r 1Y such that

f(v) < r < f(uO)/f(u)

and because f isonto we may writer = f(qQ) for somerational number q O X. Since
f is order preserving we know that vV < (, and consequently the order preserving and
partial multiplicativity propertiesof f imply that

f(@) =r < f(uB)/f(u) < fu To)/f(u) = f(u) O(@)/f(u) = f(a)

which is a contradiction. Therefore the assumption f(v) < f(u Ov)/f(u) must be
incorrect, and by the preceding discussion it followsthat f must be multiplicative.

Finally, we need to verify that f ismultiplicativein all cases. Given anonzero real
number @, set £(@) equal to + 1 if aispositiveand — 1 if aisnegative. Then we may
express a = &(a) [Ja where the absolute value |a| is positive. Using the multiplicativity
of f for the product |u|lV/| and theidentity f(& Ch) = & [F(a) for €=+ 1 we have

f(u Os) = f ((¢ (u) Qu)) Qe (v) Ov)) =
f (& (u) Ce(v) Qul OV)) = (£ (u) Ce (v)) TF(Jul Ov]) =
(£(u) W) T(u) F(v) = () T(uD) He ) T(V)) =
(f(e (u) QuD) df(e(v) OV)) = f(u) Of(v)

and this completes the proof that f is multiplicative.H

Rigidity of the Real Numbers

It turns out that the isomorphism constructed above is unique. Thisisequivaent to
saying that the only automorphism of R with itself that preserves addition, multiplication
and ordering istheidentity. In fact, it turns out that there is only one automorphism from
R toitsdlf that preserves addition and multiplication.

Theorem. 1f f: R - Risaoneto-one correspondence that is additive and
multiplicative, then f is the identity.

PROOEF. The proof begins with a couple of simple observations:



(a) Theonly element u [1 R such that Xxu = X for all X [I R isthe unit element.
(b) The only element z (1 R suchthat X z = z for all X [ R isthe zero element.

Thesefollow becauseu =1 [l =1and 0=0[k =z. Since f sendseementswith
properties (@) and (b) into elements with the corresponding properties, it follows that we
must have f (1) =1and f (0) = 0.

We shall aso need two other standard elementary properties of automorphisms (and
isomorphisms):

(c) Forall x O R wehave f(—x) =—f(x) .
(d) For all nonzerox O R wehave f(x™) = f(x) ™.

The proof of (C) isthe same argument that was used in the uniqueness proof, and the
proof of (d) isbased upon similar considerations:

1=f (1) =fxxH=f) f(x") o fx)=fx)"

The main idea behind the proof is to show successively that f must be the identity on
each of the following:

The natural numbers [N] .
Theintegers Z .

The rational numbers ©) .
All real numbers.

howpdPRE

Predictably, we take these in the order listed.

Thenatural numbers. Lete: Nl - R bethe embedding described in the section on

axioms for the real numbers. We shall show that f(e(n)) = e(n) by induction on nN; we
have already verified thisif N =0 or N = 1. Suppose that thisis known for n = K.
Then by the additivity of f and the inductive hypothesis we have

f (e(a(k))) = f(ek) +1) =f (e(k) + 1=e(k) + 1 = e(a(K) ),

and hence f is the identity on the natural numbers (more correctly, on the image of the
natural numbersin the reals).

Theintegers. Givenaninteger n [ Z writen = e(a) — e(b) wherea, b 0 []. Then



by the preceding step in the proof, additivity and property (C) above we have
f(n) = f (e(a) —e(b)) = ((a)) - f (e(b)) = e(@) —e(b) =n
asrequired.

Therational numbers. Given arational number g [1 ©) expressq asaquotient @ b™
where @, b 0 Z and b is nonzero. Asbefore, by the immediately preceding step in the
proof, the multiplicativity of f and property (d) above we have

f(g) = f(ab™) = f(a@)f(b™) = f(@)f(b)™ =ab™=q
asrequired.

The set of all real numbers. The crucial step in the proof isto showthat f isorder

preserving. Supposethata, b [1 R satisfy a > b.If ¢ = a—bthenc > 0
and therefore C has a unique positive square root that we shall call d. If we apply f to
both sides of the equation d? = a—b we obtain the equation

f(d)* = f(d®) = fa—b) = f(a) — f(b);
this quantity is nonzero because f is one-to-one (look at the right hand side), and it is

nonnegative because it is asquare (look at the left hand side). Therefore the quantity in
guestion is positive as claimed.

To conclude the proof, let @ [1 R bearbitrary. We need to show that neither of the
strictinequalities @ > f(a) or a < f(a) canhold. The proofsin both cases are
similar so we shall do them simultaneously. Supposethata > f(a) or a < f(a) is
true, and in the respective cases choose arational number g such that

a>q>f(a o a<qcx<f).

Since f isorder preserving and is the identity on rational numbers, these inequalities
respectively imply

fl@> f(g) = q > f(a) ad f@ < f(Q) = q < f(a).

In either case we obtain a contradiction, and therefore we must have f(a) = a. ®



