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1. [25 points] Let X be a set with 2 or more elements. Show that there are topologies
U and V on X such that the “identity map” J : (X,U) → (X,V), defined by J(x) = x,
is continuous, 1–1 and onto, but does not have a continuous inverse.

SOLUTION

Take U to be the discrete topology and V to be the indiscrete topology. Then the
identity map J is continuous because every subset in V is also in U, but the inverse is
not because there are subsets in U which are not subsets in V. More generally, the same
considerations apply if U and V are two topologies on X such that U strictly contains V.
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2. [25 points] A subset A of a topological space X is said to be locally closed if
A = E ∩ V , where E is closed in X and V is open in X.

(a) Explain why the half-open interval [0, 1) is a locally closed subset of the real
numbers (with the usual topology) but is neither open nor closed.

(b) Let X be locally compact and Hausdorff, and suppose that A is a locally closed
subset of X. Show that A is also locally compact and Hausdorff.

SOLUTION

(a) We can write [0, 1) = [0, 1]∩ (−1, 1), so it is the intersection of an open subset and
a closed subset. It is not closed in R because 1 is a limit point of [0, 1) which does not lie
in that set. It is not open, for if V is an open subset containing 0 then there is some h > 0
such that the open interval (−h, h) is contained in V ; in particular, it follows that V must
have some points that are negative. Since all points in [0, 1) are nonnegative and the set
contains 0, it follows that the half-open interval cannot be an open subset of R.

(b) Since every subspace of a Hausdorff space is Hausdorff, it follows immediately that
A must be Hausdorff.

We know that a subset Y of a locally compact and Hausdorff space also has these
properties if it is open or closed. If A is locally closed in X, then A = E ∩ U , where
E is closed in X and U is open in X. Since E is closed in X, it is locally compact and
Hausdorff. Since E ∩ U is open in E and we know that the latter is locally compact and
Hausdorff, it follows that E ∩ U must also be locally compact and Hausdorff.
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3. [25 points] A T1 topological space X is dense in itself if every one point subset
is nowhere dense in X; this is equivalent to saying that for all y ∈ X the complement
X − {y} is dense in X (you may assume this).

(a) Suppose that the rational numbers Q have the subspace topology induced by the
inclusion Q ⊂ R. Explain why Q is dense in itself.

(b) Explain why there is no complete metric on Q which defines the topology in (a).

SOLUTION

(a) Suppose that q ∈ Q and ε > 0. Then there is some r ∈ Q such that q < r < q + ε,
and it follows if V is a nonempty open subset containing q, then V − {q} 6= ∅. On the
other hand, if V is a nonempty open subset such that q 6∈ V , then clearly we still have
∅ 6= V = V − {q}, so every nonempty open subset V has the property that V − {q} =
V ∩ (Q − {q}) 6= ∅.

(b) The first half of the problem shows that for each rational number q the set {q} is
nowhere dense in Q. Since the latter is countable, it follows that Q is a countable union
of closed nowhere dense subsets. On the other hand, Baire’s Theorem shows that such
a union is never dense in a topological space which comes from a complete metric space.
Therefore there is no complete metric on Q which defines the usual topology on Q.
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4. [25 points] Prove Lebesgue’s Covering Lemma: If (X,d) is a compact metric
space and U is an open covering of X, then there is a positive real number ε such that if
u, v ∈ X satisfy d(u, v) < ε, then there is some W ∈ U such that u, v ∈ W .

SOLUTION

Let U be an open covering of X. For each x ∈ X there is a some ε(x) > 0 such that
Vx = Nε(x)(x) is contained in some element of U . Let Wx = Nε(x)/2(x). The collection W of
all such sets Wx forms an open covering of X, so it has a finite subcovering {W1, · · · , Wn}
associated to points x1, · · · , xn ∈ X. Let

ε = mink
ε(xk)

2
.

Suppose that u, v ∈ X and d(u, v) < ε. Then u ∈ Wk for some k, and v ∈ Vk because we
have

d(v, xk) ≤ d(u, xk) + d(u, v) <
εk

2
+ ε ≤

εk

2
+

εk

2
= εk .

Thus we have u, v ∈ Vk, and since Vk is contained in some open set from U , it follows that
u and v are contained in some open set from U .
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5. [25 points] If X and Y are first countable spaces, prove that X × Y with the
product topology is first countable.

SOLUTION

Let (x, y) ∈ X × Y , let Ux = {U1 ⊃ U2 · · · } and Vy = {V1 ⊃ V2 · · · } be countable
neighborhood bases at x and y respectively, and suppose that W is an open neighborhood of
(x, y) in X×Y . By the construction of the product topology, there are open subsets U ′ ⊂ X
and V ′ ⊂ Y containing x and y respectively such that (x, y) ∈ U ′ × V ′ ⊂ W . By first
countability there open subsets Up ∈ U and Vq ∈ V such that x ∈ Up ⊂ U ′ and y ∈ Vq ⊂ V ′.
If we take n to be the larger of p and q, it follows that (x, y) ∈ Un × Vn ⊂ U ′ × V ′ ⊂ W ,
and hence the family

U1 × V1 ⊃ U2 × V2 ⊃ · · ·

is a countable neighborhood base at (x, y), so that the product is first countable.
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6. [25 points] In each of the following, give an example of a topological space X
with the stated properties. You need not give reasons for your answers, but explanations
might yield partial credit if the examples are not correct.

(a) A space X which has a connected component that is not an open subset.

(b) A space X which is locally connected but not connected.

(c) A space X which is locally connected and connected.

(d) A space X which is connected but not arcwise connected.

SOLUTION

(a) Take the set of all real numbers expressible as 1
n

where n is a positive integer
together with 0. Then all the components are one points sets, but {0} is not open in this
set.

(b) Take a disjoint union of two open intervals in R like (0, 1) ∪ (2, 3).

(c) The real numbers satisfy both conditions.

(d) Take the closure (in R
2) of the graph of y = sin(1/x), where x > 0, whose arc

components are the graph itself and the closed segment {0} × [−1, 1].
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7. [25 points] Suppose that X is a topological space and A ⊂ X is nonempty and
closed. Define an equivalence relation on X whose equivalence classes are A together with
one point sets {y} where y ∈ X − A, let X/A denote the set of equivalence classes with
the quotient topology, and let p : X → X/A be the usual (continuous) quotient projection.
Prove that p is a closed mapping. [Hint: Given a closed subset F ⊂ X, there are two
cases depending upon whether or not F ∩ A is empty or nonempty.]

SOLUTION

We need to show that for each closed subset F , its image is closed in X/A. Equiva-
lently, by the definition of the quotient topology we need to show that if F is closed in X,
then the set

E = p−1
[

p[F ]
]

is closed in X. Following the hint, we have two cases depending upon whether or not F ∩A
is empty. If F ∩ A = ∅, then E is just F itself and hence it is closed. On the other hand,
it F ∩ A 6= ∅, then it follows that E = F ∪ A; since this is a union of closed subsets, it is
also closed. Now this exhausts all possible cases, so it follows that p is a closed mapping.
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8. [25 points] Suppose that A1, · · · , An is a finite sequence of arcwise connected
subset of a topological space X such that Ai+1 ∩ Ai 6= ∅ for 1 ≤ i < n. Prove that the
union ∪i Ai of the Ai is arcwise connected. [Hint: Induction on n.]

SOLUTION

Note first that the assumptions imply each set Ai is nonempty. If n = 1 the result is
trivial because we already know that A1 is arcwise connected. Suppose now that the result
is true for n ≥ 1 and we are given a family of n + 1 sets Ai with the stated properties.
Let Bn be the union of A1 through An; then the induction hypothesis implies that Bn

is arcwise connected. Since An+1 ∩ Bn contains An+1 ∩ An and the latter is nonempty,
it follows that the union An+1 ∪ Bn is also arcwise connected. But the union is equal to
∪i≤n+1 Ai, and hence the latter is arcwise connected, completing the proof of the inductive
step in the argument.
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9. [30 points] Let X and Y be topological spaces, and let f : X → Y be a continuous
mapping such that f is nowhere locally constant; in other words, for every point x ∈ X
and every open neighborhood U of x the restriction f |U is not a constant mapping. Prove
that if x ∈ X, then f(x) is a limit point of f [X].

SOLUTION

Let V be an open neighborhood of f(x) in Y . By continuity U = f−1[V ] is an open
set containing y. Since f is nowhere locally constant, there is some z ∈ U such that f(z) 6=
f(y). By the definition of U , it follows that f(z) ∈ V . Therefore f(z) ∈ (V −{f(x)})∩f [X],
so that the latter is nonempty, and this means that f(x) must be a limit point of f [X].
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