
 

 

Products, Relations and Functions 
 

For a variety of reasons, in this course it will be useful to modify a few of the set-

theoretic preliminaries in the first chapter of Munkres.  The discussion below explains 

these differences specifically. 

 

Cartesian Products and Relations 
 

Given two set-theoretic objects a and b,  there is a set-theoretic construction which yields 

an  
 

ordered pair (a, b) 
 

which has the fundamental property 
 

(a, b)  =  (c, d) if and only if a  =  c and b  =  d. 
 

Given two sets  A  and B,  the Cartesian product A ×××× B is defined to be the set of all 

ordered pairs (a, b) where a ∈∈∈∈ A and b ∈∈∈∈ B.   
 

We shall define a binary relation from A to B to be a triple 
 

RRRR = (A, R0, B) 
 

where A and B are sets and R0 is a subset of A ×××× B.  This differs from the standard 

definitions and the one in Munkres in two respects.  First of all, the description in 

Munkres requires A  =  B.   Also, we take the sets A and B as specific pieces of extra 

structure.  Following standard notation we say that R0 is the graph of R R R R , and for a ∈∈∈∈ A 

and b ∈∈∈∈ B we write 
 

a RRRR b  if and only if (a, b) ∈∈∈∈ R0 and say that a RRRR b is true or a is RRRR – related to b. 
 

If B = A then we often say that RRRR  is a binary relation on A.  Important special cases of 

binary relations including partial orderings and equivalence relations are discussed in 

Munkres. 

 

Functions 
 

Formally speaking, a function is a special type of relation.  The main difference between 

our definition and the standard one is that the source set A (formally, the domain) and the 

target set B (formally, the codomain) are included explicitly as part of the structure.  This 

point is often ignored in discussions of set theory (but an equivalent piece of structure is 

mentioned on page 16 of Munkres).  Given the importance of the concept of function in 

mathematics, we shall give a complete formal definition. 



 

 

 

Definition.   A function is a triple  f = (A, Γ, B) where A and B are sets and Γ is a 

subset of A ×××× B with the following property: 
 

($$)  For each a ∈∈∈∈ A there is a unique element b ∈∈∈∈ B such that (a, b) ∈∈∈∈ Γ. 
 

The sets A and B are respectively called the domain and codomain  of   f ,  and Γ is 

called the graph of  f.   Frequently we write  f : A →→→→ B to denote a function with 

domain A and codomain  B, and as usual we write b = f(a) if and only if (a, b) lies in 

the graph of  f. 
 

Given a function and a subset of its domain or codomain, we shall often need to work 

with the image or inverse image of the subset as defined on page 19 or Munkres.  As 

indicated in the course notes, we shall deviate slightly from the notation in Munkres, 

using  f[S] to denote the image of a subset S ⊂⊂⊂⊂ A under  f  and  f 
– 1[T] to denote 

the inverse image of a subset T ⊂⊂⊂⊂ B under  f .  Many important properties of these 

constructions are summarized in the exercises on pages 20 and 21 of Munkres.  One 

further property of the same sort is the following identity: 
 

If  f : A →→→→ B  and g : B →→→→ C, then g(  f[S]  ) = (g ◦ f )[S] for all S ⊂⊂⊂⊂ A. 
 

Conceptually, the crucial point in our definition is that it keeps track of the codomain.  

This turns out to be crucial for many mathematical constructions (for example, the 

fundamental group that is discussed in the second half of Munkres’ book).  In particular, 

if B is a subset of B
∗

 then Γ can be viewed as the graph of a function A →→→→ B
∗

 as well as 

the graph of a function   f : A →→→→ B.   
 

Notation.    If  f : A →→→→ B is a function whose image lies in C ⊂⊂⊂⊂ B (i.e., the graph of  f 

is actually a subset of A ×××× C ), then the associated function (A, Γ, C) will be denoted by 

C |  f and called the corestriction of   f  to C.  The notation is meant to suggest that this 

is somehow complementary (or “dual”) to the notion of restriction defined on page 17 of 

Munkres; in our notation the latter can be expressed as  

 

f | S  = (S, Γ ∩∩∩∩ (S ×××× B), B) 
 

where S ⊂⊂⊂⊂ A. 
 

Disjoint unions 
 

In many situations it is useful or even necessary to have a set  S  created from disjoint 

copies of two given sets  A and B.   Formally, the disjoint sum (or disjoint union) is 

defined to be the set 
 



 

 

A ⊔⊔⊔⊔ B  =  A C B  =  A ×××× {1}  ∪∪∪∪  B ×××× {2} 
 

and the standard injection mappings  iA : A →  A ⊔⊔⊔⊔ B  and  iB : B →  A ⊔⊔⊔⊔ B  are 

defined by  
 

iA (a)  =  (a, 1) and  iB (b)  =  (b, 2) 
 

respectively.  By construction, the maps iA and iB   determine 1–1 correspondences from 

A  to  iA [A] and from B  to  iB [B],  the images of  A and B are disjoint (because the 

second coordinates of the ordered pairs are unequal), and their union is all of  A ⊔⊔⊔⊔ B ..  

 
The Natural Numbers 
 

It is nearly impossible to do much mathematical work at all without using the natural 

numbers (the nonnegative integers) in one way or another.  At this point we shall only 

need enough information about them to work with finite sets and mathematical induction, 

and it will suffice to view the natural numbers using the axioms for them formulated by 

G. Peano. 

 

PEANO AXIOMS. The natural numbers are given by a pair (N, σσσσ ) consisting of a 

set N and a function σσσσ : N  →→→→ N with the following properties [which reflect the 

nature of sigma as a map taking each natural number m to its “successor” m + 1]: 

 

(1)  There is exactly one element (the zero element) not in the image of σ .σ .σ .σ . 
 

(2)  The map sigma is one-to-one. 

 

(3)  If A is a subset of  N  such that  
 

(i) 0 ∈∈∈∈ A,   

(ii) for all k ∈∈∈∈ N ,  k ∈∈∈∈ A implies σσσσ (k) ∈∈∈∈ A,  
 

then A = N . 
 

The third axiom is just the (weak) principle of finite mathematical induction. 

 

The Peano axioms are sufficient to yield all the properties of natural numbers that are 

used in Munkres.  Strictly speaking, the proofs of results like Theorem 4.1 and 4.2 

require our axioms for the real number system, but we shall not have any need for these 

results until after the real number system has been introduced.  All of the results in 



 

 

Sections 6 and 8 of Munkres — except those requiring the real numbers explicitly — 

follow as in the text.     

 

The Axiom of Choice and Logical Consistency 
 
Although set theory provides an effective framework for discussing questions involving 

finite sets, its initial and most important motivation came from questions about infinite 

sets.  As research on such sets progressed during the late nineteenth and early twentieth 

century, it eventually became evident that most of the underlying principles involved 

constructing new sets from old ones and the existence of the set of natural numbers.  

However, it also became clear that some results depended upon the Axiom of Choice 

(AC), which is an abstract and basically nonconstructive existence statement. 

 

There are many equivalent ways of formulating set-theoretic assumptions that are 

logically equivalent to the Axiom of Choice.  Here is a list of several that appear in 

Munkres: 

 

Axiom of Choice.  If A is a nonempty set and PPPP+ (A)  denotes  the set of all 

nonempty subsets of A,  there is a function  f : PPPP+ (A)  →→→→      A  such that  f(B) ∈∈∈∈ B for 

all nonempty B  ⊂⊂⊂⊂  A . 
 

“Zermelo’s Well-ordering Theorem.”  For every nonempty  set A,  there is a 

linear ordering such that each nonempty subset B of A has a least element (i.e., there is 

a  well-ordering of A)  . 
 

Hausdorff Maximal Principle.  Every partially ordered set has a maximal linearly 

ordered subset . 
 

“Zorn’s Lemma.”  If A is a partially ordered set in which linearly ordered subsets 

have upper bounds, then A has a maximal element . 
 

For some time there was uncertainty whether the Axiom of Choice should be included in 

the axioms for set theory.  Concern over this point increased with the discovery of 

apparent paradoxes in set theory around the beginning of the twentieth century.  One 

example of this involves attempts to discuss the “set of all sets.”  Most of the paradoxes 

were resolved by a careful foundation of the axioms for set theory, but it was not known 

if adding AC might still lead to a logical contradiction. 

 

The discovery of the so-called Banach-Tarski paradox in the nineteen twenties 

illustrated that AC had extremely strong consequences that raised questions about 

whether it should be taken as an axiom for set theory. In its original form, the result of S. 



 

 

Banach and A. Tarski states that if AC is assumed, then it is possible to take a solid ball 

in 3-dimensional space, cut it up into finitely many pieces and, moving them using only 

rotation and translation, reassemble the pieces into two balls the same size as the original 

one !!  At first glance this may appear to violate the laws of physics, but the sets in 

question are mathematical rather than physical objects.  In particular, there is no 

meaningful way to define the volumes of the individual pieces, and it is impossible to 

carry out the construction physically because if one does cut the solid ball into pieces 

physically (say with a knife or saw), each piece has a specific volume (physically, one 

can find the volumes by sticking the pieces into a large cylinder with the right amount of 

water).  Even though the Banach-Tarski paradox does not yield a contradiction to the 

axioms of set theory, it does raise two fundamental questions: 

1. If set theory with AC yields bizarre conclusions like the existence of the sets 

described above, is it possible that further pursuits will lead to a contradiction? 

2. Is it worthwhile to consider such objects, and if not is it appropriate to have an 

axiomatic system for set theory that implies the existence of such physically 

unreal entities? 

One way of answering the second question is that AC also implies the existence of many 

things that mathematicians do want for a variety of reasons.  For example, one needs AC 

to conclude that every (infinite-dimensional) vector space has a basis.  Although some 

mathematicians think that the subject should only consider objects given by suitably 

“constructive” methods, the existence results that follow from AC are so useful that 

mathematicians would prefer to include it as part of the axioms if at all possible.   

Of course, if AC leads to a logical contradiction, then it should not be part of the axioms 

for set theory, so this brings us back to the first question.  Two extemely important and 

fundamental pieces of research by K. Gödel in the nineteen thirties clarified the role of 

AC.  The first of these was his work on the incompleteness properties of axiomatic 

systems, and the essential conclusion is that mathematics can never be sure that any 

reasonable set of axioms for set theory is logically consistent.  His subsequent result 

showed that AC was relatively consistent with the other axioms for set theory; 

specifically, if there is a logical contradiction in set theory with the inclusion of AC, 

then there is also a logical contradiction if one does not assume AC.  If there is an 

internal contradiction in the axioms for set theory, it must arise either from the 

assumptions about constructing sets by specifying them in terms of logical statements or 

from the basic assumption that one can carry out fundamental set theoretic constructions 

on N .  Since most mathematicians would prefer to include as many objects as possible 

in set theory so long as these objects do not lead to a logical contradiction, the effective 

consequence of relative consistency is that inclusion of AC in the axioms for set theory 

is appropriate. 



 

 

Subsequent work of P. Cohen in the nineteen sixties completed our current understanding 

of the role of AC.  Specifically, he showed that one can construct models for set theory 

such that AC was true for some models and false for others. 

 

The Continuum Hypothesis 

 

Another question about set theory that arose very early in the study of the subject was the 

Continuum Hypothesis : 

 (CH)  If A is an infinite subset of the real numbers R and there is no one-to-one 

correspondence between A and the natural numbers N , then there is a one-to-one 

correspondence between A and R.   

Since there is a one-to-one correspondence between  R and the set PPPP    (N ) of all subsets 

of  N , one can reformulate this as the first case of a more sweeping conjecture known as 

the Generalized Continuum Hypothesis : 

(GCH)  If S is an infinite set and T is a subset of PPPP    (S) ,  then either ( i ) there is a 

one-to-one correspondence between T and a subset of S, or else ( ii ) there is a one-to-

one correspondence between T and P P P P    (S) .    

G. Cantor originally formulated CH in his work establishing set theory, the motivation 

being that he could not find any subsets whose cardinal numbers were between those of 

N and R.  As in the case of AC,  the work of Gödel showed that if a contradiction to 

the axioms for set theory arose if one assumes CH or GCH,  then one can also obtain a 

contradiction without such an extra assumption, and the work of P. Cohen shows that one 

can construct models for set theory such that CH was true for some models and false for 

others.  In fact, one can construct models for which the number of cardinalities between 

those of N and  R can vary to some extent (for example, there might be one or two 

cardinalities between them).  Because of Cohen’s work, most mathematicians are not 

willing to assume CH or GCH for the same reason that they are willing to assume 

AC:  They would prefer to include as many objects as possible in set theory so long as 

these objects do not lead to a logical contradiction. 


