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Continuous functions defined on compact spaces generally have special properties. For exam-
ple, if X is a compact space and Y is a Hausdorff space, then f is a closed mapping. There is
a useful class of continuous mappings called proper, perfect, or compact maps that satisfy many
properties of continuous maps with compact domains. In this note we shall study a few basic
properties of these maps. Further information about proper maps can be found in Bourbaki
[B2], Section I.10), Dugundji [D] (Sections XI.5–6, pages 235–240), and Kasriel [K] (Sections
95 and 105, pages 214–217 and 243–247). There is a slight difference between the notions of
perfect and compact mappings in [B2], [D], and [K] and the notion of proper map considered
here. Specifically, the definitions in [D] and [K] include a requirement that the maps in question
be surjective. The definition in [B2] is entirely different and corresponds to the notion of univer-
sally closed map discussed later in these notes; the equivalence of this definition with ours for a
reasonable class of spaces is proved both in [B2] and in these notes (see the section Universally
closed maps).

PROPER MAPS

If f : X → Y is a continuous map of topological spaces, then f is said to be proper if for each
compact subset K ⊂ Y the inverse image f−1[K] is also compact.

EXAMPLE. Suppose that A is a finite subset of R
n and f : R

n − A → R
m is a continuous

function such that for all a ∈ A we have

lim
x→a

|f(x)| = lim
x→∞

|f(x)| = ∞.

Then f is proper.

Proof. If K ⊂ R
m is compact, then K is contained in some large disk D. The limit condition

at ∞ implies that f−1[D] is contained in some large disk D′ ⊂ Rn; furthermore the limit
conditions at all the points ai ∈ A imply that f−1[D] is also contained in the complement of
E = D′ − ∪ Ni, where Ni is a small open disk neighborhood with center ai. But E is compact
and f−1[K] is a closed subset of R

n that is contained in E; it follows that f−1[K] is compact.�

IMPORTANT SPECIAL CASE. Suppose n = m = 2 and f(z) = p(z)/q(z), where p
and q are complex polynomials with deg p > deg q. Then f satisfies the limit condition and
therefore is proper.

The first result, which is fairly standard, shows that proper maps of certain not necessarily
compact spaces have some important properties in common with continuous maps of compact
Hausdorff spaces.
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THEOREM 1. Suppose that X and Y are Hausdorff spaces with Y either locally compact

or metrizable, and let f : X → Y be continuous. Then f is proper if and only if f is closed and

for each y ∈ Y the set f−1[ {y} ] is compact.

Proof: Suppose that f is closed and inverse images of one point sets are compact; we claim
that inverse images of arbitrary compact subsets are compact.

Let K be a compact subset of Y , and let F = {Fα} be a collection of closed subsets of f−1[K]
with the finite intersection property. Without loss of generality, we may assume that F is closed
under finite intersections, for if F ′ is the family of all finite intersections of sets in F then F ′ is
closed under finite intersections and the intersection of all the sets in F equals the intersection
of all the sets in F ′. Since f is closed, the subsets f [Fα] are closed in Y ; since Fα ⊂ f−1[K] is
true by assumption, it follows that f [Fα] ⊂ K. Combining these observations, we see that f [Fα]
is a compact subset of K. But the family of closed sets f(Fα) also has the finite intersection
property because

∅ 6= f
[

Fα1

]

∩ · · · ∩ f
[

Fαk

]

) ⊂ f
[

Fα1

]

∩ · · · ∩ f
[

Fαk

]

.

Therefore ∅ 6= ∩ f
[

Fα

]

by compactness of K. Let y be a point in the intersection. Since the
family F is closed under finite intersections, for all α1, · · · , αn we have

f−1
[

{y} ∩ Fα1
∩ · · · ∩ Fαn

]

6= ∅ .

Therefore the family { f−1({y}) ∩ Fα} has the finite intersection property. But f−1
[

{y}
]

is
compact, and therefore

∅ 6= f−1
[

{y}
]

∩ (∩α Fα) ⊂ ∩α Fα .

It follows that the set f−1[K] is compact. �

Suppose now that f is proper and Y is locally compact or metrizable. If F ⊂ X is a closed
subset, then it is immediate that f |F is proper. Therefore it suffices to prove that if f is proper
then f [X] is closed in Y (because f [F ] = f |F [F ] ).

Assume first that Y is locally compact. Let y be a point in the closure of f [X], and let K be
a compact neighborhood of y. Then f−1[K] is a nonempty compact set, and f | f−1[K] a closed
mapping. Therefore f

[

f−1[K]
]

= f [X] ∩ K is a closed set. But by construction y is a limit
point of this set, and consequently y ∈ f [X] ∩ K ⊂ f [X]. �

Assume now that Y is a metric space. Let F be closed in X, and let {xn} be a sequence of
points in F such that lim f(xn) = y. Let Cn be the compact set {y, f(xn), f(xn+1), ...), so that
f−1[Cn] is a nonempty nested sequence of compact sets. Therefore by compactness we have that

∅ 6= ∩n ( f−1[Cn] ∩ F ) = ( f−1
[

∩n Cn

]

) ∩ F = f−1
[

{y}
]

∩ F .

Therefore y ∈ f [F ] must hold, and consequently f [F ] must be closed in Y .�

Remark, The (⇐=) implication does not require an extra condition on Y . The (=⇒) implica-
tion is valid more generally if Y is a k-space (see [D], Section XI.9, especially XI.9.3 on p. 248).
Here is the proof that f is closed under this hypothesis: The set f [X] is closed if and only if
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f [X] ∩ K is compact for all compact subsets K ⊂ Y . But f [X] ∩ K = f
[

f−1[K]
]

, and this

set is compact because f proper =⇒ f−1[K] is compact and f−1[K] compact =⇒ f
[

f−1[K]
]

compact. �

THEOREM 2. Suppose that f : X → Y is a proper map and B ⊂ Y . Then f |f−1[B] is

proper. Conversely, if {Bα} is either an open covering or a finite closed covering of Y and each

of the maps f |f−1[Bα] is proper, then f is also proper.

Proof. ( =⇒ ) Let fB = f |f−1[B]. If K is a compact subset of B then f−1

B [K] = f−1[K];
but the latter is compact since f is proper, and therefore it follows that fB is proper.

( ⇐= ) Let fα = f |f−1[Bα], and let K ⊂ Y be compact. Suppose that {Bα} is an open
covering of Y . Then by compactness K is contained in a finite union Bα1

,∪ · · · ∪ Bαk
. Let

Vαj
= K ∩ Bαj

; then the sets {Vαj
} define a finite open covering of K, and by Munkres,

Theorem 36.1, pp. 225–226 (especially Step 1), we can find closed (hence compact) subsets
Fαj

⊂ Vαj
such that K = ∪j Fαj

. Therefore it follows that f−1[K] = ∪j f−1
αj

[

Fαj

]

. But each

map f−1
αj

is proper, and hence it follows that each subset of the form f−1
αj

[

Fαj

]

is compact.

Since a finite union of compact sets is compact, it follows that f−1[K] is compact.

Now suppose that {Bα} is a finite closed covering. Let Kα = K ∩ Bα; then each set Kα is
compact because each set Bα is closed in Y . Since each map fα is proper we know that each
set f−1

α

[

Kα

]

= f−1(Kα) is compact. But f−1[K] = ∪α f−1
α

[

Kα

]

, and therefore f−1[K] is
compact because a finite union of compact sets is compact.�

Remark. The theorem also holds for locally finite closed coverings.

THEOREM 3. Let fα : Xα → Yα be continuous for each α ∈ J , and let

∏

fα :
∏

Xα −→
∏

Yα

be the associated map of product spaces. Then
∏

fα is proper if and only if each fα is proper.

Proof. ( =⇒ ) Let β ∈ J be arbitrary, and for each α 6= β choose xα ∈ Xα. Furthermore,
for each α 6= β let yα = fα(xα). Let iβ : Xβ → Xβ ×

∏

α6=β{xα} be the identity on the β factor

and constant on the other factors, and let jβ : Yβ → Yβ ×
∏

α6=β{yα} be the identity on the β
factor and constant on the other factors; then iβ and jβ are closed subspace inclusions and

(

∏

fα

)

oiβ = jβ
ofβ .

Let K ⊂ Yβ be compact. Then the formula above implies that

iβ

[

f−1

β [K]
]

=
(

∏

fα

)−1

[ jβ [K] ]

and since the product map is proper it follows that iβ

[

f−1

β [K]
]

is compact. But iβ is a

homeomorphism onto a closed subset, and therefore a subset B ⊂ Xβ is compact if and only if

iβ [B] is compact. Therefore it follows that f−1

β [K] is compact. �



4

( ⇐= ) Suppose that K is compact in
∏

Yα. Then Lα = πα[L] is a compact subset of Yα.

By Tychonoff’s Theorem the product
∏

Lα is compact. It is immediate that (
∏

fα )
−1

[K] is a
closed subset of

∏

f−1
α [Lα]. But the factors f−1

α [Lα] are all compact because the maps fα are
proper, and therefore the product is compact by Tychonoff’s Theorem. The observations of the

preceding two sentences combine to show that (
∏

fα)
−1

[K] is compact.�

THEOREM 4. Let f : X → Y and g : Y → Z be continuous.

(i) If f and g are proper, then g of is also proper.

(ii) If g of is proper, then f is proper.

(iii) If g of is proper and f is onto, then g is proper.

Proof. (i) Let K be a compact subset of Z. Then g−1[K] is a compact subset of Y because
g is proper; but f is also proper, and therefore (g of)−1[K] = f−1

[

g−1[K]
]

is also compact. �

(ii) Let C be a compact subset of Y . Then g[C] is compact, and therefore f−1
[

g−1
[

g[C]
] ]

)

is a compact subset of X. Since C ⊂ g−1[ g[C] ] and f−1[C] is a closed subset of X, it follows
that f−1[C] is a closed subset of the compact set f−1

[

g−1
[

g[C]
] ]

, and therefore f−1[C] is
compact. �

(iii) Let K be a compact subset of Z. Since g of is proper the set (g of)−1[K] = f−1
[

g−1[Z]
]

is compact. However, f is onto and therefore B = f
[

f−1[B]
]

for all B ⊂ Y . It follows that

g−1[K] = f
[

f−1
[

g−1[K]
] ]

, and the set on the right hand side is compact because it is the

image of the compact set (g of)−1[K] = f−1
[

g−1[K]
]

under the continuous function f .�

UNIVERSALLY CLOSED MAPS

Proper maps arise naturally in many analytic and geometric contexts (compare [B1] and [Se]).
For these purposes it is convenient to have an alternate characterization of proper maps; in fact,
the definition in [B2] takes this characterization as the definition of proper map. Since it is
difficult to find an account of this outside of [B2], the details are given below.

Definition. Let A be a family of Hausdorff spaces such that the following hold:
(i) If A ∈ A and B is homeomorphic to A then B ∈ A.
(ii) A contains all one point spaces.

If X,Y ∈ A, then a continuous map f : X → Y is said to be universally closed (with respect
to A) if for each Z ∈ A the map f × 1Z : X × Z → Y × Z is a closed mapping. Notice that if
B ⊂ A and f is A-universally closed, then f is also B-universally closed.

A space X ∈ A is said to be A-complete if the constant map X → {pt.} is proper.

LEMMA 5. The composite of two A-universally closed maps is A-universally closed.

The proof of this is elementary.�

THEOREM 6. Let A be one of the following families:

(i) All T3 1

2

spaces.

(ii) All locally compact Hausdorff spaces.
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(iii) All closed subsets of R
n, where n ranges over all nonnegative integers.

Then a space X ∈ A is A-complete if and only if X is compact.

Proof. To prove the ( ⇐= ) implication, it suffices to show that if X is compact Hausdorff
and Y is T3

1

2

then the second coordinate projection πY : X × Y → Y is a closed mapping.

Let F be a closed subset of X × Y , and let W = X × Y − F ; we claim that W is open. If
y /∈ πY [F ], then for every x ∈ X there is an open subset Ux × Vx ⊂ X × Y such that x ∈ Ux,
y ∈ Vx, and Ux × Vx ∩ F = ∅. The family {Ux} forms an open covering of X × {y},
and by compactness of X there is a finite subcovering Ux1

, · · · Uxk
. Let V = ∩ Vxi

. Then
∪ (Uxi

× V ) ∩ F = ∅, and consequently V ∩ πY [F ] = ∅, so that y ∈ V . �

The proof of the ( =⇒ ) implication separates into three cases depending on A.

Case 1. Suppose that A is all T3.5 spaces. If X is T3.5 but not compact, then X is homeo-
morphic to a proper subset of its Stone-Čech compactification. Let F ⊂ X × βX be the graph
of the embedding of X in βX. Then F is closed in X × βX, but the projection πβX [X] ⊂ βX
is a dense proper subset. �

Case 2. Suppose that A is all locally compact Hausdorff spaces. The proof in Case 1 goes
through if one replaces the Stone-Čech compactification βX with the one point compactification
X•. �

Case 3. Suppose that A is all closed subsets of R
n, where n ranges over all nonnegative

integers. If X is a noncompact closed subset of R
k then its one point compactification X• is

a closed subspace of (Rk)• ≈ Sn ⊂ R
k+1. It follows that X• ∈ A, and this implies that the

argument in Case 1 can be modified to apply here, with X• repacing βX.�

THEOREM 7. Let A be either the set of locally compact Hausdorff spaces or the set of closed

subspaces of the spaces R
k. Then a continuous map f : X → Y of spaces in A is A-universally

closed if and only if it is proper.

Remark. If A is the class of all Hausdorff spaces, then there are proper maps f : X → Y such
that X,Y ∈ A but f is not universally closed. One example is indicated in [B2], Exc. I.10.4:
Given an uncountable family of topological spaces Xα, define a modified product topology

∏′

with subbase given by all products of open sets Uα ⊂ Xα where Uα = Xα for all but at most
countably many α. If we take each Xα to be a two point space with the discrete topology, then
it is immediate that Y =

∏′Xα is T3 and that the “identity” map j from X =
∏

Xα to Y is
continuous. Since j is not a homeomorphism but j is continuous, 1–1, and onto, it follows that
j cannot be closed. On the other hand, it is known that every compact subset of Y is finite
(compare [B2], Exc. I.9.4), and therefore j is proper (in the sense of the definition in these
notes).

Proof. ( =⇒ ) If f is A-universally closed and K ⊂ Y is compact, then K → {pt.} is
universally closed (Theorem 6), and the mapping fK : f−1[K] → K given by f |f−1[K] is also
universally closed (a routine verification). Since the composite of universally closed maps is
universally closed (see Lemma 5), it follows that the constant map f−1[K] → {pt.} is also
universally closed. But by Theorem 6 this implies that f−1[K] is compact. �
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( ⇐= ) If f is proper, then by Theorem 3 we know that f × 1Z is proper for all spaces Z
(because an identity map is always proper). Therefore by Theorem 1 the map f ×1Z is closed.�

When working with A-universally closed maps it is often useful to have a smaller set of test
spaces A0 such that a map is universally closed if and only if its product with the identity map
of a space in A0 is closed. Here is an abstract version and its most important special case(s).

LEMMA 8. Let A be a family of Hausdorff spaces satisfying the conditions at the beginning

of this section, and let A0 be a subfamily of A such that every space in A is homeomorphic to a

closed subset of a space in A0. Let X and Y be spaces in A. Then a continuous map f : X → Y
is A-universally closed if and only if f × 1E is closed for all spaces E ∈ A0.

Important note: It is not assumed that X or Y lies in the subfamily A0.

Proof. The ( ⇐= ) implication is immediate. To prove the (=⇒) implication, let Z ∈ A, and
let Z be homeomorphic to a closed subspace of E0. Without loss of generality we can assume
that Z is in fact a subspace of E0. Then X × Z is a closed subset of X × E0, and therefore it
follows that f × 1E0

|X × Z is a closed mapping. But this map factors as j o(f × 1Z), where j
is the closed map defined by the inclusion X × Z ⊂ X × E0. It follows that f × 1Z must be a
closed map.�

Examples. Suppose that A is the family of all closed subsets of R
n, where n ranges over all

positive integers. Then two choices for A0 are the family ER consisting of all the spaces R
n and

the family EC consisting of all the spaces C
n.

THEOREM 9. Let A be the family of all closed subsets of R
n, where n ranges over all

positive integers, let X,Y ∈ A, and let F = R or C. Then a continuous map f : X → Y is

proper if and only if f × 1Fn is closed for all positive integers n.

Proof. By Theorem 6 the map f is proper if and only if it is A-universally closed, and by
Lemma 8 this is true if and only if f × 1E is closed for all E ∈ ER or EC.�

In algebraic and complex analytic geometry this result is used extensively (compare [B1]).

EXERCISES

1. Suppose that f : X → Y is a continuous map of noncompact locally compact T2 spaces.
Let f• : X• → Y • be the map of one point comapactifications defined by f •|X = f and
f•(∞X) = (∞Y ). Prove that f is proper if and only if f • is continuous.

2. Prove analogs of Theorems 6 and 7 for A = the class of all separable metric spaces.
[Hint: Why is every separable metric space homeomorphic to a subspace of a compact one?]
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