## Correction to Section VI. 2

In the second paragraph of the proof of the first theorem, the assertion

$$
N_{\varepsilon}\left(x_{n}\right) \cap\left(\bigcup_{i<n} N_{\varepsilon}\left(x_{i}\right)\right)=\emptyset
$$

does not follow from the preceding discussion, but fortunately all we need is the weaker statement

$$
x_{n} \notin \bigcup_{i<n} N_{\varepsilon}\left(x_{i}\right) .
$$

This assertion is enough to guarantee that that $\mathbf{d}\left(x_{p}, x_{q}\right) \geq \varepsilon$ if $p>q$ (and by symmetry if the inequality is reversed), and since the sequence consists of distinct points whose distances from each other are at least $\varepsilon$, it follows that $\left\{x_{n}\right\}$ has no Cauchy (hence no convergent) subsequence.

No changes are needed in the remainder of the proof.

