Uniform continuity and completeness

The main objective is to prove the following result:

THEOREM. Let (X, \mathbf{d}_X) and (Y, \mathbf{d}_Y) be metric spaces, let $f : X \to Y$ be a homeomorphism which is uniformly continuous, and suppose that Y is complete. Then X is complete.

Note that we are not making any uniform continuity assumptions regarding the inverse map f^{-1} . However, if we do, then we have the following immediate consequence:

COROLLARY. Let (X, \mathbf{d}_X) and (Y, \mathbf{d}_Y) be metric spaces, and let $f : X \to Y$ be a homeomorphism such that both f and f^{-1} are uniformly continuous. Then X is complete if and only if Y is complete.

If we combine this with the material in dpmetrics.pdf, we obtain the following additional consequence:

COROLLARY. Let (X_i, \mathbf{d}_i) be complete metric spaces for $1 \leq i \leq n$, let p > 1, and let $\mathbf{d}^{\langle p \rangle}$ be the associated metric on $\prod_i X_i$. Then the latter is complete with respect to the metric $\mathbf{d}^{\langle p \rangle}$.

Proof. Let $\{x_n\}$ be a Cauchy sequence in X; we claim that $\{f(x_n)\}$ is a Cauchy sequence in Y. Suppose that $\varepsilon > 0$ is arbitrary, and choose $\delta > 0$ such that $\mathbf{d}_X(u, v) < \delta$ implies $\mathbf{d}_Y(f(u), f(v)) < \varepsilon$. Then there is some N such that $m, n \ge N$ implies $d(x_m, x_n) < \delta$, and it follows that under the same conditions we have $\mathbf{d}_Y(f(x_m), f(x_n)) < \varepsilon$. Therefore $\{f(x_n)\}$ is a Cauchy sequence in Y.

By completeness, the sequence in the preceding sentence has a limit which we shall call y. We may now use the continuity of f^{-1} to conclude that

$$f^{-1}(y) = \lim_{n \to \infty} f^{-1}(f(x_n)) = \lim_{n \to \infty} x_n$$

which shows that the original Cauchy sequence has $f^{-1}(y)$ as a limit. Therefore X is complete.