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Grades for the first examination

The cutoff scores are as follows:
A — 86
B — 50

The median score was 90.5.

Appeals regarding the grading of this examination must be submitted by the end of the final
examination on Monday, March 19. Written comments should be placed on the examination
indicating the problems or issues to be reconsidered. BRIEF and OBJECTIVE statements about
specific issues may be included.

Statement on final grade determination:

As noted previously, the course grade will be determined by a weighted average of the grades
on the examinations, the quizzes and the homework. The cutoff points for A, B, C, D, F will
be determined individually for each each of these constituents, and for grading purposes the raw
numerical scores will be normalized as follows:

4.0 = perfect score, 3.0 = lowest A, 2.0 = lowest B, 1.0 = lowest C, 0.0 = lowest D, −1.0 =
zero score. If the raw numerical score lies between two of these values, the normalized score will
be determined by linear interpolation.

EXAMPLE. If the lowest A is 88, the lowest B is 72, and a student’s raw numerical score is
76, then the raw score is 4 points above the lowest B, the difference between the lowest A and the
lowest is 16, and therefore the grade is 4

16
= 1

4
of the way from the lowest B to the lowest A; linear

interpolation means that the normalized score on the examination is 2.25.

Posting of scores

These will be available on iLearn shortly after this file is posted.

Comments on answers to problems

1. It was interesting to see the variety of maximal trees that were given. There were a few
misunderstandings about the definition of Euler path. Such a path goes over each edge exactly
once. It may well go through a vertex multiple times. One example is a graph consisting of two
triangles with a single vertex in common.



2. There were numerous problems with omitted or mishandled steps. There are four parts
to the proof.

By compactness E has finitely many sheets.

The preceding implies that the index of the image of π1(E) in π1(S
1) ∼= Z is finite.

The preceding implies that the image is equal to n · Z for some positive integer n.

Isomorphism classes of based coverings correspond to subgroups of π1(S
1) ∼= Z, and for

each positive integer n the nth power map S1
→ S1 is an example corresponding to the

subgroup n · Z.

3. Points were deducted for not being explicit enough about the separation of the argument
into cases depending upon whether two edges were both in X or X ′, or one was in X while the
other was in X ′. The mathematical literature is filled with mistakes which arose when the various
cases were not enumerated or considered carefully.

4. Two sources of difficulties were not formulating van Kampen’s Theorem precisely or
carefully enough (for example, there were several cases where some of the arrows were reversed)
and not adequately noting how the simple connectivity of U and X are needed in the argument.

Another source of difficulty involved incorrect assertions that the image of π1(U ∩V ) in π1(V )
was all of the latter; we can only say that the normal subgroup normally generated by the image is
all of π1(V ). Some standard examples are given by knotted curves in 3-dimensional space, which
we shall view as compact subsets of S3. If one has a smoothly knotted curve as in trefoil.pdf,
then one obtains a splitting of S3 into arcwise connected open subsets U ∪ V such that the curve
is a strong deformation retract of U (hence the fundamental group is infinite cyclic) and U ∩ V

is homeomorphic to S1
× S1

× R. In such examples van Kampen’s Theorem implies that π1(V )
must be normally generated by an infinite cyclic subgroup; however, for a knotted curve π1(V ) is
nonabelian and hence this infinite cyclic subgroup does not exhaust the entire funcamental group.
All we can say is that π1(V ) is the smallest normal subgroup containing this infinite cyclic subgroup.


