UPDATED GENERAL INFORMATION — MARCH 9, 2018

Readings for Unit VII

In addition to algtop-notes.pdf and the corresponding exercise and solutions, here are some recommendations. An asterisk "*" in a file name denotes a wild card; for example, part*.pdf might denote files part1.pdf and part2.pdf, and similarly filename.* may denote different types of files with the same basic name.

embed-graph.pdf

Proof that a Figure 8 and a Figure Theta (θ) graph, which are homotopy equivalent, are not homeomorphic, and in fact neither is homeomorphic to a deformation retract of the other (this assertion appears in Munkres).

brouwer.pdf

Details of the vector-geometric input needed in the proof of the Brouwer Fixed Point Theorem.

disk-with-holes.pdf

Computation for the homology groups of a disk with a finite number of subdisks removed.

fishmaze*.pdf

Illustration of a simple closed curve in the plane for which it is not visually obvious that the complement splits into two connected subsets, and a method for deciding whether two points lie in the same or different components when the curve is well behaved.

ahlfors.pdf

Relation of the standard topological concept of simple connectedness to the version of Ahlfors' *Complex Analysis* textbook.

vonKoch.pdf

A standard example of a simple connected curve in the plane which does not have continuous tangents anywhere and whose arc length is infinite.

vonKoch-sim.gif

Animated illustration of the recursive construction of the curve in the preceding file.

Jordan Curve Theorem.jpg

Drawings of a simple closed curve in the plane which has many twists and turns but is less complicated than the one in the **fishmaze** files.

sphere-complement.pdf

Proof that if $A \subset S^n$ is a standardly embedded k-sphere, then $S^n - A$ is homeomorphic to $S^{n-k-1} \times \mathbb{R}^{k+1}$; for nonstandardly embedded spheres, the only information is given by the Jordan-Brouwer Theorem: The sets $S^n - A$ and $S^{n-k-1} \times \mathbb{R}^{k+1}$ have isomorphic singular homology.

horned-sphere.pdf
horned2sphere.pdf
the Alexander Sphere - YouTube.flv

Explicit classical example of a 2-sphere in S^3 whose complement is not homeomorphic to a disjoint union of two open disks; in fact, one component is not even simply connected.

graphpix4.pdf

Drawings of graphs and subgraphs arising in the results of Section VII.4.

Assignments for Unit VII

Working the exercises listed below is strongly recommended.

The following exercise is taken from Munkres:

p. 393: 2 (solve this using the methods of Unit VII)

The following exercises are taken from Hatcher; the page numbers refer to the numbering in the book, not the pdf file:

p. 155 et seq.: 4, 12, 27

The following exercises are taken from exercises05.pdf in the course directory:

2b, 5a, 9abcd (in (d), correct the misprinted conclusion to state that deg f and deg $(h \circ f \circ h^{-1})$ are equal), 10a

Here are three additional exercises:

1. Provew that $S^p \times S^q$ is not a retract of $S^p \times D^{q+1}$.

2. Suppose that X is a topological space such that every continuous mapping from X to itself has a fixed point, and suppose that the subspace inclusion mapping $j: A \to X$ is a retract. Prove that every continuous mapping from A to itself also has a fixed point. [*Hint:* If $r: X \to A$ is a one-sided inverse and $g: A \to A$ is continuous, why does the image of the composite $j \circ g \circ r$ lie in A?]

3. Suppose that C_1 and C_2 are disjoint simple closed curves in S^3 , and let L be their union. Prove that the homology groups $H_q(S^3 - L)$ are isomorphic to \mathbb{Z} if q = 0 or 2, $\mathbb{Z} \oplus \mathbb{Z}$ if q = 1, and 0 otherwise.

Reading assignments from solutions to exercises

The solutions to these exercises in **solutions05.pdf** should be read and understood at the passive level as described in an earlier posting:

2c, 4, 5b, 10b