
Math 205B
Winter 2018

UPDATED GENERAL INFORMATION — MARCH 18, 2018

Solutions to practice problems from review2.pdf

1. Follow the hint. The composite mapping j og : U → Sm is continuous and 1–1, so by
Invariance of Domain it is also an open mapping. On the other hand, its image is contained in
Sn ⊂ Sm (the standard embedding such that the last m−n coordinates are zero), and no nonempty
subset A ⊂ Sn is open in Sm. There are several related ways of showing the latter. For example, if
A were open with a ∈ A, then some open neighborhood Nε(a) of radius ε is contained in A; however,
this cannot happen, for we can always find a sequence of points {xn} in Sm − Sn ⊂ Sn −A whose
limit is a.

2. Again, follow the hint and start by showing the intersection is starshaped. Since K0 ∩ A

consists of all maximal faces except one, there is a unique vertex v of A which is not a vertex
of the excluded face. This vertex must then be a vertex of all the remaining maximal faces, and
hence K0 ∩ A must be starshaped with respect to v. Therefore Hq(K0 ∩ A) = 0 if q 6= 0 and
H0(K0 ∩A) = Z. This implies that Hq(A,K0 ∩A) = 0 for all q. By Simplicial Excision we know
that Hq(A,K0 ∩ A) ∼= Hq(K,K0), so the latter groups are also trivial. Finally, we can apply the
long exact homology sequence of the larger pair to conclude that the map Hq(K0) → Hq(K) is an
isomorphism for all q.

3. In order to compute the homology groups of the threefold union, we must first compute the
homology groups of the twofold unions U ∪ V , U ∪ W and V ∪ W . At this point there should

be an additional assumption that each of the twofold intersections is nonempty.

We claim that the reduced homology groups of each of the twofold unions are zero in all
dimensions. It will suffice to prove this for U ∪ V , for the remaining cases will follow by changing
the variables in the argument. The intersection of the two convex open subsets U and V is convex,
and therefore in the Mayer-Vietoris sequence relating the reduced homologies of U ∩ V , U , V and
U ∪ V the terms H̃q(U ∩ V ) and H̃q(U) ⊕ H̃q(V ) are all zero. Therefore the third terms in the

exact Mayer-Vietoris sequence, which are the groups H̃q(U ∪ V ), must also be zero.

The next step is to compute the homology of the threefold union U ∩V ∩W , viewing it as the
union of U ∩ V and W . By the preceding paragraph we know that the reduced homology groups
of both U ∩ V and W are trivial. The intersection of these sets is given by (U ∩ W ) ∪ (V ∩ W ),
and this is a union of two convex sets. If the sets (U ∩ W ) and (V ∩ W ) are disjoint, then
the reduced homology of their intersection is Z in dimension zero and 0 otherwise, and by the
preceding paragraph the reduced homlogy of their union is 0 in all dimensions if (U ∩ W ) and
(V ∩W ) are not disjoint. In either case we know that the homology of the intersection vanishes in

positive dimensions. Now the exact Mayer-Vietoris sequence for H̃q(U ∪ V ∪ W ) shows this group

is isomorphic to H̃q−1(U ∩ V ∩ W ), and since the latter is 0 if q − 1 > 0 it follows that the former
is 0 if q ≥ 2. Since reduced homology agrees with homology in positive dimensions, it follows that
Hq(U ∪ V ∪ W ) = 0 if q ≥ 2.

Finally, we need an example where Hq(U ∪ V ∪ W ) = Z. The hint suggests thickening up the
three edges of a triangular graph, and the file review2fig1.pdf illustrates how this can be done.



4. Since f∗ is invertible, the integral 3 × 3 matrix A is also invertible. By Cramer’s Rule an
integral matrix has an integral inverse if and only if det A = ± 1.

5. The mappings i1∗ and i2∗ are 1–1 because the slice inclusions i1 and i2 are retracts. Specifi-
cally, one-sided inverses are given by the projections onto the first and second coordinates respec-
tively. We need to show that their intersection is the zero subgroup.

Suppose we are given w ∈ H1(X × Y ) such that i1∗(u) = i2∗(v) for suitable u and v. The
mapping πY

oi1 sends every x ∈ X to the same q ∈ Y , so it is constant and the induced mapping in
homology πY ∗

oi1∗ is also trivial. Therefore 0 = πY ∗

oi1∗(u) = πY ∗

oi2∗(v) = v, which means that
w = i2∗(v) = i2∗(0) = 0.

6. The homology groups of C∗ and (D/C)∗ are equal to the chain groups because the boundary
(or differential) maps in the chain complexes are all zero. Suppose now that we are given a cycle
in Hq+1(D/C) ∼= (D/C)q+1 = A; call it a. The first step in constructing ∂ is to lift this cycle to
an element of Dq+1, which is also A. The map from Dq+1 to (D/C)q+1 = A is the identity, so
a ∈ Dq+1 = A is an obvious choice for a lifting. Now apply the differential in the chain complex
D∗. This is given by d : A → B, and therefore we obtain the class d(a) ∈ Dq = B. The latter has
a unique lifting to Cq = B. Therefore the mapping ∂ sends a to d(a) (there is an obvious misprint
in review2.pdf, in which f should be replaced by d).

7. For the algebraic part, let i : A → B and j : B → X be the inclusions. Then i and j oi are
both homotopy equivalences and hence induce isomorphisms in homology. We need to show that
j∗ is also an isomorphism in homology.

By functoriality we know that (j oi)∗ = j∗ oi∗, and we know that this and i∗ induce isomor-
phisms in homology. The mapping j∗ must be onto because w ∈ Hq(X) implies w = (j o i)∗(u) =
j∗ (i∗(u) ) for some u ∈ Hq(A). To see that j∗ is 1–1, suppose that j∗(v) = 0. Since i∗ is onto we
have v = i∗(u) for some u ∈ Hq(A), and clearly 0 = j∗(v) == j∗ (i∗(u) ) = (j oi)∗(u). But (j oi)∗ is
an isomorphism, so it follows that u = 0 and hence also that 0 = i∗(u) = v.

Now for the counterexample. Let X = Dn, A = {0} and B = Dn − Sn−1. Then A is a strong
deformation retract of both B and X. However, B is not a strong deformation retract of X. If
so, there would be a continuous mapping ρ : X → B such that ρ|B is the identity. Consider the
mapping i oρ, where i : B → X is inclusion. By construction, the restriction of this map to B
is equal to the i, which is also the restriction of the idX to B. Since X is Hausdorff, the set of
points where ρ = idX is closed in X. Now B is dense in X, so this means that ρ = idX ; but the
map on the left is not onto while the map on the right is onto, so we have a contradiction. The
source of this contradiction is the assumption that a map like ρ exists, and therefore there is no
such mapping; in other words, B is not a retract of X.

8. By construction X1 is a graph with six edges which all meet at a common vertex. This means
that X1 has the homology of a point. Furthermore, X0∩X1 consists of the “other” endpoints of the
edges, and hence it consists of six points. We can then use the simplicial Mayer-Vietoris sequence
to compute the homology of X = X1 ∪X2 as follows; since Hq(X) = 0 if q ≥ 3 and dimX ≤ 2, we
need only consider the tail end:

H2(X0 ∩ X1) −→ H2(X0) ⊕ H2(X1) −→ H2(X) −→

H1(X0 ∩ X1) −→ H1(X0) ⊕ H1(X1) −→ H1(X) −→

H0(X0 ∩ X1) −→ H0(X0) ⊕ H0(X1) −→ H0(X)



Since X is arcwise connected, the last group is Z. In the remaining cases, substitution of known
groups yields the following:

0 → Z ⊕ 0 → H2 → 0 → 0 ⊕ 0 → H1(X) → Z
6 → Z ⊕ Z

Furthermore, the last map in this sequence sends the 6-tuple (x1, ...x6) to (s,−s) where s =
∑

xi.
This exact sequence implies that H2

∼= Z and H1
∼= Z

5.

9. The key property of S2 and T 2 = S1 × S1 is that they are surfaces: Both are Hausdorff, and
each point of the space has an open neighborhood homeomorphic to an open subset of R

2. One
can then extend Invariance of Domain to a result about surfaces: If X and Y are surfaces and

f : X → Y is continuous, then f is an open mapping .

It suffices to prove this for all open sets in an open covering of X. Start with an open covering
of Y by open subsets Vα homeomorphic to open subsets of R

2, and construct an open covering of
X by open subsets Uβ such that f maps each Uβ into some Vα. Then Invariance of Domain implies
that each f |Uβ is an open mapping, and from this it follows that f itself must be an open mapping.

Using this, proceed as follows: Let X and Y be S2 and T 2 respectively or vice versa. Then by
the preceding paragraph f is open and hence f [X] is open in Y . But X and Y are compact and
connected. Therefore f [X] is also compact, and hence closed in Y . Since Y is connected and f [X]
is a nonempty open and closed subset, we must have f [X] = Y and f is a homeomorphism. Since
X and Y are not homeomorphic, this is a contradiction and hence no such mapping f can exist.

10. Let p : (E, e) → (B, b) be the associated basepoint preserving covering space projection.
Then the induced map of fundamental groups p∗ : π1(E, e) → π1(B, b) is the trivial homomorphism
by our hypothesis. Since p∗ is always 1–1, it follows that π1(E, e) must be the trivial group. Since
E is assumed to be arcwise connected, it follows that E must also be simply connected.


