
Preface

This is the second of three entry level graduate courses in topology and geometry. The basic
texts for this course are the following:

[M] J. R. Munkres. Topology (Second Edition), Prentice-Hall, Saddle River NJ, 2000.
ISBN: 0–13–181629–2. [This is the text for the previous course in the sequence.]

[H] A. Hatcher. Algebraic Topology (Third Paperback Printing), Cambridge University

Press, New York NY, 2002. ISBN: 0–521–79540–0.

This book can be legally downloaded from the Internet at no cost for personal use, and here is the
link to the online version:

www.math.cornell.edu/∼hatcher/AT/ATpage.html
To a great extent these books correspond to the two main parts of the course:

1. A continuation of the material on fundamental groups and covering spaces, picking things
up where the previous course ended.

2. A brief introduction to homology theory and its topological applications.

The material in the first part of the course has become fairly standard, but the material in the
second part is much less so, particularly at the introductory level. Both parts of the course have a
common theme: The creation of algebraic “pictures” of a topological space; these are obtained by
studying algebraic constructions involving certain types of topological configurations in the space.
Fundamental groups study the 1-dimensional configurations given by closed curves, and the basic
idea of homology theory is to study some analogous configurations in higher dimensions. One way
to compare these subjects is to describe the conclusions which follow from the respective methods:

(a) Using point set topology and fundamental groups, one can show that R and Rn are not
homeomorphic if n ≥ 2, and R2 and Rm are not homeomorphic if m 6= 1.

(b) Using homology theory, one can show that Rn and Rm are not homeomorphic if m 6= n.

Clearly the second statement is much stronger than the first, and this reflects the powerful
impact that homological methods had on 20th century mathematics; their influence has reached
well beyond topology and geometry into many areas of algebra and even some areas of analysis.
Pages 4 and 5 in the course directory file

morgan-lamberson.pdf

gives more specific information and also mentions the downside: Homology theory requires an ex-
tremely substantial amount of work to produce a mathematically complete treatment, and much of the
time the motivation for the constructions is not at all apparent to someone who is just beginning to
study the subject.
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To a great extent this reflects a basic mathematical problem; namely, to create a rigorous logical
setting for translating geometrical intuition into algebraic formalism which can be manipulated
effectively and applied successfully to analyze geometrical questions. Without a logically rigorous
framework the reliability of geometrical results cannot be guaranteed, but some intuition is often
indispensable for making any sense out of the formal constructions.

Our approach to this dilemma will be to stress the motivation and to develop the subject so
that the geometric applications have high priority; one can expand this into a logically complete,
but reasonably accessible, treatment by following various links to other files in the course directory.
As suggested above, one reason for choosing this approach is a view the effort needed to go through
large amounts of formal technical machinery might be more bearable if one knows that it has
substantial applications. We have already mentioned one such application, and needless to say
there will be others.

Comments on the texts

Taking all things into account, the first part of Munkres (on point set topology) is one of the
very best accounts of the subject, with an excellent balance of clear exposition, logical completeness
and drawings to motivate the underlying geometrical content of the subject (there are some peculiar
choices of terms and symbolism, and in a number of instances more motivation would help, but
the perfect text is an ideal which is rarely if ever realized). The second part of Munkres comes
close to meeting this standard, but there are numerous cases where more motivational comments
and drawings are probably necessary, and sometimes the logical thoroughness of the exposition
interferes with the clarity of the exposition. To its credit, the second part gives logically complete
accounts of several basic applications of topology to basic geometrical results like the Fundamental
Theorem of Algebra and the Jordan Curve Theorem (a simple closed curve in the plane separates
it into two connected pieces), but the proofs really push the theory in the book to its limits, and
consequently the reasoning is often very delicate and difficult to follow. We shall see that homology
theory often yields much simpler and more conceptual proofs.

Hatcher’s book begins by covering the same topics which appear in the second half of Munkres,
and it proceeds to go much further in the subject. The challenges faced in covering the further
material are much greater than the corresponding challenges in Munkres. In particular, the gap
between abstract formalism and geometrical intuition is much greater, and it is not clear how well
any single book can reconcile these complementary factors. More often than not, algebraic topology
books stress the former at the expense of the latter, and one important strength of Hatcher’s book
is that its emphasis tilts very much in the opposite direction. The book makes a sustained effort to
include examples that will provide insight and motivation, using pictures as well as words, and it
also attempts to explain how working mathematicians view the subject. Because of these objectives,
the exposition in Hatcher is significantly more casual than in most if not all other books on the
subject. Unfortunately, the book’s informality is arguably taken too far in numerous places, leading
to significant problems in several directions; these include assumptions about prerequisites, clarity,
wordiness, thoroughness and some sketchy motivations that are difficult for many readers to grasp.
One goal of these notes is to address some issues along these lines.

Some additional references

Here are four other references; they are generally at a higher level than the present course,
but they should be within the reach of students in this course. The first is a book that has been
used as a text in the past, the second is a fairly detailed history of the subject during its formative
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years, and the last two are classic (but not outdated) books; the first and third also have detailed
historical notes.

J. W. Vick. Homology Theory . (Second Edition). Springer–Verlag, New York etc.,
1994. ISBN: 3–540–94126–6.

J. Dieudonné. A History of Algebraic and Differential Topology (1900 − 1960).
Birkhäuser Verlag, Zurich etc., 1989. ISBN: 0–817–63388–X.

S. Eilenberg and N. Steenrod. Foundations of Algebraic Topology . (Second Edition).
Princeton University Press, Princeton NJ, 1952. ISBN: 0–691–07965–X.

E. H. Spanier. Algebraic Topology, Springer–Verlag, New York etc., 1994.

The amazon.com sites for Hatcher’s and Spanier’s books also give numerous other texts in
algebraic topology that may be useful. Finally, there are two other books by Munkres that we
may quote throughout these notes. The first will be denoted by [MunkresEDT] and the second by
[MunkresAT]; if we simply refer to “Munkres,” it will be understood that we mean the previously
cited book, Topology (Second Edition).

J. R. Munkres. Elementary differential topology . (Lectures given at Massachusetts
Institute of Technology, Fall, 1961. Revised edition. Annals of Mathematics Studies, No.
54.) Princeton University Press, Princeton, NJ , 1966. ISBN: 0–691–09093–9.

J. R. Munkres. Elements of Algebraic Topology . Addison-Wesley, Reading, MA, 1984.
(Reprinted by Westview Press, Boulder, CO, 1993.) ISBN: 0–201–62728–0.
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Prerequisites

The name “algebraic topology” suggests that the subject uses input from both algebra and
topology, and this is in fact the case; since topology began as a branch of geometry, it is also
reasonable to expect that some geometric input is also required. Our purpose here is to summarize
the main points from prerequisite courses that will be needed. Additional background material
which is usually not covered explicitly in the prerequisites will be described in the first unit of these
notes.

Set theory

Everything we shall need from set theory is contained in the following online directory:

http://math.ucr.edu/∼res/math144
In particular, a fairly complete treatment is contained in the documents setsnotesn.pdf, where
1 ≤ n ≤ 8.

There are two features of the preceding that are somewhat nonstandard. The first is the
definition of a function from a set A to another set B. Generally this is given formally by the
graph, which is a subset G ⊂ A × B such that for each a ∈ A there is a unique b ∈ B such that
(a, b) ∈ G. Our definition of function will be a triple f = (A,G,B), where G ⊂ A × B satisfies
the condition in the preceding sentence. The reason for this is that we must specify the target
set or codomain of the function explicitly; in fact, the need to specify the codomain has already
arisen at least implicitly in prerequisite graduate topology courses, specifically in the definition of
the fundamental group. A second nonstandard feature is the concept of disjoint union or sum

of an indexed family { Xα } of sets. The important features of the disjoint sum, which is written
qα Xα, are that it is a union of subsets Yα which are canonically in 1–1 correspondence with the
sets Xα and that Yα ∩ Yβ = ∅ if α 6= β. Another source of information on such objects is Unit V
of the online notes for Mathematics 205A which are cited below.

Topology

This course assumes familiarity with the basic material in the first graduate level topology
course: This corresponds to material in the following sections of Munkres:

12–14, 17, 20, 22–26, 29–31, 51–54, 58–59, 67–71

(and also the Supplementary Exercises for Chapter 2)

Supplementary material for Sections 12–31 can be found in the following online directory:

http://math.ucr.edu/∼res/math205A
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In particular, the file gentopnotes2008.pdf contains a fairly complete set of lecture notes for the
portions of the course that do not involve fundamental groups and covering spaces. This material is
based upon the textbook by Munkres cited in the Preface. Two major differences between the notes
and Munkres appear in Unit V. The discussion of quotient topologies is somewhat different from
that of Munkres, and in analogy with the previously mentioned discussion of set-theoretic disjoint
sums there is a corresponding construction of disjoint sum for an indexed family of topological
spaces. Some supplementary material for Sections 51-82 can be found in the following online
directory for an older version of 205B.

http://math.ucr.edu/∼res/math205B
In addition to the sections listed above, it might be worthwhile to look also at the supplementary
exercises for Chapter 13.

Algebra

Some concepts in group theory are needed; most are at the undergraduate level. Several other
concepts from group theory are presented in Munkres and will be covered in the course.

We shall also need the following basic result, which is proved in graduate level algebra courses:

STRUCTURE THEOREM FOR FINITELY GENERATED ABELIAN GROUPS. Let
G be a finitely generated abelian group (so every element can be written as a monomial in integral
powers of some finite subset S ⊂ G). Then G is isomorphic to a direct sum

( H1 ⊕ · · · ⊕ Hb ) ⊕ ( K1 ⊕ · · · ⊕ Ks )

where each Hi is infinite cyclic and each Kj is finite of order tj such that tj+1 divides tj for all j.
— For the sake of uniformity set tj = 1 if j > s. Then two direct sums as above which are given
by (b; t1, · · · ) and (b′; t′1, · · · ) are isomorphic if and only if b = b′ and tj = t′j for all j.

A proof of this fundamental algebraic result may be found in Sections II.1 and II.2 of the
following standard graduate algebra textbook:

T. Hungerford. Algebra. (Reprint of the 1974 original edition, Graduate Texts in
Mathematics, No. 73.) Springer-Verlag, New York–Berlin–etc., 1980. ISBN: 0–387–
90518–9.

Material from standard undergraduate linear algebra courses will also be used as needed.

Analysis

We shall assume the basic material from an upper division undergraduate course in real vari-
ables as well as material from a lower division undergraduate course in multivariable calculus
through the theorems of Green and Stokes as well as the 3-dimensional Divergence Theorem. The
classic text by W. Rudin (Principles of Mathematical Analysis, Third Edition) is an excellent ref-
erence for real variables, and the following multivariable calculus text contains more information
on the that subject than one can usually find in the usual 1500 page calculus texts (the book is far
from perfect, but especially at the graduate level it is useful as a background reference).

J. E. Marsden and A. J. Tromba. Vector Calculus (Fifth Edition), W. H. Freeman

& Co., New York NY, 2003. ISBN: 0–7147–4992–0.
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Category theory

The concept of a category does not appear explicitly in Munkres, but it is implicit in many
places. Although we shall not need a formal treatment of category theory at the beginning of the
course, eventually some of the basic ideas will be indispensable, so we shall describe the concepts
that arise very early in the course. The file

categories2012.pdf

gives a more organized treatment of the topics treated here, and reading the document is an

implicit assignment for this course.

A category is an abstract mathematical system which reflects some very basic features of many
classes of mathematical objects and the well-behaved morphisms relating them. In set theory the
objects and morphisms are sets and functions of sets, and in topology the most basic examples
involve topological spaces and continuous mappings. There are many algebraic examples, including
groups and morphisms, vector spaces over a fixed field F and F-linear transformations, or partially
ordered sets and monotonically increasing functions. Many other examples appear in the file cited
above.

In all cases one has objects and morphisms from one object to another with specified domains
(sources) and codomains (targets) which are written with notation like f : A→ B. There are also
algebraic operations which behave like composition of functions in the following respects:

(i) The composition g of of g and f is defined if and only if the target of f is the source of g.

(ii) For each object X there is an “identity morphism” 1X : X → X, and for each morphism
f : A→ B we have 1B

of = f = f o1A.

(iii) There is an associative law h o(g of) = (h og) of for threefold compositions.

The most important additional concept is that of an isomorphism between two objects A and
B. This involves a pair of morphisms f : A→ B and g : B → A such that g of = 1A and f og = 1B .
As elsewhere in mathematics, if one has such a pair of morphisms we say that f and g are inverse
to each other (or inverses of each other).

The ubiquity of categories reflects a basic fact: If a class of mathematical objects is defined, it
is usually possible to define a good concept of mappings or morphisms from one object to another
without too much trouble. Thus it is natural to speculate about an appropriate notion of morphism
relating one category to another. It turns out that there are two such notions called contravariant

functors and covariant functors. A covariant functor is a system of transformations such that

(a) for each object X in the source category there is an associated object T (X) in the target
category,

(b) for each morphism f : X → Y in the source category there is an associated morphism
T (f) : T (X)→ T (Y ) in the target category,

(c) the construction on morphisms preserves identity morphisms and compositions; the latter
means that T (g of) = T (g) oT (f).

Here is an example involving topological spaces: If X is a topological space, let T (X) be the
set of continuous curves γ : [0, 1] → X, and if f : X → Y is continuous define T (f)γ = f oγ.
The fundamental group of a pointed space is a more sophisticated example of this sort going from
pointed topological spaces to groups.
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As noted above, there is also a dual concept of contravariant functor from one category to
another; the main differences with covariant functors are that a morphism f : A → B is sent to
T (f) : T (B) → T (A) (i.e., the domain and codomain are switched) and the composition identity
is T (g of) = T (f) oT (g) (i.e., the order of composition is reversed).

One basic example of a contravariant functor is the dual space construction on a category of
vector spaces over some field F. Specifically, a vector space V is sent to the space V ∗ of F-linear
functionals V → F, and if T : V →W is a linear transformation then T ∗ : W ∗ → V ∗ sends a linear
functional f : V → F to the composite T of .

Functors have a simple but far-reaching property which is fairly easy to prove: If the morphisms
f and g are inverse to each other and T is a functor (covariant or contravariant), then F (f) and
F (g) are also inverse to each other.

Since functors are mathematical objects, one can speculate even further about morphisms
relating functors and whether such a notion is more than a formal curiosity. It turns out that there
is a useful notion called a natural transformation of functors (where both the source and target
have the same variance). Since we shall not need this concept until later in the course, we shall
pass on discussing it here.
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I . Further Properties of Covering Spaces

This course begins with three units which conclude the treatment of fundamental groups and
covering spaces. The main objective of the first unit is to set up an important 1–1 correspondence
between the isomorphism classes of connected covering spaces over a given “nice” space X (Haus-
dorff, connected, locally arcwise connected, with some sort of local simple connectivity condition)
and subgroups of π1(X). The crucial step in formulating the correspondence is given by establish-
ing a link between the fundamental group of X and suitably defined groups of automorphisms for
connected covering spaces over X.

In several respects this correspondence is similar to the 1–1 correspondence in Galois Theory;
namely, if E ⊃ F is a Galois extension field and G is the group of all autormorphisms of E which
are the identity on F , then there is a 1–1 order-reversing correspondence between the subgroups of
G and the subfields L such that E ⊃ L ⊃ F , and a subgroup H is normal in G if and only if the
corresponding subfield LH is a Galois extension of F ; in fact, it turns out that normal subgroups of
π1(X) correspond to a special family of covering spaces called regular coverings. In the theory of
Riemann surfaces, and more generally in algebraic geometry, the analogies between covering spaces
and Galois Theory are more than formal coincidences.

IMPORTANT. Even though the word “covering” appears in the phrases “open covering” and
“covering spaces,” there is no direct connection between the two usages; however, in practice this
ambiguity usually does not cause any difficulties.

Notational convention. In the textbook references for the various subsections, “H” indicates a
reference from Hatcher and “M” indicates a reference from Munkres.

I.0 : Introduction

(M, §§51–55, 56; H, Ch. 0, Ch. 1 Introduction, §1.1)

We shall first give a very brief review of topics on fundamental groups and covering spaces
from the previous course. In order to keep things from getting too routine, we shall add some
comments that might help motivate or clarify the main ideas.

Topic 1. Homotopy of mappings and homotopy classes. To save time and space, we shall
only mention many of the basic definitions and consequences; the former are easy to locate using
the indices in Hatcher and Munkres, and the latter can be found in the same general parts of these
books.

The single most important concept in this course and the last part of the preceding course is
the notion of a homotopy relating two continuous mappings with the same domain X and codomain
Y , and the most basic formal property of this concept is that it defines an equivalence relation on
the continuous mappings from X to Y ; it is customary to denote the associated set of equivalence
classes (or homotopy classes) by [X,Y ]. If two continuous mappings X and Y are homotopic then
we write f ' g.
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WARNING. If f : X → Y is a function (not necessarily continuous) and Y ⊂ Y ′ (with the
subspace topology if we are talking about topological spaces), then in elementary mathematics one
often identifies f with the composite i of where i denotes the inclusion of Y in Y ′; in other words,
the target or codomain of the function is not viewed as a uniquely determined object. In this course
it will be extremely important to view the codomain as uniquely determined for many reasons (see
the discussion following Proposition 4 below).

One important property of the homotopy relation is that it is compatible with composition (if
f and g are homotopic to f ′ and g′, then f og and f ′ og′ are also homotopic). This implies that
the homotopy class construction is functorial in the sense that if h : X ′ → X and k : Y → Y ′ are
continuous mappings then one has associated mappings of homotopy classes

h∗ : [X,Y ] −→ [X ′, Y ] , k∗ : [X,Y ] −→ [X,Y ′]

sending a homotopy class [f ] to the classes [f oh] and [k of ] respectively; functoriality means that
if h or k is the identity then so is h∗ or k∗, and compositions are preserved in the senses that
(h1

oh2)
∗ = h∗2

oh∗1 (so the order of composition is reversed) and (k1
ok2)∗ = k1∗

ok2∗ (so the order of
composition is preserved). This construction also has the following homotopy invariance property :
If h0 ' h1 or k0 ' k1, then h∗0 = h∗1 or k∗0 = k1∗.

In the same notation, if h or k is a homeomorphism then composition with h or k induces
an isomorphism of continuous function sets C(X,Y ) ∼= C(X ′, Y ) or C(X,Y ′), and it follows sim-
ilarly that one has associated isomorphisms of homotopy classes. In fact, h∗ or k∗ induces and
isomorphism of homotopy classes under the weaker notion of homotopy equivalence; specifically,
a continuous map ϕ : A → B is a homotopy equivalence if and only if there is a reverse map
ψ : B → A (a homotopy inverse) such that ψ oφ and φ oψ are homotopic to the identity maps of
A and B respectively. If there is a homotopy equivalence from one space to another, we say that
these spaces are homotopy equivalent; it is elementary to check that this defines an equivalence
relation on topological spaces.

A space is said to be contractible if it has the homotopy type of a point; convex subsets
of normed vector spaces are important examples of contractible spaces. If X is contractible and
h : X → P is a homotopy equivalence where P consists of a single point, then it follows that for
all spaces W we have isomorphisms

h∗ : [W,X] −→ [W,P ] ∼= P

because there is a unique continuous map from W to P (the constant map sending everything
to the unique point in P ). To conclude this discussion, we note that the concept of homotopy
equivalence would not be particularly useful if all spaces were contractible; particular results from
the previous course imply that the standard unit circle S1 ⊂ R2 is not (see the second consequence
of Proposition 4 below).

Additional comments on homotopy of mappings and homotopy classes. Since the concept of
homotopy is often introduced with a minimum of motivation, we shall give an important class of
examples.

PROPOSITION 1. Let X be a compact metric space, let U be an open subset of Rn for
some n, and let f : X → U be continuous. Then there is some δ > 0 such that if g : X → U is
another continuous function satisfying d( f(x), g(x) ) < δ for all x, then for all such x the closed
line segment joining f(x) to g(x), given by

{ y | y = t f(x) + (1− t)g(x), some t ∈ [0, 1] }
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lies entirely inside U . Consequently, the mapping H : X × [0, 1]→ U defined by

H(x, t) = t f(x) + (1− t)g(x)

is a homotopy from f to g.

In other words, for domains and codomains given as in the proposition, a mapping g is homo-
topic to f if g is sufficiently close to f with respet to the uniform convergence metric.

Sketch of proof of Proposition 1. We can define a continuous function h : X → R by
h(x) = d( f(x),Rm−U ). In fact, this function is positive valued because f maps X into U , and by
the compactness of X it takes a minimum value δ. Therefore, if x is an arbitrary point in X and
d( f(x), v ) < δ, then the closed line segment joining f(x) to v lies entirely in U . Consequently, if
g satisfies the condition in the lemma for this choice of δ, the closed line segment joining f(x) to
g(x) lies entirely in U for all x ∈ X. If we define H as in the statement of the proposition, then
the the image of H lies entirely in U , while the continuity of H and the identities H(x, 0) = f(x),
H(x, 1) = g(x) follow immediately from the definitions.

A relatively small amount of additional work shows that if K is a compact subset of Rm for
some m, then the set [K,U ] of homotopy classes of continuous maps from K to U is countable:

THEOREM 2. If K is a compact subset of Rm for some m and U is an open subset of Rn for
some n, then [K,U ] is countable.

This result shows that the concept of homotopy shrinks the uncountably infinite set of contin-
uous mappings from K to U into something countable that might be easier to analyze.

Sketch of proof of Theorem 2. Suppose that f : K → U as above is continuous, and let δ > 0
be given as in Proposition 1. Denote the coordinate projections of f by fi, where 1 ≤ i ≤ n.

By the Stone-Weierstrass Approximation Theorem, there are polynomial functions pi on K ⊂
Rm such that

| (pi|K)− fi | <
δ

2
√
n

for each i, and in fact we can also find polynomials gi with rational coefficients such that

| (pi|K)− (gi|K) | <
δ

2
√
n
.

If we let g : Rm → Rn be the function whose coordinates are given by the polynomials gi, it follows
that | f − (g|K) | < δ.

Standard set-theoretic computations show that there are only countably many polynomials in
m variables with rational coefficients, and thus there are only countably many choices for g.

Combining the preceding two paragraphs with Proposition 1, we conclude that f is homotopic
to one of the countable family of continuous functions whose coordinates are given by polynomials
in m variables with rational coefficients, and therefore the set [K,U ] is countable.

EXAMPLES. The simplest way to see that the set [K,U ] can be infinite for some choices of K
and U is to let K consist of a single point and take U to be an infinite union of pairwise disjoint open
disks in Rn. In this case the homotopy classes are in 1–1 correspondence with the arc components
of U , and by construction there are infinitely many of the latter. In fact, one has examples where
K and U are both arcwise connected (see the first consequence of Proposition 4 below).
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Topic 2. Topological constructions for spaces with basepoints. In many situations it is
necessary or helpful to work with pointed sets or spaces of the form (X,x0) where x0 ∈ X;
the point x0 is called the basepoint of the (pointed) object. A (basepoint preserving) mapping
of pointed objects f : (X,x0) → (Y, y0) is defined to be a morphism f : X → Y such that
f(x0) = y0, and a basepoint preserving homotopy of basepoint preserving continuous maps is a
homotopy H : X × [0, 1] → Y such that H(x0, t) = y0 for all t ∈ [0, 1]. One can then discuss
basepoint preserving homotopy classes of basepoint preserving continuous mappings as in Topic 1.
Given two pointed spaces (X,x0) and (Y, y0), there is a natural forgetful map

[(X,x0), (Y, y0)] −→ [X,Y ]

obtained by forgetting basepoint considerations; if X and Y are reasonably well-behaved arcwise
connected spaces, then this forgetful map is onto, but it is not necessarily 1–1 (see the discussion
at the end of this section).

Topic 3. The fundamental group of a pointed space. The basic undelying idea is that one
can string together (or concatenate) two curves if the ending point of the first is the starting point
of the second; to simplify the discussion we shall assume that all curves are parametrized by the
closed interval [0, 1].. If α and β satisfy this condition, we shall use the notation α + β to be the
curve whose first part is α and whose second part is β. The explicit parametrization for α + β is
given in Munkres.

Strictly speaking, concatenation is not associative, but it is associative up to an endpoint
preserving homotopy (i.e., the homotopy is constant at both end points). Similarly, if C0 and C1

are the constant curves whose values are the initial and final values of α, then the curves α, C0 +α
and α+C1 are all endpoint preservingly homotopic to each other. Finally, if −α denotes the curve
with the opposite parametrization

−α(t) = α(1 − t)
then α + (−α) is endpoint preservingly homotopic to C0 while (−α) + α is endpoint preservingly
homotopic to C1.

One justification for the “±” notation is that if α and β are piecewise smooth curves in an
open subset of Rn then we have the following line integral identities:

∫

α+β

ρ(s) ds =

∫

α

ρ(s) ds +

∫

β

ρ(s) ds ,

∫

−α

ρ(s) ds = −
∫

α

ρ(s) ds

WARNING. Although contatenation is associative up to endpoint preserving homotopy, one
rarely has the strict associativity condition (α+ β) + γ = α+ (β + γ) for curves. Furthermore, in
general there is not even a homotopy commutativity property for the concatenation construction;
in particular, if one of α + β, β + α is definable then both composites are defined if and only if
α(1) = β(0) and β(1) = α(0), and even if all four of these points are equal the curves need not be
endpoint preservingly homotopic to each other; specific examples will be given in the next unit.

SECOND WARNING. Some books and papers define α+β so that the first part of the curve is β
and the last part is α. Each convention has advantages and disadvantages, but in any case it is good
to recognize which convention is used in a particular reference in order to avoid misinterpreting
some statements.

If we are dealing with closed curves with α(0) = α1 and fix the starting and ending point as a
specific element x0 ∈ X, then the preceding discussion implies that the set of basepoint preserving
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homotopy classes of such closed curves is a group which is called the fundamental group (or in some
older writings the Poincaré group) of (X,x0) and denoted by π1(X,x0).

One can think of the fundamental group as a low resolution algebraic picture of a (pointed)
space. This constrution extends to basepoint preserving continuous maps: If f : (X,x0)→ (Y, y0)
is such a mapping then there is a group homomorphism

f∗ : π1(X,x0) −→ π1(Y, y0)

such that (g of)∗ = g∗ of∗ and the identity map of point spaces induces the identity on fundamental
groups, furthermore, if f, g : (X,x0) → (Y, y0) are basepoint preservingly homotopic mappings,
then f∗ = g∗. It follows that if f is a basepoint preserving homotopy equivalence then f∗ is an
isomorphism. In particular, ifK ⊂ Rn is a convex set, then π1(K, k0) is isomorphic to π1({k0}, k0) ∼=
{1} for an arbitrary k0 ∈ K because the inclusion {k0} ⊂ K is a basepoint preserving homotopy
equivalence (verify this). Another elementary property of the fundamental group is that it behaves
well with respect to Cartesian products:

π1

(
X × Y, (x0, y0)

) ∼= π1(X,x0)× π1(Y, y0)

Finally, we note that if (X,x0) is a pointed space and A ⊂ X is the arc component of x0, then the
inclusion mapping induces an isomorphism π1(A, x0)→ π1(X,x0) because the image of a basepoint
preserving closed curve or basepoint preserving homotopy is arcwise connected and hence must
be contained in A. In particular, the fundamental group only yields information about the arc
component of the basepoint, and therefore the fundamental group cannot be used by itself to
obtain information about any other arc component of the space.

Topic 4. The fundamental group of a circle and some far-reaching generalizations. If the
fundamental groups of every pointed space were trivial, then the concept would not be of much
use, so one of the first things to check is that this group is nontrivial for an important example of a
topological space, and if S1 ⊂ R2 ∼= C is the unit circle (centered at the origin) then the first result
in this direction is that π1(S

1, 1) ∼= Z. The proof of this result uses two fundamental properties of
the exponential winding map

p : R −→ S1 , p(t) = exp(2π it)

called the Path Lifting Property and the Covering Homotopy Property. It is useful and important
to formulate abstract versions of these proofs, and this is done using the concept of a covering space
projection p : (E, e0)→ (B, b0); in practice one often suppresses the mapping p and the basepoints,
saying that E is a covering space of B.

IMPORTANT DEFAULT HYPOTHESIS. The theory of covering spaces only works
well for spaces that are Hausdorff and locally arcwise connected, so from now on, unless stated
otherwise we shall assume that all spaces under consideration have these properties.

The proof that π1(S
1, 1) ∼= Z extends to covering space projections as follows: If (E, e0) and

(B, b0) are connected spaces satisfying the Default Hypothesis and p : (E, e0)→ (B, b0) is a covering
space projection, then p∗ : π1(E, e0)→ π1(B, b0) is a 1–1 homomorphism.

IMPORTANT REMARK. The preceding discussion shows that there is generally no relation
between the injectivity or surjectivity of a continuous map f and the analogous properties for the
associated homomorphism f∗ of fundamental groups. In particular, the covering space example
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shows that f∗ can be 1–1 but not onto when f is onto but not 1–1, and the example (S1, 1) ⊂ (C, 1)
shows that f∗ can be onto but not 1–1 when f is 1–1 but not onto.

It turns out that the cosets of p∗ [π1(E, e0)] in π1(B, b0) also have a topological interpretation
which is analogous to the proof that the fundamental group of the circle is Z.

PROPOSITION 3. Let p : (E, e0) → (B, b0) be a covering space projection, where E and B
are connected spaces satisfying the Default Hypothesis, and let F ⊂ E denote the inverse image
p−1[{b0}] (the fiber of the basepoint; note that e0 ∈ F ). Then there is a right action of the group
π1(B, b0) on F ; in other words a set-theoretic mapping Φ : F × π1(B, b0)→ F such that

Φ(x, 1) = x , Φ(x, gh) = Φ (Φ(x, g), h)

for all x ∈ F and g, h ∈ π1(B, b0). Every point in F has the form Φ(e0, g) for some g, and
Φ(e0, h) = e0 if and only if h lies in the image of π1(E, e0).

Usually we simplify notation and denote Φ(x, g) by x · g or simply xg. One advantage of this
convention is that we can rewrite the defining identities as x · 1 = x and (xg)h = x(gh).

Sketch of proof of Proposition 3. We construct Φ using the Path Lifting and Covering
Homotopy Properties. If x ∈ F and g ∈ π1(B, b0), choose a basepoint preserving closed curve
γ : S1 → B representing g, let γ̃ be the unique lifting to a curve [0, 1] → E such that γ̃(0) =
x given by the Path Lifting Property, and provisionally take xg to be γ̃(1). In order for this
provisional construction to be well-defined, we need to check that we get the same end point for
all choices of γ, but this follows immediately by applying the Covering Homotopy Property to
the basepoint preserving homotopy relating γ to the other representative. The displayed identities
follow immediately (for x 1 = x the lifting of the constant curve at b0 is the constant curve at
x, while for (xg)h = x(gh) one chooses representatives α and β for g and h, so that α + β is a
representative for gh and the appropriate lifting of the latter curve ends at (xg) · h, which verifies
the property in question). Given x in F , there is a curve θ from e0 to x in E, and if g represents the
class of p oθ in the fundamental group, then by construction we have x = e0g. Finally, if e0g = e0
then in the previous notation we have γ̃(1) = e0 so that γ̃ is a closed curve representing some
g′ ∈ π1(E, e0) such that p∗(g

′) = g; conversely, if g satisfies this condition and we take β to be
a closed curve in E0 representing g′, then β is the associated lifting of p oγ, and this implies that
e0 · p∗(g′) = e0 as required.

Free homotopy classes and the role of basepoints. Two natural questions are why we take the
trouble to introduce pointed spaces and whether the previously described forgetful map

F : [(X,x0), (Y, y0)] −→ [X,Y ]

is bijective. Our first result shows that the mapping is an isomorphism in at least some important
special cases:

PROPOSITION 4. For every pointed space (X,x0) the forgetful map

F : [(X,x0), (S
1, 1)] −→ [X,S1]

is bijective.

Before proving this we shall mention two implications for questions that arose earlier.

First consequence. If we take (X,x0) = (S1, 1), then it follows that [S1, S1] is infinite and
hence S1 is not contractible.
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Second consequence. Since C = R2 is contractible it follows that [S1,R2] is a point and the
map [S1§1] → [S1,R2] induced by inclusion is not injective. In particular, the homotopy class
construction does not send injective maps of spaces to injective maps of homotopy classes.

Sketch of proof of Proposition 4. We first show that every continuous map X → S1 is
homotopic to a basepoint preserving map, and we do this with the group operation on S 1 given by
multiplication of complex numbers. Given f : X → S1, we know that there is a continuous curve β
in S1 joining f(x0) to 1; if we define a homotopy byH(x, t) = f(x)·γ(1−t)−1, thenH is a homotopy
from f to a basepoint preserving map. Similarly, suppose that the basepoint preserving maps f
and g are homotopic but the homotopy is not necessarily basepoint preserving, let α(t) = H(x0, t)
so that α(0) − α(1) = 1, and define a new homotopy by H ′(x, t) = H(x, t) · α(t)−1; it follows from
the construction that H ′ is a basepoint preserving homotopy from f to g.

Another issue involving basepoints is the extent to which π1(X,x0) depends upon the choice
of x0. Clearly if we take a disconnected space such as the disjoint union of R and S1, then the
fundamental group will be trivial if the basepoint lies in R and will be nontrivial if the basepoint
lies in S1. Thus the question reduces to arcwise connected spaces or basepoints which lie in the
same arc component of a space. In fact, if x1 and x0 lie in the same arc component and γ is a
curve joining x0 to x1, then an isomorphism π1(X,x0)→ π1(X,x1) can be defined so that it takes
the class of a closed curve α in the first group to the class of the closed curve (−γ) + (α + γ) in
the second. However, different choices of γ often yield different isomorphisms of these fundamental
groups; in particular, if x0 = x1, then by construction the resulting automorphism is conjugation
by the class of γ in π1(X,x0) — in other words, the map sending u to g−1ug, where g = [γ] — and
this isomorphism is always the identity if and only if the fundamental group is abelian (as shown
in Munkres, Section 71, there are well behaved compact subsets of R2 for which the fundamental
group is not abelian, so there are examples where the isomorphism depends upon the choice of
path).

Further information on such issues appears on pages 332–333 of Munkres and Exercise 3 on
page 335.

More generally, if X is arcwise connected one can ask about the relationship between the group
π1(X,x0) and the set of free homotopy classes [S1, X]; we shall not need this in the course, but
it seems worthwhile to describe the relationship as a motivation for introducing basepoints. A
discussion of the forgetful map

π1(X,x0) ←− [S1, X]

and more general questions of the same type appears in Section 4.A of Hatcher (in particular, see
page 422, and see pages 341–342 for definitions of some of the concepts discussed there). It turns
out that the forgetful map F is always onto, and two elements in the fundamental group go to the
same class under F if and only if they lie in the same conjugacy class in the fundamental group.

It follows that the role of the basepoint is to create a setting where one can directly apply the
methods and results of group theory , and the discussion would be more awkward (at best) if we
tried to do everything without basepoints.
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I.1 : Lifting criterion

(M, §79; H, §§1.1, 1.3)

Reminder. For the rest of this unit and the next, we assume all spaces under discussion are
Hausdorff and locally arcwise connected (hence connectedness is equivalent to arcwise connected-
ness).

If we are given a covering space projection p : (E, e0)→ (B, b0) where E and B are (arcwise)
connected, and an arbitrary continuous mapping f : (X, e0) → (B, b0), one natural question is
whether such a mapping can be lifted to a continuous mapping F : (X, e0)→ (B, b0) and whether
such a lifting is unique if there is at least one lifting. The existence of such liftings if X = [0, 1]
played a crucial role in the material discussed in Section I.0, and one might hope that information
on the more general question might also have far-reaching consequences. Simple examples show
that one cannot expect to have such liftings all the time; for example if we take the usual covering
space projection from R to S1, then no such lifting exists. More generally, if F exists then on the
fundamental group level we have

f∗ = (p oF )∗ = p∗ oF∗

and this implies that the image of f∗ lies in the image of p∗ if a lifting exists; this condition clearly
fails for R→ S1. On the other hand, the main result about liftings is that they exist if the displayed
condition holds:

THEOREM 1. Suppose that we are given a covering space projection p : (E, e0) → (B, b0),
where E and B are (arcwise) connected, and let f : (X, e0) → (B, b0) be a continuous mapping.
Then there is a continuous lifting F : (X, e0)→ (B, b0) such that f = p oF if and only if the image
of f∗ : π1(X, e0)→ π1(B, b0) is contained in the image of p∗ : π1(E, e0)→ π1(B, b0), and if such a
lifting exists then it is unique.

Proof. The idea of the construction is simple: Given a point x ∈ X, we take a curve γ in X
joining x0 to x, we lift f oγ uniquely to some curve β in E starting at e0, and we try to define
F (x) as β(1). There are several things that need to be checked in order to conclude that this
actually works. First, we must verify that the construction does not depend upon the choice of
γ; we shall need the assumption on maps of fundamental groups in order to complete this step.
Next, we need to verify that this construction is continuous. If we can complete these steps, then
the construction yields the lifting identity p oF immediately, and uniqueness follows by the same
considerations proving uniqueness for the Path Lifting and Covering Homotopy Properties.

Suppose that α and β are continuous curves in X which join x0 to x1, and let γ be the closed
curve β + (−α). Then γ + α is basepoint preservingly homotopic to β, and as in the proof of the
Covering Homotopy Property it follows that the final points of the liftings of

f o(γ + α) = f oγ + f oα

and f oβ which start at e0 must also have the same endpoints. Thus the mapping will be well-
defined if we can show that the corresponding liftings of f oα and f oγ + f oα also have the same
endpoints.
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This is the point at which we use the hypotheses on images of fundamental groups, which
implies that f oγ is basepoint preservingly homotopic to p oθ for some closed curve θ in E; by
uniqueness of path liftings we know that θ is the unique lifting of p oθ starting at e0. Therefore it
follows that the liftings of p oθ + f oα and f oγ + f oα have the same endpoints. If ϕ denotes the
unique lifting of f oα with starting point e0, then the lifting of the first curve p oθ + f oα is equal
to θ+ϕ because θ is a closed curve; this implies that the endpoint of this lifting is the endpoint of
ϕ. But the latter is just the lifting of f oα, and if we combine this with the previous observations
we see that the corresponding liftings of f oα and f oγ+ f oα do have the same endpoints, which is
what we needed to prove in order to show that F is well defined.

To prove continuity, let x ∈ X, let V be an evenly covered open neighborhood of f(x) in B
(i.e., the inverse image of V is a disjoint union of homeomorphic copies of V ), and let U be an
arcwise connected open neighborhood of x such that f(x) ∈ V . Choose the sheet V0 ⊂ E mapping
homeomorphically to V such that F (x) ∈ V0, let γ be a curve joining x0 to x, and let ϕ be the
unique lifting of f oγ to E starting at e0; by construction the endpoint of ϕ is equal to F (x). —
Now let y ∈ U ; the continuity of F will follow if we can prove that F (y) ∈ V0. Let δ be a short
curve in U starting at x and ending at y, and let ψ be the unique lifting of f oψ starting at F (x).
By connectedness the image of f oψ is contained in V0; by construction F (y) is the endpoint of the
unique lifting of

f o(γ + ψ) = (f oγ) + (f oψ)

which is the endpoint of ψ. But we have seen that this point lies in V0, and therefore F is continuous.
The uniqueness of F now follows from the same sort of argument employed for the Path Lifting
Property.

This result has numerous consequences, but for the time being we shall only mention one of
them. Given two connected covering space projections p : X → W and q : Y → W , we shall say
that they are equivalent if there is a homeomorphism h : X → Y such that q oh = p (hence also
p oh−1 = q). It is elementary to check that equivalence of covering space projections determines an
equivalence relation on coverings.

COROLLARY 2. If p : (X,x0) → (W,w0) and q : (Y, y0) → (W,w0) are covering space
projections with all spaces connected, then they are equivalent if and only if the images of π1(X,x0)
and π1(Y, y0) in π1(W,w0) are equal.

Example. If W is not locally arcwise connected, then the uniqueness conclusion in Corollary
2 does not necessarily hold. Explicit examples are described in the document polishcircle.pdf
(in the course directory).

Proof of Corollary 2. The lifting criterion implies that there are continuous basepoint preserving
mappings h and k such that q oh = p and p ok = q. These equations imply the identities q o(h ok) = q
and p o(k oh) = p. By uniqueness of liftings it follows that h ok is the k oh is the identity on Y , so
that h and k are homeomorphisms which satisfy the conditions for equivalence of coverings.

The preceding result is a major step in the classification of connected covering spaces, but
it is incomplete in two respects. First, we would like to know if every subgroup of π1(X,x0) can
be realized as the fundamental group of some connected covering space. Second, we would like to
know if there is something special about covering spaces whose fundamental groups map bijectively
to normal subgroups of π1(X,x0). We shall answer these questions in the next two sections.
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Recognizing simply connected coverings

The preceding discussions also yield a criterion for recognizing when a connected covering space
is simply connected; this will be useful in Section I.3.

PROPOSITION 3. Let p : X → Y be a covering space projection where X and Y are
connected, and assume that for each x in the fiber p−1[{x0}] there is a unique g ∈ π1(X,x0) such
that x = x0 · g. Then X is simply connected.

Proof. If h is in the image of p∗;π1(X,x0) → π1(Y, y0) then x0 · h = x0, so the only way one
can have uniquess is if this image is trivial. Since p∗ is injective, this implies that the fundamental
group of X must be trivial.

Change of basepoints in covering spaces

If p : (X,x0) → (Y, y0) is a based covering space projection where X and Y are (arcwise)
connected, then for each g ∈ π1(X,x0) the map pg : (X,x0 · g) → (Y, y0), defined by the formula
pg(x) = p(x), is also a based covering space projection. By the results of Section 0 we know that
there is an isomorphism Φ(γ) : π1(X,x0)→ π1(X,x0 · g) given by choosing a curve γ joining x0 to
x1 and defining Φ(γ) as the map sending the class of a closed curve α in the first group to the class
of the closed curve (−γ) + (α+ γ) in the second. Therefore the images of p∗ and pg

∗ are isomorphic
subgroups of π1(X,x0). In fact, we can say considerably more;

THEOREM 4. Suppose we are in the setting described above, and suppose that the image of
p∗ is the subgroup H ⊂ π1(X,x0). Then the image of pg

∗ is the subgroup g−1H g.

Proof. We need to compare the images of p∗ and Φ(γ) opg
∗ in π1(Y, y0). By the discussion

preceding the statement of the theorem, the latter composite sends the class of the curve α to the
class of the composite

p o

(
(−γ) + (α+ γ0

)
= −(p oγ) + (p oα+ p oγ) .

Now the right hand side represents the class

[−(p oγ)] · p∗([α]) · [p oγ] = g−1 p∗([α]) g

in π1(Y, y0), and since p∗ corresponds to the inclusion H ⊂ π1(Y, y0), it follows that the image of
pg
∗ is equal to g−1H g.

I.2 : Covering space transformations

(M, §§79, 81; H, §1.3)

One elementary property of the covering space projection

p : R −→ S1 , p(t) = exp(2π it)

is that it is highly symmetric. If n is an arbitrary integer, then the translation map σn(t) = t+n is a
self-equivalence of the covering space which satisfies the condition p oσn = p. Since σn

oσm = σm+n,
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these self-equivalences generate an infinite cyclic group. These examples can be generalized as
follows:

Definition. Let p : X → Y be a covering space projection where X and Y are connected. A
covering space transformation or deck transformation of p : X → Y is a homeomorphism σ : X → X
such that p oσ = p. Observe that there is no condition regarding basepoints; the reason for this is
implicit in the first paragraph of the proof of Theorem 1 below.

It follows immediately that the set of all covering space transformations is a group with respect
to composition, and the structure of this group is given as follows:

THEOREM 1. Let p : X → Y be a covering space projection where X and Y are con-
nected, and let H ⊂ G be the subgroup inclusion corresponding to the map of fundamental groups
p∗;π1(x, x0) → π1(Y, y0). Then the group of covering transformations of p : X → Y is anti-
isomorphic to N(H)/H, where N(H) denotes the normalizer of H in G.

A 1–1 correspondence of groups h : Γ → Γ′ is said to be an anti-isomorphism if h(g1g2) =
h(g2)h(g1) for all g1, g2 ∈ Γ. Observe that h is an anti-isomorphism then so is h−1, and the
inverse map from any group to itself defines an anti-isomorphism. If GOP is G with the order
of multiplication reversed, then it is an elementary exercises to verify that GOP is a group which
is anti-isomorphic to G, and consequently an anti-isomorphism from Γ to G is equivalent to an
isomorphism from Γ to GOP.

Example. If G is the group of invertible n× n matrices over some field (where n > 1 is an
integer), then the transposition map defines an anti-isomorphism from G to itself.

Proof of Theorem 1. The first thing to note is that a covering space transformation σ is
uniquely determined by its value at the basepoint x0 because σ is a lifting of p. By results from
Section I.0 we know that σ(x0) = x0 · g for some g ∈ G; in general g is not unique, for if h ∈ H
then x0 · h = x0 and hence x1 = x0 · (hg).

The second step is to show that there is a covering space transformation σ such that σ(x0) =
x0 ·g if and only if g lies in the normalizer of H in G. By definition, the existence of such a mapping
is equivalent to the existence of a lifting of p : (X,x0) → (Y, y0) to pg : (X,x0 · g) → (Y, y0),
and by the criterion in the preceding section such a lifting exists if and only if the image of the
induced fundamental group homomorphism p∗ is contained in the image of the corresponding
homeomorphism pg. If we denote the image of p∗ by H as in Theorem 1.4, then that result implies
that the image of pg

∗ is equal to g−1 H g, so the desired mapping σ exists if and only if g−1 H g ⊂ H.
Since this holds if and only if g lies in the normalizer of H, this completes the proof of the second
step.

Finally, we need to prove that the map σ as constructed above is a homeomorphism and that
the construction defines a group which is anti-isomorphic to N(H)/H. The first step in doing so
is to prove the following relationship:

σ(x0) = x0g1 and τ(x0) = x0g2 imply τ oσ(x0) = x0g1g2

In the notation of this display, we need to prove that τ(x0g1) = x0g1g2. — Let α and β be curves
joining x0 to x0g1 and x0g2 respectively. Then α + (σ oβ) is a lifting of (p oα) + (p oβ) starting at
x0, and hence its endpoint is x0g1g2. On the other hand, τ(x0g1) is defined by taking the endpoint
for unique lifting of p oβ with starting point x0g1. Since this unique lifting is σ oβ it follows that
the τ(x0g1) must be equal to x0g1g2, and this proves the identity we wanted.

Consider the map e which sends a covering transformation to the unique element [g] ofN(H)/H
such that

σ(x0) = x0 · e(σ) .
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We have shown that the map e from covering transformations to N(H)/H is 1–1 and onto, and
the results of the previous paragraph imply that e(τ oσ) = e(σ) · e(τ). This immediately implies
that e is an anti-isomorphism, and it also shows that if e(σ) = g and e(τ) = g−1 then

e(σ) oe(τ) = Identity = e(τ) oe(σ)

so that e(τ) is a continuous inverse to e(σ).

The following consequence of Theorem 1 is particularly noteworthy.

COROLLARY 2. Let p : X → Y be a covering space projection where X and Y are con-
nected, and let H ⊂ G be the subgroup inclusion corresponding to the map of fundamental groups
p∗;π1(X,x0)→ π1(Y, y0). Then the following are equivalent:

(i) H is a normal subgroup of G.

(ii) For each x in the fiber p−1[{x0}] there is some (unique) covering transformation σ such
that x = σ(x0).

We shall say that the covering is a regular covering if either (hence both) of these conditions
holds.

Proof. By the theorem we know that x is σ(x0) for some x0 if and only if x = x0g for some g in
the normalizer of H.

Suppose that (ii) holds. Then for each x in the fiber p−1[{x0}] there is some g ∈ G such
that x0g = x and a covering transformation σ such that σ(x0) = x0g, so that e(σ) = [g] in the
terminology developed in the proof of Theorem 1. Since we know that the latter implies that g lies
in the normalizer of H, it follows that G must be the normalizer of H, so that H is normal in G.

Conversely, if (i) holds and we take x as in (ii) so that x = x0g, then by Theorem 1 we know
there is a covering transformation σ such that e(σ) = [g], and by the definition of the latter we
must have σ(x0) = x.

I.3 : Universal coverings and applications

(M, §§80, 82; H, §1.3)

In Section 1 we showed that, up to equivalence, there is at most one based covering space
projection p : (X,x0)→ (Y, y0) such that X is connected and the image of p∗ is a given subgroup
H ⊂ π1(Y, y0). The purpose of this section is to show that, under a reasonable condition on Y ,
every subgroup H ⊂ π1(Y, y0) can be realized in this manner. In principle, everything reduces to
constructing a covering when H is the trivial group, so we begin by showing that the latter can
always be realized.

Simply connected covering spaces

A connected, Hausdorff, locally arcwise connected topological space does not necessarily have
a simply connected covering space, and in fact there are examples which are compact subsets of
R2; details appear on pages 486–487 of Munkres. However, the following result shows that simply
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connected covering spaces exist for a reasonably broad family of spaces (which contains most objects
of primary interest in algebraic and geometric topology):

THEOREM 1. Let Y be a (Hausdorff, locally arcwise connected and) connected space, and
assume that Y is locally simply connected in the sense that every point of Y has a neighborhood
base of simply connected open neighborhoods. Then there is a simply connected covering space
projection p : X → Y .

By the Lifting Criterion of Section 1, if p : X → Y is a covering space projection where X is
simply connected, then for an arbitrary connected covering space projection q : W → Y there is a
mapping q′ : X → W such that q oq′ = p, and hence we can think of X as sitting over every other
covering space W . This is one reason why p : X → Y is often called a universal covering space if
X is simply connected.

Sketch of proof. The proof is long and somewhat messy in places, and as with the real number
system the basic formal properties of universal covering spaces turn out to be more important in
everyday mathematical work than the explicit method of construction. Therefore we shall simply
comment upon a few features of the proof and give a reference to Munkres, pp. 495–498, for details.

The first point we would like to make is that the formal description of points in the universal
covering space is more or less forced upon us. If there is a simply connected covering X of the
connected space Y , then each point x ∈ X can be joined to the basepoint x0 ∈ X by a curve γ;
furthermore, if p oγ denotes the projection of γ onto Y , then the point x only depends upon the
endpoint preserving homotopy class of p oγ. If U is a simply connected evenly covered neighborhood
of p(x) and V is a neighborhood of x which projects homeomorphically to U , then the points of V
are endpoints of curves having the form γ + β ′, where β = p oβ′ is a curve in U starting at p(x)
and β′ is a lifting to a curve in V starting at x. These considerations also show that the topology
on X is also more or less forced upon us.

One important feature of the universal covering space construction is that the space X comes
equipped with an action of π1(Y, y0) by covering space transformations. The simple connectivity
of X follows from this fact and Proposition 1.3.

Recognizing Hausdorff quotients

Although quotient topologies play an important role in algebraic and geometric topology,
there are numerous instances in which one must be careful about jumping to conclusions when
using them. In particular, the quotient of a Hausdorff space need not be Hausdorff (for a simple
example, take the unit interval with the eqivalence relation whose equivalence classes are {0} and
(0, 1]). Therefore we need some criteria for showing that certain quotient spaces we shall construct
from Hausdorff will indeed be Hausdorff, and accordingly we shall derive some simple but useful
criteria before proceeding with our discussion of covering spaces.

The quotient spaces of interest to us all have the property that the quotient map X → X/R is
open; basic results on quotient topologies show that a continuous open surjection X → Y is always
a quotient map (see Munkres, Theorem 22.1, p.140).

PROPOSITION 2. Suppose that f : X → Y is continuous, open and surjective, and assume
further that the set

{(x1, x2 ∈ X ×X | f(x1) = f(x2)}

is closed in X ×X. Then Y is Hausdorff.
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Proof. The definition of the product topology implies that f × f is an open mapping. By
assumption the set W ⊂ X×X of all (x1, x2) such that f(x1) 6= f(x2) is open, and hence its image
is open in Y ×Y . But this image is the complement of the diagonal ∆Y ⊂ Y ×Y (first and second
coordinates equal), and hence ∆Y is closed. The latter condition is equivalent to the Hausdorff
property for a topological space, and therefore Y must be Hausdorff.

This is also a good point to include another fact that we shall need:

PROPOSITION 3. Suppose that f : X → Y is continuous, open and surjective. If X is locally
arcwise connected, then so is Y .

The proof of this is straightforward and left to the reader as an exercise.

Finally, we shall give an important way of constructing continuous open surjections using
group actions and their orbit spaces (see Munkres, Exercise 8, p. 199 for definitions and a few basic
results):

PROPOSITION 4. Let X be a topological space, let G be a topological group with the discrete
topology, and let α : G×X → X be a continuous action of G on X. Then the orbit space quotient
projection p : X → X/G is open.

Note that the orbit space projection is continuous and onto by construction.

Proof. Let V ⊂ X be open, and let V ′ ⊂ X/G be its image under p. By definition of the quotient
topology, V ′ is open in Y if and only if its inverse image is open in X. But the inverse image of V ′

is equal to ⋃

g∈G

g · V

and the latter is open because each subset g ·V is open, so that V ′ = p[V ] is in fact an open subset
of Y .

Covering spaces realizing subgroups of π1

We can now use universal coverings to construct covering spaces associated to arbitrary fun-
damental groups.

THEOREM 4. Let Y be a (Hausdorff, locally arcwise connected and) connected space, assume
that Y is locally simply connected, and let H be a subgroup of π1(Y, y0). Then there is a connected
covering space projection p : (X,x0)→ (Y, y0) such that the image of p∗ is equal to H.

Sketch of proof. The hypotheses imply the existence of a simply connected covering space
projection q : (W,w0) → (X,x0). By the results of Section 2 the group of covering space trans-
formations for q is anti-isomorphic to π1(Y, y0). Let X be the quotient of W by the equivalence
relation w ∼ w′ if and only if there is some covering space transformation T such that T (w0) = w0 ·h
for some h ∈ H and T (w) = w′. It is then a straightforward exercise to verify that the space X is
a connected covering space of Y and that X is Hausdorff and locally arcwise connected (proofs of
the latter use Propositions 2–4). Furthermore, it also follows that w0 · g = w0 if and only if g ∈ H.
Since the subgroup of all g with this property is π1(x, x0), the results of Section 0 imply that H is
isomorphic to π1(X,x0).

In most books the preceding result is stated and proved with the slightly weaker hypothesis
that Y is semilocally simply connected, which means that every point has at least one simply
connected open neighborhood. We have stated the result with the stronger condition because most
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of the spaces encountered in algebraic and geometric topology are locally simply connected; in fact,
most have neighborhood bases of contractible open subsets.

We can summarize the results on classifying covering spaces as follows:

THEOREM 5. Let Y be a locally simply connected space which is connected, and suppose that
y0 ∈ Y . Then there is a 1−1 correspondence between equivalence classes of based connected cover-
ing space projections p : (X,x0) → (Y, y0) and subgroups of π1(Y, y0). Under this correspondence
a covering space is regular if and only if the associated subgroup is normal in π1(Y, y0).

FINAL REMARKS. These will not be used elsewhere in the course, but they shed some light
on the material presented thus far.

Example. If U is a connected open subset of R2 then U is locally simply connected, so
that U has a simply connected universal covering space. Fundamental results in complex variable
theory imply that this universal covering is homeomorphic to R2. Analogous results are false in
higher dimensions; in particular, if n ≥ 3 then Rn − {0} is simply connected but we shall see that
it is not homeomorphic to Rn.

Problem. If U is connected and open in Rn where n ≥ 3, is its universal covering homeo-
morphic to an open subset of Rn? — I suspect the answer to this question is usually no, but there
do not seem to be any simple examples.
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II . Computing Fundamental Groups

In order to use fundamental groups effectively for studying geometrical questions, it is neces-
sary to have some methods for describing them concretely, preferably in a group-theoretic manner.
The purpose of this unit is to develop some basic techniques for doing so. One way of analyzing
fundamental groups involves finding regular covering spaces whose groups of covering space trans-
formations are anti-isomorphic to some fixed group (see Section 1), and another way is given by
decomposing a space into smaller pieces with known fundamental groups and developing group-
theoretic methods for recovering the fundamental group of the whole space (see Section 3); the
latter requires algebraic concepts that usually do not appear in entry level graduate courses on
group theory, and this material corresponds to Section 2.

II.1 : Orbit spaces

(H, §§1.3, 1.B)

The methods of this section will realize all finite cyclic groups as fundamental groups of rea-
sonable spaces. By the structure theorem for finitely generated abelian groups, it will follow that
every finitely generated abelian group is the fundamental group of some reasonable space. We shall
also prove that at least some nonabelian finite groups can arise as fundamental groups. In fact,
every group can be realized as the fundamental group of some space, but proving this requires
more machinery that we shall develop in this course; one method of constructing examples appears
in Section 1.B of Hatcher.

Generalities

We shall begin with an abstract formulation of some general properties of covering space
transformations on a regular covering space:

Definition. We shall say that an action of a topological group G on a space X is a free action

(or G acts freely) if for every x ∈ X the only solution to the equation g ·x = x is the trivial solutions
for which g = 1.

Our first result essentially implies that free actions are the same as covering space transfor-
mations if G is finite (we shall not try to make this more precise because it will not be needed
subsequently).

THEOREM 1. Let G be a finite group which acts freely on the Hausdorff topological space X,
and let π : X → X/G denote the orbit space projection. Then π is a covering space projection.

Proof. Let x ∈ X be arbitrary, and let g 6= 1 in G. Then there are open neighborhoods U0(g) of x
and V0(g) of g x that are disjoint. If we let W (g) = U(g)∩ g−1 V (g) is another open set containing
x, while gW (g) is an open set containing g x, and we have W (g) ∩ gW (g) = ∅. Let

W =
⋂

h6=1

W (h)
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so that W is an open set containing x.

We claim that if g1 6= g2, then (g1W ) ∩ (g2W ) = ∅. If we know this, then it will follow
immediately that π[W ] is an open set in X/G whose inverse image is the open subset of X given
by ∪g gW . This and the definition of the quotient topology imply that π[W ] is an evenly covered
open neighborhood of x, and therefore it will follow that π is a covering space projection.

Thus it remains to prove the statement in the first sentence of the preceding paragraph. Note
first that it will suffice to prove this in the special case where g1 = 1; assuming we know this, in
the general case we then have

g1W ∩ g2W = g1
(
W ∩ (g−1

1 g2)W
)

and the coefficient of g1 on the right hand side is empty by the special case when g1 = 1 and the
fact that g1 6= g2 implies 1 6= g−1

1 g2. — But if g 6= 1 then we have W ∩ gW ⊂W (g)∩ gW (g), and
we know that the latter is empty by construction. Therefore W ∩ gW = ∅, and as noted before
this completes the proof.

COROLLARY 2. In the setting of the theorem, if X is simply connected then the fundamental
group of X/G is anti-isomorphic to G.

Sketch of proof. It is straightforward to verify that the group of covering transformations of
X → X/G is given by G.

Some important examples

The results of the previous course show that Sn is simply connected if n ≥ 2, and if we combine
this with Theorem 1 and Corollary 2 we see that if G is a finite group which acts freely on Sn, then
the quotient space Sn/G has a fundamental group which is anti-isomorphic to G. In particular, if
G is abelian then the fundamental group is isomorphic to G.

The last statement is true because the anti-isomorphisms and isomorphisms are the same for
abelian groups.

Example 1. The real projective plane. — This space is denoted by RP2, and two equivalent
constructions of it as a quotient space are described in Unit V and the accompanying exercises for
the online 205A notes cited earlier. For our purposes here, it is convenient to think of RP2 as the
quotient of S2 by the equivalence relation which identifies x and y if and only if one of these unit
vectors is ± 1 times the other. This corresponds to viewing RP2 as the quotient space of S2 by the
action of Z2 on S2 which sends (n, x) to (−1)nx, and therefore Theorem 1 implies that the orbit
space projection S2 → RP2 is a 2-sheeted covering space. Since S2 is simply connected, it follows
that the fundamental group of RP2 must be isomorphic to Z2.

Of course, there are also similar examples for which S2 is replaced by Sn for an arbitrary
integer n ≥ 2, and in this case the quotient space Sn/{± 1} is called real projective n-space and
denoted by RPn.

Example 2. Simple lens spaces. — A variation of the preceding construction yields spaces
whose fundamental groups are cyclic of arbitrary order. Let D denote either the complex numbers or
the quaternions, let d be the dimension of D as a real vector space, and let G be a finite subgroup of
the group Sdm−1 of elements of D with unit length. For example, if D = C (the complex numbers),
then G can be a cyclic group of arbitrary order, while if D is the quaternions then one also has some
nonabelian possibilities, most notably the quaternion group of order 8 whose elements are given
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by ± 1, ± i, ± j, and ±k. If D = C and m > 1, then the quotient spaces S2m−1/Zq (for q > 1)
are the objects known as (simple) lens spaces (sometimes the case q = 2 is excluded because that
quotient is the previously described real projective space); the reason for assuming m > 1 is that
the corresponding quotient space for S1 is homeomorphic to S1. By Theorem 1 we know that the
fundamental group of a simple lens space S2m−1/Zq is isomorphic to q; since q > 1 is arbitrary, it
follows that every cyclic group of finite order is isomorphic to the fundamental group of some lens
space.

If D is the quaternions, G is the nonabelian quaternion group of order 8 described above and
m = 1, then the space S3/G is called the 3-dimensional quaternionic space form associated to
the group G. The fundamental group of this quotient is then anti-isomorphis to the (nonabelian)
quaternion group.

Example 3. The Klein bottle. — Define an action of the finite group Z2 on the torus
T 2 = S1×S1 so that the nontrivial element T ∈ Z2 satisfies T · (z, w) = (−z, w) where S1 is viewed
as the set of unit complex numbers and the bar denotes conjugation. This is a free action because
T (z, w) = (z, w) would imply z = −z, and we know this is impossible over the complex numbers.
In this case the quotient space is the Klein bottle.

One of the homework exercises outlines a proof that the fundamental group of the Klein bottle
is an infinite nonabelian group which contains an index 2 (normal) subgroup isomorphic to Z× Z

but has no elements of finite order except the identity.

II.2 : Amalgamation constructions for groups

(M, §§67–69; H, §1.2)

This material was covered in the previous course during the Fall 2011 Quarter.

II.3 : The Seifert-van Kampen Theorem

(M, §70; H, §1.2)

This material was covered in the previous course during the Fall 2011 Quarter.

The course directory file svkproof.pdf contains an alternate proof of the hard part of the
Seifert-van Kampen Theorem for spaces that are locally simply connected. In contrast to the proof
in Munkres, the alternate proof provides a semi-explicit construction of the universal covering for
a space X = U ∪ V (where U , V and U ∩ V are all arcwise connected, locally simply connected,
and open subsets of X).

II.4 : Examples

(M, §§59, 71, 72; H, §1.2)

This material was covered in the previous course during the Fall 2011 Quarter.
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III . Graph complexes

In this unit we shall study the fundamental groups for a special class of spaces which are built
out of very simple pieces but turn out to be important in many branches of mathematics, and in
some sense are “toy models” for the sorts of objects usually studied in algebraic and geometric
topology. More precisely, these spaces (called finite graph complexes, edge-path graphs or more
simply just graphs) are excellent test cases for applying the methods and results of this course.

Informally, a graph can be constructed by taking a finite collection of closed intervals and
identifying their endpoints in a suitable fashion; following geometric intuition, the images of the
intervals are called edges and the images of their endpoints are called vertices. Note that these
are NOT graphs as defined and studied in coordinate geometry and calculus, but the name has
stuck and become standard usage, both in mathematics and in its applications to numerous other
subjects such as computer science, physics, chemistry, industrial engineering, the biological sciences
and even to other areas of knowledge where it is useful to look at chains of relationships or passage
from one state of a system to another. A fairly simple application of graph theory to a problem
about relationships is given in the following online video:

http://www.youtube.com/watch?v=b3lbjoiEAyA

One of the main results in this unit is a complete description of the fundamental group of a
connected finite graph using the numbers of edges and vertices. This result in turn leads to an
algebraic theorem about free groups that is somewhat nonintuitive: If F is a free group on a finite
number n > 1 of generators, then for each m > n the group F contains a subgroup of finite index
with m generators; in contrast, if A is a free abelian group on n generators, then every subgroup
of A has at most n generators.

III.1 : Basic definitions

(M, §83; H, §1.A, Ch. 2 Introduction)

Since we have already described finite graphs intuitively, we shall proceed to the formal de-
scription.

Definition. A finite edge-path graph complex (more simply a finite graph) is a pair (X, E)
consisting of a compact Hausdorff space X and a finite family E of closed subsets with the following
properties:

(1) Each subset E ∈ E is homeomorphic to the closed interval [0, 1].

(2) The space X is the union of all the subspaces E in the family E .
(3) If E1 and E2 are distinct subsets of E , then either E1 ∩ E2 is empty or else it is a single

point corresponding to a vertex of each interval Ei.

COMMENTS ON THE DEFINITION. The endpoints of a set homeomorphic to [0, 1] are topo-
logically characterized by the fact that their complements are connected; for all other points, the
complement has two components. As above, we shall say that a subset of E is an edge and an
endpoint of an edge will be called a vertex.
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The setting in Chapter 14 of Munkres is more general and includes examples where the set of
edges is infinite but each vertex lies on only finitely many edges. We are restricting attention to
examples with finitely many edges in order to simplify the discussion.

Examples. It is easy to draw many examples of graphs, and such drawings are extremely
useful for understanding this concept. The file graphpix1.pdf contains a few examples, including
some that will appear later in this course.

An alternate definition

Our definition of a graph assumes that two edges meet in just one endpoint, but in some
situations it is convenient to consider examples for which the intersection of two edges is also
allowed to be both vertices of the two edges as in the following illustration:

D
(Two vertices at the corners, two edges have these endpoints.)

We shall prove that every object of this more general type can be expressed as a graph in the
sense of our definition.

LEMMA 1. Let Γ be a system satisfying the conditions for an finite edge-vertex graph except
that two edges may have both of their vertices, and let E be the collection of edges for this system.
Then there is another family of closed subsets E ′ such that the following hold:

(i) The family E ′ is a collection of edges for a graph structure on Γ.

(ii) Each element of E ′ is contained in a unique element of E such that one endpoint of E ′ is
also an endpoint for E but another is not, and each edge in E is a union of two edges in E ′.

(iii) The intersection of two distinct edges in E ′ is a single point which is a common vertex.

Proof. For each edge E ∈ E , pick a point bE ∈ E that is not an endpoint. It follows that
E − {bE} has two connected components, each of which contains exactly one endpoint of E. If x
is an endpoint of E define the set [x,E] to be the closure of the component of E − {bE} which
contains x. If E ′ denotes the set of all such subsets [x,E], then it follows immediately that E ′ has
the properties stated in the lemma. Note that by construction the endpoints of a given edge [x,E]
are x and bE .

The family E ′ is frequently called the derived graph structure associated to E .
As noted in one of the exercises, many examples of edge-vertex graphs are suggested by ordinary

letters and numerals.

Subgraphs

Definition. Let (X, E) be a finite edge-path graph. A subgraph (X0, E0) is given by a subfamily
E0 ⊂ E such that X0 is the union of all the edges in E0. It is said to be a full subgraph if two
vertices v and w lie in X0 and there is an edge E ∈ E joining them, then E ∈ E0.
PROPOSITION 2. Let (X, E) be a finite edge-path graph, and let (X0, E0) be a subgraph.
Then the derived graph (X0, E ′0) is a full subgraph of (X, E ′).
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Proof. Suppose we are given an edge K in (X, E ′), so that its vertices must have the form y,
mL where L is an edge in (X, E) that has y as one of its endpoints and mL is a non-vertex point
in L. If both of these vertices belong to X0, then the latter contains a point of L which is not a
vertex, and since (X0, E0) is a subgraph it follows that L must be entirely contained in X0. But
this automatically implies that the edge in the derived complex with endpoints y and mL must be
contained in X0.

Connectedness

One immediate consequence of the definitions is that every point of a graph lies in the arc
component of some vertex; specifically, if x lies on the edge E and the vertices of the latter are a
and b, then x lies in the same arc component as both a and b. In fact, one can prove much stronger
conclusions:

PROPOSITION 3. If (X, E) is a finite edge-path graph, then X is connected if and only if for
each pair of distinct vertices v and w there is an edge-path sequence E1, · · · , En such that v is
one vertex of E1, w is one vertex of En, for each k satisfying 1 < k ≤ n the edges Ek and Ek−1

have one vertex in common, and v and w are the “other” vertices of E1 and En. Furthermore, X
is a union of finitely many components, each of which is a full subgraph.

IMPORTANT: In a general edge-path sequence defined as in the statement of the proposition,
we do NOT make any assumptions about whether or not these two vertices are equal. If they are,
then we shall say that the edge-path sequence is closed or that it is a circuit or cycle.

Proof. First of all, since every point lies on an edge, it follows that every point lie in the connected
component of some vertex. In particular, there are only finitely many connected components.
Define a binary relation on the set of vertices such that v ∼ w if and only if the two vertices are
equal or there is an edge-path sequence as in the statement of the proposition. It is elementary to
check that this is an equivalence relation, and that vertices in the same equivalence class determine
the same connected component in X.

Given a vertex v, let Yv denote the union of all edges containing vertices which are equivalent
to v in the sense of the preceding paragraph. If we choose one vertex v from each equivalence class,
then we obtain a finite, pairwise disjoint family of closed connected subsets whose union is X, and
it follows that these sets are must be the connected components of X. In fact, by construction each
of these connected component is a full subgraph of (X, E).

Frequently it is convenient to look at edge-path sequences that are minimal or simple in the
sense that one cannot easily extract shorter edge-path sequences from them. Here is a more precise
formulation:

Definition. Let E1 , · · · , En be an edge-path sequence such that the vertices of Ei are vi−1

and vi. This sequence is said to be reduced if v1 , · · · ,vn are distinct and either n 6= 2 or else
v0 6= v2 (if n = 2 and v0 = v2, then the edge-path is just a sequence with E2 = E1, physically
corresponding to going first along E1 in one direction and then back in the opposite direction).

We then have the following result:

PROPOSITION 4. If two distinct vertices x and y can be connected by an edge-path sequence,
then they can be connected by a reduced sequence.
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Proof. Take a sequence with a minimum number of edges. We claim it is automatically reduced.
If not, then there is a first vertex which is repeated, and a first time at which it is repeated. In
other words, there is a minimal pair (i, j) such that i < j and vi = vj , which means that if (p, q)
is any other pair with this property we have p ≥ i and q > j. If we remove Ei+1 through Ej from
the edge-path sequence, we obtain a shorter sequence which joins the given two vertices.

There may be several different reduced sequences joining a given pair of vertices. For example,
take X to be a triangle graph in the plane whose vertices are the three noncollinear points a, b

and c, and whose edges are the three line segments joining these pairs of points. Then ab, bc and
ac are two reduced edge-path sequences joining a to c.

Definition. A circuit (or cycle) E1 , · · · , En is called a a simple circuit or simple cycle if it is
reduced.

COROLLARY 5. Every simple circuit in a graph contains at least three edges.

Further topological properties of graphs

By definition and construction, a finite edge-path graph is compact Hausdorff, and in fact one
can say considerably more:

PROPOSITION 6. A finite edge-path graph is homeomorphic to a subset of Rn for some n.

At the end of this section we shall prove that a graph is always homeomorphic to a subset of
R3.

Proof. Suppose that the vertices are v1, · · · ,vn. Consider the graph in Rn whose vertices
are the standard unit vectors ei and whose edges are the closed line segments Ai,j joining these
vertices; the resulting compact subspace of Rn is a graph because two of these segments intersect
in at most a common endpoint (use linear independence of the unit vectors to prove this). Define
a continuous map f from original the graph X to the new graph Y such that if E is an edge with
vertices vi and j for i < j and E is a homeomorphism from [0, 1] to E such that vi corresponds to
0 and vj corresponds to 1, then t ∈ [0, 1] is sent to

t ej + (1− t) ei

(since E is homeomorphic to [0, 1] and endpoints are topologically characterized by the property
that their complements are connected, it follows that either vi corresponds to 0 and vj corresponds
to 1 or vice versa; in the second case, if we compose the original homeomorphism with the reflection
on [0, 1] sending s to 1− s, then we obtain a homeomorphism for which the first alternative holds).

It is a routine exercise to verify that f is continuous and 1–1, and therefore it maps X home-
omorphically onto its image.

The next result implies that a graph has a simply connected (universal) covering space.

PROPOSITION 7. If (X, E) is a finite edge-path graph and x ∈ X, then x has a (countable)
neighborhood base of contractible open subsets.

Proof. Suppose first that x is a vertex of X, and view X as a subset of Rn using the previous
result. Define OpenStar (x, E) to be the complement of the set of all points on edges E ′ which
do not have x as a vertex. The described set is the union of all E ′ which do not have x as a

29



vertex and hence is closed, so its complement OpenStar (x, E) must be open. For every ε such
that 0 < ε <

√
2 let

OpenStar (ε;x, E)
denote the points in OpenStar (x, E) whose distance from x is less than ε. Then it follows that
there is a straight line homotopy from the identity on OpenStar (ε;x, E) to the constant map with
value x, and therefore every such neighborhood is contractible. Since X is presented as a metric
space, it follows that a suitably chosen countable of this neighborhood family will be the desired
countable neighborhood base of x.

Now suppose that x is not a vertex of X, so that there is a unique edge E containing x;
by assumption x lies in the complement of the end points in E, and the corresponding subset of
E is homeomorphic to the open interval (0, 1). Since every point in (0, 1) has a neighborhood
base of contractible open subsets, the conclusion to the proposition will follow if we know that
E − endpoints is open in X. The complement to this set is the set of all points that are either
vertices of E or else lie on some edge other than E. This is a finite union of closed sets and hence
closed, and therefore the set E − {endpoints} must be open in X as desired.

Addendum: Embedding graphs in R3

For many purposes it is enough to know that a connected graph is always topologically embed-
dable in some Rn, but in some contexts it is useful to know the smallest n for which this is possible.
The methods of point set topology show that a connected compact subset of R is an interval, and
the final result of this section shows that for all other graphs the minimum value of n is 2 or 3.

THEOREM 8. Let (X, E) be a connected graph. Then there is a 1 − 1 continuous mapping
ϕ : X → R

3 such that every edge in E is mapped linearly to the closed segment joining the images
of the vertices (in other words, the embedding is rectilinear).

There are obvious examples for which we can take n = 2 (in particular, the complete graphs
on three or four vertices), and later in this course we shall prove that n = 3 for two specific graphs;
in other words, these graphs are not homeomorphic to subsets of R2 and are said to be nonplanar.
A celebrated theorem due to K. Kuratowski characterizes all nonplanar connected graphs in terms
of the two specific nonplanar examples that we shall analyze in Section VII.4.

Proof of Theorem 8. The proof is built around the following two key observations:

(A) There is an infinite set of isolated points in R3 such that no four lie in a single plane.

(B) For the sequence of points in the preceding observation, the intersections of two line
segments joining two pairs of vertices is at most a common vertex.

Before proving these, we shall indicate how they yield the theorem. Given the connected
graph (X, E), define ϕ on vertices so that each vertex goes to a point in the sequence of (A) and
the mapping is 1–1. Next, if K is an edge of E with vertices a and b, extend ϕ to K by sending
the latter homeomorphically to the closed line segment joining ϕ(a) to ϕ(b). Construct such an
extension for each edge in the graph. Then observation (B) implies that if K 6= K ′ are distinct
edges of E , it follows that ϕ[K]∩ϕ[K ′] is at most a common vertex of the two line segments. Since
the map on vertices is 1–1, it follows that this common vertex is a common vertex of K and K ′,
and therefore the mapping ϕ will be continuous and 1–1, so that φ maps X homeomorphically to
its image because X is compact.

Verification of observation (A). — Obviously R3 contains a set of 4 such points; for example,
take 0 and the three standard unit vectors. Suppose we know that there is a set of n points, say

30



Y , satisfying the property in (A); by induction, it will suffice to find a similar subset containing Y
with one additional point. Let

Pi , 1 ≤ i ≤
(
n

3

)

be the planes determined by triples of points in Y . Then R3−∪i Pi is an open dense subset. Form
Y ′ by adding a point z in the complement of ∪i Pi such that |z| ≥ n+ 1. If we continue to define
points recursively in this manner, we obtain the sort of subset described in (A), and in fact is it a
closed subset of R3.

Verification of observation (B). — There are two cases to consider, depending upon whether
or not the two edges have a common vertex. Both rely upon the following elementary fact from
linear algebra: If a, b, c and d are nonplanar points in R3, then b − a, c − a and d − a are
linearly independent. (If the points were coplanar, then there would be a 2-dimensional vector
subspace containing the three difference vectors.)

CASE 1. Suppose that the segments have one endpoint in common, so that the endpoints of
one segment are x and y while the endpoints of the other are y and z. We claim that they cannot
have any other points in common. If there were such a point then there would be s, t ∈ [0, 1] such
that

tx + (1− t)y = sz + (1− s)y
so that t(x−y) = s(z−y). Since there is a fourth point w such that y, x, z and w are nonplanar, it
follows that x−y and z−y are linearly independent, and consequently the only way the displayed
equation can be valid is if s = t = 0, in which case we have

tx + (1− t)y = y = sz + (1 − s)y

so that the common point must be the common endpoint of the two segments.

CASE 2. Suppose that the segments have no endpoints in common and that they join y to x

and z to w respectively. As in the preceding case, if the segments did have some point in common,
then there would be s, t ∈ [0, 1] such that

tx + (1− t)y = sw + (1− s)z

and if we subtract one side of this equation from the other we obtain the equation

tx + (1− t)y − sw + (s− 1)z = 0 .

By linear independence this equation is satisfied if and only if each of t, (1− t),−s, (s− 1) is zero.
However, this is impossible because it implies both t = 0 and t = 1. Therefore the two segments
cannot have any points in common. — As indicated previously, this completes the proof of Theorem
8.
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III.2 : Maximal trees

(M, §84; H, §1.A))

The graph (X, E) is said to be a tree if for distinct vertices u and v in X there is a unique

reduced edge path sequence
E1, · · · , Er

such that u is the “initial” endpoint of E1 and v is the “final” endpoint of Er.

A reduced edge path sequence is sometimes called a simple chain in the graph.

One can visualize many examples of trees by looking at letters of the alphabet; examples
include the letters

E, F, H, I, K, M, N, V, W, X, Y, Z.
The numerals 4 and 5 as depicted on a standard calculator display (with an open top on the 4) also
correspond to examples of trees. On the other hand, the linear graphs corresponding to triangles,
rectangles, pentagons, etc. are not trees. Other nonexamples include the letter A, the numeral 4 as
depicted in print with a closed top, and the numerals 6 and 8 as depicted on a standard calculator
display.

PROPOSITION 1. Every tree has a vertex that lies on only one edge.

Proof. If the tree has only one edge, then the result is trivial. Assume now that the tree (X, E)
has m ≥ 2 edges. We shall assume further that every vertex of (X, E) lies on at least two distinct
edges and derive a contradiction.

Let A1 be an edge of (X, E), and let v0 and v1 be its edges. Let A2 be a second edge which
has v1 as a vertex, and let v2 be its other vertex. Continuing in this manner, we obtain an infinite
sequence of edges An with vertices vn−1 and vn such that An 6= An−1. Since there are only finitely
many edges and vertices, there must be some first value of k such that vk = vk+j for some j > 0
(in other words, there is a first repeated value in the sequence). By construction, we must have
j ≥ 3. By construction, we know that Ak+j defines a simple chain joining vk = vj+k to vj+k−1

and similarly the sequence Ak+1, · · · Ak+j−1 defines a simple chain joining these two vertices.
Now the first simple chain consists of one edge, while the second consists of at least two because
k + j − 1 ≥ k + 2 > k + 1, and thus we have constructed two simple chains joining these vertices.
Since we are assuming the graph is a tree, this is impossible, and therefore it follows that there
must be some vertex which lies on only one edge.

We shall also need the following companion result:

PROPOSITION 2. Suppose (X, E) is a tree and v0 is a vertex which lies on only one edge, say
E0. Let (X0, E0) be the subgraph given by the union of all edges except E0 (hence its vertices are
all the vertices of the original graph except v0). Then (X0, E0) is also a tree.

Proof. Suppose that u and w are vertices of the subgraph and A1, · · · , Ar is a simple chain
connecting them. We claim that none of the edges Ai can be equal to E0; if this is true then it will
follow that the subgraph will be a tree (see the final step of the argument).

As usual, label the vertices of the edges Ai such that u = a0, w = ar, and the vertices of Ai

are ai and ai−1. By hypothesis, Ai 6= Ai±1 for all i. Suppose that we have Aj = E0 for some j;
then either v0 = ai−1 or else v0 = ai. Let v1 be the other vertex of E0.
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CASE 1: Suppose that v0 = ai−1. Since a0 = u 6= v0, it follows that i > 0. Since E0 is the
only edge containing the vertex v0, it follows that Ai−1 = Ai, with v1 = ai−2 = ai. This contradicts
the definition of a simple chain, and hence we can conclude that v0 6= ai−1. CASE 2. Suppose
that v0 = ai. Since ar = w 6= v0, it follows that i < r. Since E0 is the only edge containing the
vertex v0, it follows that Ai+1 = Ai, with v1 = ai−1 = ai+1. This contradicts the definition of a
simple chain, and hence we can conclude that v0 6= ai. Combining these results, we can conclude
that E0 does not appear in the simple chain sequence A1, · · · , Ar, so that the latter is a simple
chain in (X0.E0. This simple chain is unique in the smaller complex by the uniqueness condition
on the larger complex, and therefore the smaller complex must also be a tree.

We are now ready to state one of the most important properties of trees:

THEOREM 3. If (T, E) is a tree and v is a vertex of this graph, then {v} is a strong deformation
retract of X.

Proof. This is trivial for graphs with one edge because they are homeomorphic to the unit
interval. Suppose now that we know the result for trees with at most n edges, and suppose that
(T, E) has n+ 1 edges.

By Lemma 84.2 we may write T = T0 ∪ A where A is an edge and T0 is a tree with n edges
such that A ∩ T0 is a single vertex w. Let y be the other vertex of A. The proof splits into cases
depending upon whether or not the vertex v of T is equal to y, w or some other vertex in T0.

We shall need the following two results on strong deformation retracts; in both cases the proofs
are elementary:

(1) Suppose X is a union of two closed subspaces A∪B, and let A∩B = C. If C is a strong
deformation retract of both A and B, then C is a strong deformation retract of X.

(2) Suppose X is a union of two closed subspaces A∪B, and let A∩B = C. If C is a strong
deformation retract of B, then A is a strong deformation retract of X.

Suppose first that the vertex is w. Then {w} is a strong deformation retract of both A and
T0, so by the first statement above it is a strong deformation retract of their union, which is T .

Now suppose that the vertex is y. Then the second statement above implies that A is a strong
deformation retract of T . Since {y} is a strong deformation retract of A, it follows that {y} is also
a strong deformation retract of T .

Finally, suppose that the vertex v lies in T0 but is not w. Another application of the second
statement implies that T0 is a strong deformation retract of T , and since {v} is a strong deformation
retract of T0, it follows that {v} is also a strong deformation retract of T .

COROLLARY 4. The fundamental group of a tree is trivial.

Definition. Let (X, E) be a graph. A subgraph M ⊂ X is a maximal tree in X if M is a tree
and there is no tree M ′ in X which properly contains M .

It is fairly straightforward to show that maximal trees exist. First of all, X must contain
subgraphs that are trees, for any subgraph consisting of a single edge is a tree. Because of this,
it follows that there must be some tree in X with a maximal number of edges, and this will be a
maximal tree.

For the sake of completeness, we state the following elementary result:
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LEMMA 5. If (X, E) is a graph with a maximal tree M and Y is a subgraph of X containing
M , then M is a maximal tree in Y .

Finally, we shall need the following important property of maximal trees:

PROPOSITION 6. If (X, E) is a connected graph and T ⊂ X is a maximal tree, then all the
vertices of (X, E) belong to T .

Proof. As usual, assume the conclusion is false; then there is some vertex v 6∈ T . By connectedness
there is an edge-path sequence joining v to some point in T , and among these sequences there is one
E1 , · · · , En of minimum length. Since we have an edge-path sequence we can denote the vertices
on the edges by v0, · · · , vn such that v = v0, vn ∈ T , and the edges of Ei are vi and vi−1. By the
minimality of this sequence we know that vi ∈ T if and only if i = n.

Let T1 = T ∪En. We claim that T1 is also a tree. The key point in verifying this will be the
following observation:

If an edge-path sequence in T1 contains En, then En is either the first edge or the last edge,
and vn−1 is either the initial vertex or the final vertex.

This is true because the vertex vn−1 lies on En but not on any edges in T (if it did, then vn−1 ∈ T
and by our assumptions this is not the case). If En appeared in the middle of the sequence, the
one of the two edges containing vn−1 would have to lie in T , and this would imply vn−1 ∈ T .

To prove that T1 is a tree, consider an arbitrary pair of vertices w and w′. If they both lie in
T , then there is a unique reduced edge-path in T joining them, and we claim that there is no other
reduced edge-path in T1 which joins them. Any such path would have to contain the edge En (the
only edge not in T ). Since a reduced edge-path containing En must start or end with En, such an
edge-path cannot join two points in T . — Now consider reduced edge-path sequences joining vn−1

to some vertex w in T . Since vn ∈ T , there is a unique edge-path sequence K1 , · · · ,Km joining vn

to w. If we insert En at the beginning of this sequence, we obtain a reduced edge-path sequence
joining vn−1 to w in T1. To see that this sequence is unique, note that every edge-path sequence
joining vn−1 to w must start with En because no other edge in T1 contains vn−1. If we remove En

from the sequence, we obtain a reduced edge-path sequence joining vn to w, and since En does not
appear in this sequence it must be an edge-path sequence in T . Therefore the sequence joining vn

to w must be the previously described edge-path sequence K1 , · · · ,Km, and it follows that there
is only one edge-path sequence in T1 joining vn−1 to w.

The preceding shows that T1 is a tree in X which properly contains T . Since T was assumed
to be a maximal tree, this yields a contradiction, so our hypothesis about a vertex not in T must
be false and hence T must contain all the vertices.

III.3 : Fundamental groups of graphs

(M, §84; H, §1.A))

In this section we shall show that the fundamental group of a connected graph (X, E) has a
very simple description depending only upon the numbers of vertices and edges in E .
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We already know that the fundamental group of a tree is trivial, and the crucial step in proving
the main result is to describe the fundamental group of a connected graph which is the union of
a maximal tree and a single edge. A complete graph on three vertices has this property, and its
fundamental group is infinite cyclic because such a graph is homeomorphic to S 1 (verify this), and
the first result is a generalization of this fact to all graphs which are unions of a tree and a single
edge.

PROPOSITION 1. Suppose that the connected graph (X, E) contains a maximal tree T such
that X is the union of T with a single edge E∗. Then X is homotopy equivalent to S1.

The file graphpix2.pdf in the course directory contains a drawing and a simplified discussion
of the main ideas in the proof.

Proof. Since T is a maximal tree, the vertices of E∗ lie in T . If a and b are these vertices, then
there is a reduced edge-path sequence E1, · · · , En joining a to b, and if we let Γ be the union of
the E − i’s and E∗, it follows that Γ must be homeomorphic to S1. By construction Γ determines
a subgraph of X. For the sake of uniformity, set v0 = a and vn = b.

We claim that Γ is a strong deformation retract of X. Let Y be the subgraph obtained by
removing the edges E∗ and Ei from E , and for each i let Yi be the component of vi. By our
assumptions it follows that Y and the subgraphs Yi are trees. It will suffice to prove that if i 6= j
then vj 6∈ Yi, for then we have Yi ∩ Γ = {vi} and we can repeatedly apply the criteria in the
previous argument to show that Γ is a strong deformation retract of X.

Suppose now that vj 6∈ Yi for some j 6= i. Then there is some reduced edge-path sequence
F1, · · · , Fm joining vi to vj in Yi. Since the vertices of the edges Fr contain at least one vj other
than vi, there is a first edge in the sequence Fs which contains such an edge, say vk. Of course,
none of the edges Fr lies in Γ. However, we also know that there is a reduced edge path sequence in
Γ∩T which joins vj to vk, and we can merge this with the edge-path sequence F1, · · · , Fs (whose
edges lie in T but not Γ) to obtain a reduced cycle in T . Since T is a tree, this is a contradiction,
and therefore we must have Yi ∩ Γ = {vi}. As noted before, this suffices to complete the proof.

The preceding special case is a key step in proving the following general result:

THEOREM 2. Let (X, E) be a connected graph, let T be a maximal tree in X, and let p be a
vertex of T . Then π1(X,x) is a free group on k generators, where k is the number of edges that
are in X but not in T .

Let T be a maximal tree in the connected graph X, and let F1, · · · , Fb denote the edges of
X which do not lie in T . Let W ⊂ X be the open set obtained by deleting exactly one non-vertex
point from each of the edges Fi, and let Uj = W ∪ Fj . It then follows that each Uj is an open
subset of X and if i 6= j then Ui ∩ Uj = W . Furthermore T is a strong deformation retract of
W and for each subset of indices i1, · · · , ik the set Fi1 ∪ Fik

is a strong deformation retract
of Ui1 ∪ Uik

. In particular, we know that the sets W and Ui are all arcwise connected. By the
preceding result we know that F1 and U1 are homotopy equivalent to S1, and we claim by induction
that the fundamental groups of F1 ∪ · · · ∪ Ft and U1 ∪ · · · ∪ Ut are free on t generators. For if
the result is true for t ≥ 1, then we have

⋃

i≤t+1

Ui =


⋃

i≤t

Ui


 ∪ Ut+1 , W =


⋃

i≤t

Ui


 ∩ Ut+1
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so that the Seifert-van Kampen Theorem implies that the fundamental group of U1 ∪ · · · ∪ Ut+1

is the free product of the fundamental groups of U1 ∪ · · · ∪ Ut and Ut+1. By induction the group
for the first space is free on t generators while the group for the second is infinite cyclic, and this
completes the proof of the inductive step.

The preceding results yield a few simple criteria for recognizing when a connected graph is a
tree.

THEOREM 3. If X is a connected graph, then the following are equivalent:

(i) X is a tree.

(ii) X is contractible.

(iii) X is simply connected.

Proof. We already know that the first condition implies the second and the second implies the
third, so it is only necessary to prove that (iii) implies (i). However, if T is a maximal tree in X
and T 6= X, then we know that the fundamental group of X is a free group on k generators, where
k > 0 is the number of edges which are in X but not in T . Therefore if X is simply connected we
must have T = X.

The Euler characteristic of a graph

If (X, E) is a connected graph, then the preceding discussion shows that the fundamental group
of X is a free group on a finite set of free generators. We would like to have a formula for the
number of generators which can be read off immediately from the graph structure and does not
require us to find an explicit maximal tree inside the graph.

Definition. The Euler characteristic of (X, E) is the integer χ(X, E) = v − e, where e is the
number of edges in the graph and v is the number of vertices.

If there is exactly one edge, then clearly v = 2, e = 1, and the Euler characteristic is equal to
1 = 2 − 1. The first indication of the Euler characteristic’s potential usefulness is an extension of
this to arbitrary trees.

PROPOSITION 4. If (T, E) is a tree, then χ(T, E) = 1.

Proof. Not surprisingly, this goes by induction on the number of edges. We already know the
formula if there is one edge. As before, if we know the result for trees with n edges and T has
n+ 1 edges we may write T = T0 ∪A, where T0 is a tree, A is a vertex, and their intersection is a
single point. For each subgraph Y let e(Y ) and v(Y ) denote the numbers of edges and vertices in
Y . Then we have e(T ) = e(T0) + 1, v(T ) = v(T0) + 1, and hence we also have

χ(T ) = v(T )− e(T ) = [v(T0) + 1]− [e(T0) + 1] = v(T0)− e(T0) = 1

which is the formula we wanted to verify.

THEOREM 5. If (X, E) is a connected graph, then the fundamental group of X is a free group
on 1− χ(X, E) generators.
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Note that if G is a finite group on n generators, then there are exactly 2n homomorphisms
from G to Z2 (there are that many ways to define a function from the set of generators to Z2,
and each such function extends uniquely to a group homomorphism). Therefore the number of free
generators does not depend upon the choice of a generating set; more precisely, if m and n are
positive integers such that G is free on sets of m and n generators, then m = n. — Similarly, a
group G cannot be simultaneously free on both a finite and an infinite set of generators, for the
number of homomorphisms into Z2 is finite if and only if the generating set is finite; finally, if α is
a transfinite cardinal number, then a free group on a set of generators with cardinality α also has
cardinality α (verify this), and therefore in all cases the cardinality of a set of free generators for a
free group is independent of the choice of generators.

Proof of Theorem 5. We adopt the notational conventions in the preceding argument. Let
T be a maximal tree in X, and suppose that there are k edges in X which are not in T , so that
the fundamental group is free on k generators. By construction we know that v(T ) = v(X) and
e(X) = e(T ) + k, and by the preceding result we know that the Euler characteristic of T is 1.
Therefore we have

χ(X, E) = v(X) − e(X) = v(T )− e(T )− k = 1− k

so that k = 1− χ(X, E) as required.

In the exercises we note that the theorem is also valid for the edge-path graphs as defined in
the files for this course.

COROLLARY 6. If two connected graphs X and X ′ are base point preservingly homotopy
equivalent as topological spaces, then they have the same Euler characteristics.

In particular, the corollary applies if X and X ′ are homeomorphic. For this reason we often
suppress the edge decomposition and simply use χ(X) when writing the Euler characteristic.

Proof. If X and X ′ are homotopy equivalent, then their fundamental groups are isomorphic, and
hence they are both free groups with the same numbers of generators. Since the Euler characteristics
can be expressed as functions of these numbers of generators, it follows that the Euler characteristics
of X and X ′ must be equal.

COROLLARY 7. A connected graph X is a tree if and only if χ(X) = 1.

Proof. We know that χ(X) = 1 if and only if X is simply connected.

REMARK. More generally, one has the following criteria for recognizing whether two connected
graphs X and Y are homotopy equivalent:

(1) The connected graphs X and Y are homotopy equivalent if and only if their fundamental
groups are isomorphic.

(2) The connected graphs X and Y are homotopy equivalent if and only if their Euler char-
acteristics are equal.

The results of this course show that the fundamental groups are isomorphic if and only if the
Euler characteristics are equal, so (2) will follow from (1). Proving the latter is not all that difficult,
but we shall not give the details here.
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III.4 : Finite coverings of graphs

(M, §§83, 85; H, §1.A)

As indicated at the beginning of this unit, we shall conclude our discussion of graphs with an
application to some mildly counter-intuitive results on finite index subgroups of finitely generated
free groups. Since each such group is the fundamental group of some graph X and finite index
subgroups of π1(X) should correspond to finite coverings of X, we begin with an observation about
finite covering spaces of graphs.

PROPOSITION 1. Let (X, E) be a connected finite graph, and suppose that p : W → X be
a connected finite covering. Then there is a finite graph complex structure E ′ on W such that p
maps each edge of E ′ homeomorphically to an edge of E .
Proof. Let k be the number of sheets in the covering space projection, so that each point in X has
exactly k preimages in W . If Eα is an edge in E and Fα = p−1[Eα], then the restriction pα of p to Fα

defines an k-sheeted covering space projection over Eα; the space Fα is not necessarily connected,
and in fact Fα is a finite disjoint union of connected covering spaces over X, with each such space
corresponding to a component of Fα. Since Eα is simply connected, pα must be a homeomorphism
on each component of Fα, and it follows that Fα must be a union of pairwise disjoint compact
subspaces Fα,j where 1 ≤ j ≤ k such that pα maps each subspace homeomorphically onto Eα.

To show that the subsets Fα,j determine a graph structure on W , we need to look at the
intersections

Fα,j ∩ Fβ,i

where (α, j) 6= (β, i). If α = β then these intersections are empty by the reasoning in the preceding
paragraph. If α 6= β, then the relations

p [Fα,j ∩ Fβ,i] ⊂ p [Fα,j ] ∩ p [Fβ,i] = Eα ∩ Eβ

imply that Fα,j ∩ Fβ,i is empty if Eα ∩ Eβ is empty, while if the latter is not empty then the
intersection is contained in the inverse image of the vertex common to Eα∩Eβ . Since the restriction
of p to each component of Fα is 1–1, it follows that Fα,j ∩ Fβ,i contains at most one point if α = β,
and if this happens then this point is a vertex of both Fα,j and Fβ,i, proving that we have a graph
structure on X. .

We can use this result to prove the following purely algebraic result on subgroups of finite
index:

PROPOSITION 2. Let F be a free group on k generators, for some positive integer k, and let
H be a subgroup of index n. Then H is a free group on nk − n+ 1 generators.

A standard result in algebra states that if M is a finitely generated free module on m generators
over a principal ideal domain D and N ⊂ M is a D-submodule, then N is free on n generators
for some n ≤ m. In contrast, the result above says that a free subgroup of a free group may have
more generators than the group containing it. After proving this result, we shall also describe an
example to show that a finitely generated free group also contains a non-finitely generated free
subgroup (which is not of finite index).

Proof. Let (X, E) be a connected graph whose fundamental group is free on k generators; one
method of constructing such a graph is to take edges Ai, Bi and Ci for 1 ≤ i ≤ k, where the
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edges of Ai are x, pi, and qi, the edges of Bi are x, ri, and si, and the edges of Bi are x, ui, and
vi (topologically, X is a union of k circles such that each pair intersect at x and nowhere else).
By the formula relating the number of generators for F and the Euler characteristic, we know
that k = 1 − χ(X), or equivalently χ(X) = 1 − k. Let Y be the connected covering space of X
corresponding to the subgroup H. Then Y is a graph, and the fundamental group of Y is H, so
that H is a free group.

We know that the number of free generators for H is given by 1−χ(Y ), so it is only necessary
to compute this Euler characteristic. Let e and v be the number of edges and vertices for (X, E),
so that n = 1− χ(X), where χ(X) = v − e. Since Y is an n-sheeted covering of X, if we take the
associated edge decomposition of Y (such that each edge of Y maps homeomorphically to an edge
of X) we see that the numbers of vertices and edges for Y are nv and ne respectively, so that

χ(Y ) = n · χ(X) .

Therefore the number of generators for the fundamental group of Y is given by

1− χ(Y ) = 1− n · χ(X) = 1− n(1− k) = nk − n+ 1

which is what we wanted to prove.

COROLLARY 3. If F is a free group on k generators for some k ≥ 2, then F contains free
subgroups on m generators for all m ≥ k.

QUESTION. Does this result extend to the case k = 1? Prove this or explain why it cannot
be true.

Proof. It suffices to prove this result when k = 2 since F automatically contains a free subgroup
with 2 generators (take a subset of some generating set for F ).

Let X be a graph whose fundamental group is free on 2 generators u and v, and let Yn be the
n-sheeted covering space whose fundamental group is the (free) subgroup generated by by u and vn

for some n ≥ 2. Then the fundamental group of Yn is isomorphic to a free group on n+1 generators.
It follows that for every positive integer m ≥ 3 there is some n such that π1(Yn) contains a free
group on m generators.

Example. The free group on two generators also contains a free subgroup with a countably
infinite set of generators (hence the same is also true for every free group on more than two
generators). Here is a sketch of the argument. Filling in the details is left to the reader as an
exercise:

Let X = S1 ∨ S1 with base point given by the common point of the two circles, and let u and
v be free generators of π1(X) which are represented by the two circles. Let K denote the kernel of
the homomorphism from π1(X) to Z which sends u to zero and v to a generator.

Let Y be the covering space of X whose fundamental group is isomorphic to K. It follows that
Y is homeomorphic to a copy of the real line with a circle attached at each point 2qπ where q runs
through all integers (verify this!). An explicit model for Y is the set of all points (x, y, z) ∈ R3 such
that either (x, y) = (1, 0) (in other words, the line with parametric equations (1, 0, t) for t ∈ R) or
x2 + y2 = 1 and z = 2qπ for some integer q. If we view X as the subset of R2 given by

{ x2 + y2 = 1} ∪ { (x− 2)2 + y2 = 1 }
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then the covering space projection corresponds to the map sending (x, y, z) to (x, y) on the first
piece and sending (1, 0, t) to (

2− cos t,− sin t
)

on the second.

Let Am ⊂ Y be the set of all points such that |z| ≤ m. Then Am consists of a closed line
segment with 2m+ 1 circles attached symmetrically with respect to the end points. It follows that
π1(Am) is a free group on 2m + 1 generators, and the inclusion of π1(Am) in π1(Am+1) is a 1–1
map sending the free generators of the first group to a subset of a set of free generators for the
second.

Since every compact subset of Y is contained in some Am, it follows that the fundamental
group of Y is an increasing limit of the fundamental groups of the subspaces Am. Since this limit
is a free group on a countably infinite set of generators, it follows that π1(Y ) must have the same
property.

III.∞ : Infinite graphs

(M, §§83–85; H, §1.B)

If we are given a connected graph (X, E) with a nontrivial (hence infinite) fundamental group,
then by Proposition 1.7 and Theorem I.3.1 we know that X has a simply connected covering space,
and the methods of Corollary I.1.2 show that the inverse image of an edge is a disjoint union of
edges and hence the universal simply connected covering space X̃ has a decomposition into subsets
homeomorphic to intervals. It is natural to think of this as an infinite graph complex, and results
from Munkres and Hatcher provide a mathematically precise setting for doing so. One particularly
significant application of infinite graphs is the following result (which was originally proved by
algebraic methods):

Munkres, Theorem 85.1, p. 514. If G is a free group and H ⊂ G is a subgroup, then H is
also free.

As noted at the end of the preceding section, if G has a finite set of free generators and is not
cyclic, then the number of generators for H can be any number between 1 and ℵ0 (the cardinal
number of the integers).

Other uses of infinite graphs are discussed in Section 1.B of Hatcher, particularly in the section
on graphs of groups. Such constructions are often extremely valuable sources of geometric insights
into a group’s algebraic structure. The Wikipedia articles

http://en.wikipedia.org/wiki/Geometric group theory

http://en.wikipedia.org/wiki/Group cohomology

contain more detailed additional information (and further links) concerning the ways in which
topology and group theory — particularly infinite group theory — have interacted with each other
in mathematical research during the past century.
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IV. Prelude to homology theory

This unit is intended as a bridge between the material on fundamental groups and covering
spaces in the first three units and the material on homology theory in the remaining units of
the course. The main link is an algebraic construction on the sets of vertices and edges of a
connected graph which is called the (algebraic) chain complex of the graph. We shall illustrate
how these chain groups relate to the Königsberg bridge problem, which is often regarded as
the question which led to the development of algebraic topology. The next step is extending the
notion of algebraic chains to higher dimensional objects which resemble graphs in the sense that
they are constructed from standard building blocks, which turn out to be homeomorphic to n-fold
products of the form [0, 1]n for some positive integer n, in a fairly systematic manner. Finally, we
shall consider 2-dimensional chains briefly and place the most basic algebraic properties of chain
complexes into an abstract setting; in fact, this abstract study evolved into a major topic in algebra
which goes by the name homological algebra, and there are a few comments about this in Section
IV.∞.

There is a well-written motivational discussion for the basic concepts of homology theory in
Chapter VI of the following book:

W. S. Massey. A Basic Course in Algebraic Topology , Graduate Texts in Mathematics
Vol. 127, Springer-Verlag, New York NY, 1991. ISBN: 0–387–97430–X.

This chapter is posted in the course directory as massey-chapter6.pdf; the information in this
chapter might make the reasons behind the formal constructions in the next few units easier to
understand.

IV.1 : Algebraic chains for graphs

(H, § 1.A)

Let (X, E) be a finite graph complex, and let ω denote a linear ordering of the vertices (since
the set of vertices is finite, the existence of such orderings is immediate); we shall often denote the
combined graph structure and vertex ordering by symbolism such as Eω. The simplicial chain

groups Cq(X, Eω) are defined such that

C1(X, Eω) is free abelian on the edges in E ,
C0(X, Eω) is free abelian on the vertices in E ,
Cq(X, Eω) is trivial if q 6= 0, 1. in E ,

The associated graph chain complex C∗(X, Eω ; d) consists of these simplicial chain groups to-
gether with boundary homomorphisms

dq : Cq(X, Eω) −→ Cq−1(X, Eω)

such that dq = 0 unless q = 1 and d1 on a free generator corresponding to an edge E is given as
follows: One of the two vertices of E precedes the other, and if ∂−E precedes ∂+E let

d1(E) = ∂+E − ∂−E .
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Since the chain groups are free abelian, this map of free generators extends to a homomorphism of
chain groups.

Chains are often visualized as unions of simple edge paths in the graph, with ±E corresponding
to an oriented path starting at ∂−E and ending at ∂+E.

The use of the word “chain” can be motivated geometrically as follows: Let E1 , · · · , En be an
edge-path sequence such that the vertices of Ei are vi−1 and vi. Then we can associate a 1-chain
to this path by the formula

c(E) =
∑

i

εi Ei

where εi ∈ {± 1} is defined to be +1 if vi−1 precedes vi and −1 if vi precedes vi−1. The signs have
been chosen so that d1(c(E)) = vn−v0. If the edge path is a cycle in the sense that the initial and
final points agree, it follows that d1 sends that chain to 0, and conversely if d1 sends the chain for an
edge path to zero then the edge path is a cycle. More generally, we define the 1-cycles to be those
1-dimensional chains (or 1-chains) c such that d1(c) = 0. Similarly, we say that a 0-dimensional
chain b is a boundary if b = d1(c) for some 1-chain c. The homology groups Hq(X, Eω) are then
given as follows:

H1(X, Eω) is isomorphic to the kernel of d1.

H0(X, Eω) is isomorphic to the quotient of C0(X, Eω) by the image of d1.

We then have the following results relating the chain groups to the topological structure of the
graph:

THEOREM 1. Let (X, Eω ; d) be a graph with a linear order of its vertices.

(i) If the connected components of X are given by (Xi, Ei), then the chain groups C∗(X, Eω)
and homology groups H∗(X, Eω) are isomorphic to direct sums of the corresponding groups for
(Xi, Eω

i ).

(ii) If X is connected then H0(X, Eω) ∼= Z and H1(X, Eω) is free abelian on 1 − χ(X, E)
generators, where χ(X, E) is the Euler characteristic given by number of vertices minus the number
of edges.

This result implies that the structure of the homology groups is completely determined by the
homotopy type of the underlying space X.

Proof. We begin with the first part. Since a graph is locally arcwise connected and compact,
we know that it has finitely many components, and they are the same as the arc components.
Therefore every edge of the graph is contained in a unique component, and the two vertices of the
graph is also contained in that component. This means that the boundary map d1 for the graph
can be decomposed as a direct sum of boundary maps for the individual components

(d1)i : Cq(Xi, Eω
i ) −→ C0(Xi, Eω

i )

and it follows that one has a similar decomposition for the homology groups of (X, E ω).

Assume now that X is connected. The first step in proving (ii) is to prove the assertion about
H0. Define a map

ε : C0(X, Eω
i ) −→ Z

(called an augmentation homomorphism) such that its value at each vertex gnerator is equal to +1.
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CLAIM 1. The kernel of ε is equal to the image of d1.

To see that the kernel of ε contains the image of d1 it suffices to show that ε od1 = 0, and
since chain groups are free abelian it suffices to check this for a free generator corresponding to an
arbitrary edge E. Since

ε od1(E) = ε∂+(E) − ε∂−(E) = 1− 1 = 0 .

Suppose now that the chain a = Σi ni vi lies in the kernel of di, so that Σi ni = 0 and

n1 = −
∑

i>1

ni .

Since X is connected, for each i > 1 there is an edge path starting at v1 and ending at vi, and by
the discussion above we have 1-chains ci such that d1(ci) = vi − v0. Therefore we have

∑

i>1

ni ci =
∑

i>1

ni (vi − v0) =

∑

i>1

ni vi −
(
∑

i>1

ni

)
v0

and since Σi≥1 ni = 0 the last expression is equal to a, so that a lies in the image of d1.

The preceding discussion implies that H0 is infinite cyclic and generated by the class of v,
where the latter is an arbitrary vertex of the graph, and the image of d1 is the subgroup generated
by w − v∗, where v∗ is a fixed vertex and w runs through the remaining vertices. This means
that the image of d1 is a free abelian subgroup on V − 1 generators, where V denotes the set of
vertices in the graph. Therefore d1 defines a surjective homomorphism from C1, which is free on
E generators, to a free abelian group on V − 1 generators. The conclusion about the structure of
H1 will then be a consequence of the following algebraic result:

CLAIM 2. If A and B are free abelian groups on α and β generators respectively and ϕ : A→ B
is surjective, then the kernel of ϕ is free abelian on β − α generators.

This is true because A is isomorphic to the direct sum of B and the kernel of ϕ.

As noted above, this completes the proof of Theorem 1.

Other coefficients. If D is an arbitrary commutative ring with unit, then one can define
chains modules C∗(X, Eω ; D) with coefficients in D if we replace the free abelian groups with the
corresponding free modules over D; the boundary homomorphism can be defined exactly as before,
and it will be a D-module homomorphism (hence the homology groups will also be D-modules).

The Königsberg Bridge Problem

One particular graph that is historically noteworthy is the Königsberg Bridge Graph, in which
the vertices correspond to four land masses in the city of Königsberg (now Kaliningrad, Russia)
and the 1-cells (or edges) correspond to the seven bridges which joined pairs of land masses in the
18th century (see koenigsberg.pdf for drawings). This configuration can be modeled by a graph
with vertices w, x, y and z representing the land masses and edges representing one bridge each
from w to x, y and z along with two bridges joining y to each of x and z. This configuation is
homotopic to a simplicial comples if we add extra vertices u1 and u2 on each of the bridges joining
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y to x and v1 and v2 on each of the bridges joining y to z. This will be our graph (P,K), and
we shall let C∗ denote the ordered chain complex with Z2 coefficients which associated to some
ordering of the vertices; since 1 = −1 in Z2, one obtains the same boundary map for every ordering
of the vertices.

The problem is to determine whether there is a path on this complex in which each bridge is
crossed exactly once, and the first step is to formulate this in terms of the chain complex C∗. What
we want is a 1-chain

∑
E
θ(E)E, where the sum runs over all free generators (or basis elements)

of C1 and θE is nonzero for all E, such that the boundary of this 1-chain has the form p + q for
two vertices in C0 (the case p = q is allowed). The problem is then to determine if such a 1-chain
exists.

Euler’s crucial insight into the problem can be stated algebraically as follows:

PROPOSITION 2. Let (X, E) be a connected graph, let γ ∈ C1(X, E ; Z2) be the 1-chain
∑

E
E,

where the sum runs over all free generators (or basis elements) of C1, and write d(γ) =
∑

v
n(v)v

for suitable mod 2 integers n(v), where the sum runs over all vertices of (P,K). Then n(v) is the
mod 2 reduction the number m(v) of 1-simplices E that have v as one of their endpoints.

Proof. An integer representing nv is equal to the number (mod 2) of edges containing v as a
vertex.

COROLLARY 3. In the preceding setting, if there is a 1-chain γ such that d(γ) = p− q where
p = q is possible, then mv must be even if v 6= p,q.

Application to the Königsberg Bridge Problem. The impossibility of finding a suitable
1-chain for our Königsberg bridge network now follows by observing that m = 3 for w, x and z,
while m = 5 for y. In particular, if γ is a chain as in the statement of the theorem, then in d(γ)
the coefficients of all four of these vertices must be nonzero.

NOTE. We are not necessarily claiming that one needs to introduce chain groups in order to
solve this problem (in fact, when Euler first solved the problem he did not view it as question in
mathematics although he later modified his opinion). The purpose here is to illustrate how the use
of chain complexes can provide a framework for finding solutions to this and similar questions.

It is left as an exercise for the reader to show that the homology groups for the Königsberg
bridge graph are given by H1

∼= Z4 and H0
∼= Z.

IV.2 : Triangulations and simplicial complexes

(H, §2.1)

We have seen that algebraic techniques work are fairly effective for studying graphs. These
are 1-dimensional objects which are built from simple, well understood pieces which are either
points or closed intervals. One natural question is whether we can develop similar techniques for
studying higher dimensional spaces which are built from relatively simple pieces like points and
finite cartesian products of a closed interval with itself. Since the n-dimensional sphere Sn is
simply connected if n ≥ 2, it is clear that we need something more than just the fundamental
group to analyze questions in higher dimensions. Algebraic constructions known as homology

theories turn out to be extremely useful generalizations of the fundamental groups of spaces and
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the previously defined homology groups of graphs, particularly for spaces which have decompositions
into nice pieces. The goal of this section is to describe the sorts of decompositions that are needed
and to discuss examples of spaces which have such decompositions.

One starting point is to consider subsets of the plane that are nicely behaved and are geomet-
rically 2-dimensional. The simplest examples are closed polygonal regions which are bounded by
a simple closed curve which is a broken line. Such regions include solid triangular regions, solid
rectangular regions, and many other shapes that can be fairly irregular (see the first drawing in
triangulations1.pdf). Suppose that we are given a closed polygonal region and we want to com-
pute its area. If the region has an irregular shape, it is unlikely that we can use a closed formula
to compute the area directly, but usually we can compute the area very efficiently by decomposing
such a region into a finite union of nonoverlapping triangular regions for which there are good area
formulas and then adding the areas of the triangular regions to obtain the area of the original region
(see triangulations1.pdf again for examples of triangulating irregular regions). This suggests
that our standard building blocks for 2-dimensional objects should be solid triangular regions in the
plane, and they should fit together such that each pair meets in either a common edge or a common
vertex. Further study suggests that every surface is a union of subspaces which are homeomorphic
to triangles such that the intersection of any two corresponds to a common vertex or a common
edge (see triangulations2.pdf).

Some additional thought is needed to decide on good examples of 3-dimensional building blocks.
We would like to be able to use such blocks to build familiar sorts of figures like pyramids, prisms
and rectangular solids (note that the latter are special cases of prisms); pictures of a few typical
examples are on pages 4 and 5 of triangulations1.pdf. Since the base of a pyramid is a closed
polygonal region and such regions can be decomposed into triangles, it follows that every pyramid
has a nice decomposition into tetrahedra, which are pyramids with triangular bases (see the last
two pages of triangulations1.pdf. Similarly, if we have a prism with a polygonal base, the
decomposability of the latter into triangular regions means we only need to have decent building
blocks for prisms with triangular bases. Fortunately, it turns out that a triangular prism can be
decomposed into a union of triangular pyramids such that each pair intersect in a common face,
edge or vertex (or maybe the empty set). The last page of triangulations3.pdf and the file
prism-dissection.pdf indicate how this is done, and in the next section we shall describe this
decomposition explicitly by means of linear equations and inequalities. The conclusion is that we
can view tetrahedra as the fundamental building blocks for a large class 3-dimensional objects
which arise in elementary(?) solid geometry.

In higher dimensions the appropriate building blocks will be analogs of triangular and tetra-
hedral regions. The n-dimensional analog is called an n-simplex; for n = 1, 2, 3 an n-simplex is
simply a closed line segment, triangular region, or tetrahedral region respectively. Before proceed-
ing further, we need to define the notion of simplex precisely, and this requires some background
material on linear algebra and geometry.

Barycentric coordinates

To expedite the discussion, we begin with some online references for the notion of barycentric
coordinates;

en.wikipedia.org/wiki/Barycentric coordinate system(mathematics

mathworld.wolfram.com/BarycentricCoordinates.html
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A more leisurely and detailed discussion of barycentric coordinates, and more generally the use
of linear algebra to study geometric problems, is contained in Section I.4 of the following online
document:

http://math.ucr.edu/∼res/math133/geometrynotes1.pdf
The file math133exercises1.pdf in the same directory has further material on these topics,

and pages 13–30 of

http://math.ucr.edu/∼res/progeom/pgnotes02.pdf
go further into the geometric uses of barycentric coordinates. Another standard reference is Chapter
I of the following book:

J. F. P. Hudson. Piecewise Linear Topology . W. A. Benjamin, New York , 1969.
(Online: http://www.maths.ed.ac.uk/∼aar/surgery/hudson.pdf)

An extremely detailed study of the topics in this section appears in the following online book:

http://www.cis.penn.edu/∼jean/gbooks/convexpoly.html
Finally, Eilenberg and Steenrod also covers the portions this material needed for algebraic and

geometric topology in greater detail.

Affine independence and barycentric coordinates. The crucial algebraic information is contained
in the following result.

PROPOSITION 1. Suppose that the ordered set of vectors v0, · · · ,vn lie in some vector space
V . Then the vectors v1 − v0, · · · ,vn − vn are linearly independent if and only if every vector
x ∈ V has at most one expansion of the form t0v0 + · · · + tnvn such that t0 + · · · + tn = 1.

A finite ordered set of vectors satisfying either (hence both) conditions is said to be affinely
independent. Note that since the second condition does not depend upon the choice of ordering, a
set of vectors is affinely independent if and only if for some arbitrary j the vectors vi − vj (where
i 6= j) is linearly independent. A linear combination in which the coefficients add up to 1 is called
an affine combination.

Sketch of proof. To show the first statement implies the second, use the fact that x − v0

has at most one expansion as a linear combination of v1 − v0, · · · ,vn − vn. To prove the
reverse implication, show that if x − v0 has more than one expansion as a linear combination of
v1−v0, · · · ,vn−vn, then x has more than one expansion as an affine combination of v0, · · · ,vn.

COROLLARY 2. If S = {v0, · · · ,vn } is affinely independent, then every nonempty subset of
S is affinely independent.

This follows immediately from the uniqueness of expansions of vectors as affine combinations
of vectors in S.

The coefficients ti are called barycentric coordinates. If we put physical weights of ti
units at the respective vertices vi, then the center of gravity for the system will be at the point
t0v0 + · · · + tnvn. If, say, n = 2, then this center of gravity will be inside the triangle with the
given three vertices if and only if each ti is positive, and it will be on the triangle defined by these
vertices if and only if each ti is nonnegative and at least one is equal to zero. A discussion of this
physical interpretation in the 2-dimensional case appears in the file centroids.pdf. We should
note that the discussion in this online reference can be extended to arbitrary (finite) dimensions.
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More generally, if v0, · · · ,vn are affinely independent then the n-simplex with vertices
v0, · · · ,vn is the set of all points expressible as affine combinations such that each coefficient is
nonnegative (i.e., convex combinations). For the record, we note that the standard plural form
of simplex is simplices.

Frequently the n-simplex described above will be denoted by v0 · · · vn. Note that if n = 0,
then a 0-simplex consists of a single point, while a 1-simplex is a closed line segment, a 2-simplex is
given by a triangle and the points that lie “inside” the triangle (also called a solid triangular region),
and a 3-simplex is given by a pyramid with a triangular base (i.e., a tetrahedron) together with
the points inside this pyramid (also called a solid tetrahedral region). Illustrations of 3-simplices
are given in the file three-simplex.pdf.

The following definition will also play an important role in our discussions.

Definition. If v0, · · · ,vn form the vertices of a simplex v0 · · · vn, then the faces of this
simples are the simplices whose vertices are given by proper subsets of {v0, · · · ,vn }; note that
such proper subsets are affinely independent by Corollary 2. If a proper subset T ⊂ S has k + 1
elements, then we shall say that the simplex ∆(T ) whose vertices are given by T is a k-face of the
original n-simplex, which in this notation is equal to ∆(S).

Definition. The standard n-simplex ∆n is the set of all points (t0, · · · , tn) ∈ Rn+1 such that
tj ≥ 0 for all j and

∑
j tj = 1. Note that the set of unit vectors { e0, · · · , en } is affinely

independent because the set { e1 − e0, · · · , en+1 − e0 } is linearly independent.

With the concept of an n-simplex at our disposal, we can define a suitable notion of polyhedron
with arbitrary dimension.

Polyhedra and simplicial complexes

A subset P ⊂ Rm is a polyhedron if

(i) P is a finite union of simplices A1, · · · , Aq,

(ii) For each pair of indices i 6= j, the intersection Ai ∩Aj is a common face.

The simplices A1, · · · , Aq are said to form a simplicial decomposition of P , and if K is the
collection of simplices given by the Aj and all their faces, then the ordered pair (P,K) is called a
(finite) simplicial complex.

If X is an arbitrary topological space, then a (finite) triangulation of X consists of a simplicial
complex (P,K) and a homeomorphism t : P → X.

Numerous drawings of 2-dimensional examples appear in the file triangulations3.pdf. In
these notes we shall concentrate on algebraic descriptions of basic examples.

ONE OF THE SIMPLEST EXAMPLES. Consider the solid rectangle in the plane given by [a, b]×[c, d],
where a < b and c < d. Everyday geometrical experience shows this can be split into two 2-simplices
along a diagonal, and in fact it is the union of two 2-simplices, one with vertices (a, c), (a, d) and
(b, d), and the other with vertices (a, c), (b, c) and (b, d). A point (x, y) which lies in the solid
rectangle will be in the first simplex if and only if

(y − c)(b− a) ≤ (d− c)(x− a)

and this point will be in the second simplex if and only if

(y − c)(b− a) ≥ (d− c)(x− a)
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Generalizations of this example will play an important role in the standard approach to algebraic
topology.

If (P,K) is a simplicial complex, then a subset L ⊂ K is said to be a subcomplex if σ ∈ L

implies that every face of σ also lies in L. The union of the simplices in L is a closed subspace of
P which is denoted by |L|. With this notation we have P = |K|.
LINEAR GRAPHS. The graphs of the previous unit are simple but important examples of 1-
dimensional simplicial complexes; the only difference between the two concepts is that the latter
may include some connected components which consist only of isolated vertices. One way of viewing
this section and the next is to think of them as laying the foundations for effective study of similar
objects in higher dimensions. As noted in Unit III, the study of such connected 1-dimensional
complexes is the objective of graph theory , and the latter is significant for both its theory and
applications; further study of this is well beyond the scope of the present course, but here are some
written and electronic references:

J. A. Bondy and U. S. R. Murty. Graph Theory: An Advanced Course. Springer-
Verlag, New York-etc., 2008. ISBN: 1-846-28969-6.

G. Chartrand. Introductory Graph Theory [UNABRIDGED]. Dover Publications,
New York, 1984. ISBN: 0-486-24775-9.

http://en.wikipedia.org/wiki/Graph theory

http://www.utm.edu/departments/math/graph/

http://www.math.fau.edu/locke/GRAPHTHE.HTM

http://www.math.uni-hamburg.de/home/diestel/books/[continue]

graph.theory/GraphTheoryIII.counted.pdf

SIMPLICIAL COMPLEXES AND ∆-COMPLEXES. Our definition of simplicial complex is more
restrictive than Hatcher’s definition; this is explained on page 107 of Hatcher (see the third para-
graph following Example 2.5). Each concept has its advantages and disadvantages. However, terms
like ∆-complex or ∆-set are often also used for other mathematical constructions, and one should
not assume that the meanings in other publications are “obviously” equivalent to the meaning in
Hatcher.

Decompositions of prisms

The rectangular example has the following important generalization:

PROPOSITION 3. Suppose that A ⊂ Rm is a simplex with vertices v0, · · · ,vn. Then
A× [0, 1] ⊂ Rm+1 has a simplicial decomposition with exactly n+ 1 simplices of dimension n+ 1.

Proof. For each i between 0 and n let xi = (vi, 0) and yi = (vi, 1). We claim that the vectors

x0, · · · ,xi,yi · · · ,yn

are affinely independent and the corresponding simplices

x0 · · · xiyi · · · yn

(where 0 ≤ i ≤ n) form a simplicial decomposition of A× [0, 1].
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An illustration for the case n = 2 is given in Figure 12 of triangulations3.pdf.

To prove affine independence, take a fixed value of i and suppose we have

∑

j<i

tj xj + axi + byi +
∑

j>i

tj yj =

∑

j<i

t′j xj + a′ xi + b′ yi +
∑

j>i

t′j yj

where the coefficients in each expression add up to 1; the summation will be taken to be zero if the
limits reduce to j < 0 or j > n. If we view Rm+1 as Rm × R and project down to Rm we obtain
the equation

∑

j<i

tj vj + (a+ b)xi +
∑

j>i

tj vj =
∑

j<i

t′j vj + (a′ + b′)vi +
∑

j>i

t′j vj

and by the affine independence of the vectors vk it follows that tj = t′j if j 6= i and also that
a + b = a′ + b′. On the other hand, if we project down to the second coordinate (the copy of R),
then we obtain

b +
∑

j>i

tj = b′ +
∑

j>i

t′j

and since tj = t′j for all j it follows that b = b′. Finally, since the sum of all the coefficients is
equal to 1, the preceding observations imply that 1− a = 1− a′, and therefore we also have a = a′.
Therefore the vectors

x0, · · · ,xi,yi · · · ,yn

are affinely independent.

We shall next check that every point (z, u) ∈ A× [0, 1] lies in one of the simplices

x0 · · · xiyi · · · yn

listed above. Write z =
∑

j tj vj where tj ≥ 0 for all j and
∑

tj = 1. It follows that u ≤ 1 =∑
j≥0 tj ; let i ≤ n be the largest nonnegative integer such that u ≤ ∑j≥i tj . We claim that (z, u)

lies in the simplex x0 · · · xiyi · · · yn. Let b =
∑

j≥i (tj − u), and let a = u−
(∑

j>i tj

)
= ti−b.

Then we have a, b ≥ 0, and

(z, u) =
∑

j<i

tj xj + axi + byi +
∑

j>i

tj yj

where all the coefficients are nonnegative and add up to 1.

To conclude the proof, we need to show that the intersection of two simplices as above is a
common face. Suppose that k < i and

(z, u) ∈
(
x0 · · · xiyi · · · yn

)
∩
(
x0 · · · xkyk · · · yn

)
.

Then we must have

∑

j≤i

pj xj +
∑

j≥i

qj yj =
∑

j≤k

p′j xj +
∑

j≥k

q′j yj
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where all the coefficients are nonnegative and the coefficients on each side of the equation add up to
1. If we project down to Rm we obtain pj +qj = p′j +q′j for all j (by convention, we take a coefficient
to be zero if it does not lie in the corresponding summation as above). It follows immediately that
pj = p′j if j < k, while pj = q′j if k < j < i and qj = q′j if j > i. Furthermore, if we project down
to the last coordinate we see that

u =
∑

j≥i

qj =
∑

j≥k

q′k .

Since qj = q′j if j > i, it follows that

qi =
∑

k≤j≤i

q′j

and since all the coefficients are nonnegative, it follows that qi ≥ q′i. On the other hand, we also
have q′i = p′i + q′i = pi + qi, and hence we conclude that qi = q′i and pi = 0. Applying the first of
these, we see that

0 =
∑

k≤j<i

q′j

and hence the nonnegativity of the coefficients implies that q ′j = 0 for all j such that k ≤ j < i.
We also know that p′j = 0 for j > k, and therefore it follows that p′j + q′j = 0 when k < j < i The
equations pj + qj = p′j + q′j and the nonnegativity of all terms now imply that pj = qj = 0 when
k < j < i.

The conclusions of the preceding paragraph imply that the point (z, u) actually lies on the
simplex

x0 · · · xkyi · · · yn

and since the latter is a common face of x0 · · · xiyi · · · yn and x0 · · · xkyk · · · yn it follows that
the (n+ 1)-simplices

x0 · · · xiyi · · · yn

(where 0 ≤ i ≤ n) form a simplicial decomposition of A× [0, 1].

COROLLARY 4. If P ⊂ Rm is a polyhedron, then A× [0, 1] ⊂ Rm+1 is also a polyhedron.

Before discussing the proof of this we note one important special case.

COROLLARY 5. For each positive integer m, the hypercube [0, 1]m ⊂ Rm is a polyhedron.

Proof of Corollary 5 from Corollary 4. If m = 1 this follows because the unit interval is a
1-simplex; by Corollary 4, if the result is true for m = k then it is also true for m = k+1. Therefore
the result is true for all m by induction.

Proof of Corollary 4. Let K be a simplicial decomposition for P , and let K∗ be obtained from
K by including all the faces of simplices in K. Choose a linear ordering of the vertices in K∗ (note
that there are only finitely many). For each vertex v of K∗, as before let x = (v, 0) and y = (v, 1).
Then P × [0, 1] is the union of all simplices of the form

x0 · · · xiyi · · · yn

where vi < vi+1 with respect to the given linear ordering of the vertices in K∗, and furthermore

the vertices vi are the vertices of a simplex in K∗. The set P × [0, 1] is the union of these simplices
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by Proposition 3 and the fact that P is the union of the simplices v0 · · · vn. The fact that these
simplices form a simplicial decomposition will follow from the construction and the next result.

LEMMA 6. Suppose that we have two polyhedra P1 and P2 in Rq , and there exist simplicial
decompositions K1 and K2 such that the following hold:

(i) Both K1 and K2 are closed under taking faces of simplices.

(ii) The set L1 of all simplices in K1 contained in P1 ∩ P2 equals the set L2 of all simplices in
K2, and this collection determines a simplicial decomposition of P1 ∩ P2.

Then K1 ∪K2 determines a simplicial decomposition of P1 ∪ P2.

The hypothesis clearly applies to the construction in Proposition 3, so Corollary 4 indeed
follows once we prove Lemma 6.

Proof of Lemma 6. It follows immediately that P1∪P2 is the union of the points of the simplices
in K1 ∪K2. Suppose now that we are given an intersection of two simplices in the latter. This
intersection will be a common face if both simplices lie in either K1 or K2, so the only remaining
cases are those where one simplex α lies in K1 and the other simplex β lies in K2.

We know that α ∩ β is convex. Furthermore, by the hypotheses we know that α ∩ β must be
a union of simplices that are faces of both α and β. Therefore it follows that every point in α ∩ β
is a convex combination of the vertices which lie in α ∩ β, and consequently α ∩ β is the common
face determined by all vertices which lie in α ∩ β.

GENERALIZATIONS — CONVEX LINEAR CELLS. [Also known as CONVEX POLYTOPES] These
are closed bounded subsets of some Rn defined by a finite number of linear equations or inequalities.
Note that sets defined by finite systems of this type are automatically convex. Prisms, simplices
and cubes are obvious examples, but of course there are also many others, and there are numerous
illustrations of more complicated examples in the file convex-polytopes.pdf.

For every such object, there is a finite set E of extreme points such that the cell is the set of all
convex combinations of the extreme points; in other words, for each x in the cell and each extreme
point e there are scalars te such that te ≥ 0,

∑
e
te = 1, and x =

∑
e
te e. Visually these extreme

points correspond to an informal notion of vertices for the examples of convex-polytopes.pdf,
and in fact a basic theorem about convex linear cells states that every example has a simplicial
decomposition for which E is the set of vertices. Proofs of this statement appear in [MunkresEDT]
and the book by Hudson; we shall discuss some additional facts about such objects later in these
notes.

The file prismatoids.pdf illustrates how simplicial decompositions of convex linear cells can
be used to study a somewhat nontrivial problem in classical solid geometry which appeared in
standard textbooks on that subject.

A few other easily stated but challenging problems on convex polytopes in R3 are contained
in the files wswGeometrytest∗.pdf where ∗ = 1, 2, or 3 (the last two contain files with links in the
first one), and solutions to these exercises using vector geometry are given in the companion file
wswvectorproofs.pdf.

Finally, we note the following important fact:

Homeomorphism property of convex bodies. Let P be a convex linear cell in Rn whose
interior is nonempty. Then P is homeomorphic to the disk Dn such that the (point-set) boundary
of P corresponds to Sn−1.

51



In particular, it follows that all such subspaces are homeomorphic to the hypercube [0, 1]n and
to the standard simplex in Rn whose vertices are the zero vector and the n standard unit vectors.

A convex linear cell in Rn is said to be a convex body if it has a nonempty interior. The
basic idea behind the proof of the homeomorphism property for convex bodies (which is describable
as radial projection from an interior point) is fairly easy to grasp, but writing out all the details is
a bit messy. Further information is given in the files convexbodies.pdf and convexbodies2.pdf.

DEFAULT HYPOTHESIS FOR SIMPLICIAL COMPLEXES. Unless specifically indicated otherwise,
we shall assume that the set of simplices in a simplicial decomposition K is closed under taking
faces. In order to justify this, we need to know that if K∗ is obtained from K by adding all the
faces of simplices in the latter, then the intersection of two simplices in K∗ is a (possibly empty)
common face. — To see this, suppose that α and β are simplices in K∗, where α and β are faces
of the simplices α′ and β′ in K. If x ∈ α ∩ β, then x is a convex combination of vertices in α′ ∩ β′,
and in fact these vertices must lie in both α and β. Since α ∩ β is convex, it follows that α ∩ β
must be the simplex whose vertices lie in α and in β.

IV.3 : Chain complexes and exact sequences

(H, §§2.1–2.2)

This section has two parts, the first of which is mainly geometric and the second of which is
entirely algebraic. The starting point to find a generalization of the chain complex for a graph which
works for 2-dimensional simplicial complexes; there should be groups of k-dimensional chains for
k = 0, 1, 2 with boundary maps from k-dimensional chains to (k − 1)-dimensional chains. If k = 0
or 1 then we can define everything exactly as in the case of graphs, and 2-dimensional chains will
be integral linear combinations of the 2-simplices in the simplicial decomposition associated to the
simplicial complex. Defining the boundary may be slightly less obvious, but it has a straightforward
geometrical motivation; potential mathematical uses of 2-dimensional chains may be less obvious,
so we shall indicate how they can be applied to proving versions of Green’s Theorem which apply to
very general sorts of closed regions in the plane (as opposed to the sorts of regions for which proofs
are given in most of the usual textbooks for multivariable calculus). — In the second part of this
section, we shall generalize some important properties of chain complexes for 1- and 2-dimensioanl
simplicial complexes in a purely algebraic fashion and derive a few elementary consequences of the
abstract definitions.

The chain complex of a 2-dimensional simplicial complex

Let (P,K) be a dimensional simplicial complex of dimension ≤ 2. As in the case of graphs, the
first step is to choose a partial ordering ω of the vertices. We shall use the usual notation v < w to
indicate that one vertex precedes another. For each integer k = 0, 1, 2 the k-dimensional ordered
simplicial chain group of (P,K), written Ck(P,Kω) is a free abelian group on all objects v0 · · · vk,
where v0 < · · · < vk and v0, · · · ,vk are the vertices of a k-simplex in K. By construction, it
follows that Ck(P,Kω) = 0 if k < 0 or k > dimK. The boundary homomorphism

dk : Ck(P,Kω) −→ Ck−1(P,K
ω)
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is defined on free generators by the following formulas:

d1(v0v1) = v1 − v0 , d2(v0v1v2) = v0v1 + v1v2 − v0v2

The first boundary formula is generalizes the previous one for graphs, while the second is the
algebraic chain for the edge path in the faces of the simplex v0v1v2 going first from v0 to v1 then
from v1 to v2, and finally from v2 to v0.

One immediate consequence of the definitions is that d1
od0 is the zero homomorphism, so that

the kernel of d1 contains the image of d2; if we define dk = 0 for k 6= 0, 1 (which is the only possible
choice since Ck = 0 for k 6= 0, 1), then we obtain an identity of the form dk

odk+1 for all integers k
and a similar sequence of inclusions

Image(dk+1) ⊂ Kernel(dk) .

We then define the k-dimensional homology group

Hk(P,Kω)

to be the chain group subquotients

Kernel(dk)/Image(dk+1) .

In analogy with simplicial chains on graphs, elements of the kernel of dk are called cycles and
elements of the image of dk+1 are called boundaries. Note that all 0-dimensional chains are
cycles, and the only boundary chain in the top dimension is the zero chain, so that the H0 is just
the quotient C0/Image(d1) and the top dimensional homology is just the subgroup of cycles.

We know that the union of the edges and vertices in a simplicial complex is a graph, and the
simplicial complex is connected if and only if the this subcomplex is connected (note that every
2-simplex lies in the same component as each of its edges). By construction, the chain the groups
of the simplicial complex and the edge-vertex subcomplex are the same in dimensions 0 and 1, so
it follows immediately that if the underlying space P is connected then H0(P,K

ω) is infinite cyclic
and the class of an arbitrary vertex is a generator. — A generalized version of these observations
is one of the problems in exercises03-2012.pdf.

Another immediate consequence of the definitions is that if a simplicial complex (P,K) of
dimension ≤ 2 is written as a disjoint union of its components (Pj ,Kj), then one has corresponding
splittings

Ck(P,Kω) ∼= ⊕jCk(P,Kω
j ) , Hk(P,Kω) ∼= ⊕jHk(P,Kω

j ) .

Once again, there is a generalized version of this in exercises03-2012.pdf. If we combine this
algebraic splitting theorem with the preceding paragraph, we conclude that the homology group
H0(P,K

ω) is a free abelian group on the set of components (equivalently, arc components) of P .

Examples. 1. Graph theory gives us many examples of 1-dimensional simplicial complexes
with nontrivial 1-dimensional homology, and similar 2-dimensional examples can be constructed by
a simple trick; namely, for each edge E in a graph attach a 2-simplex FE which meets E in a single
edge and does not meet any other points of the graph (see the drawing in expansion.pdf for a
special case).
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2. The boundary of a 3-simplex (in classical language, a tetrahedron) is the simplest example
of a complex for which H2 6= 0. Specifically, if the vertices are given by v0,v1,v2 and v3 with the
numerical ordering, then it is an elementary but slightly messy exercise to check that the chain

v1v2v3 − v0v2v3 + v0v1v3 − v0v1v2

is a cycle (hence nonzero in homology) and every cycle is an integral multiple of this chain. In the
next unit we shall justify these statements from a more systematic viewpoint.

3. For some 2-dimensional complexes the group H1 contains nontrivial elements of finite
order. The simplest example is the real projective plane, and an explanation of this is given in the
file rp2triangulation.pdf. It is also possible to give examples for which H1 is cyclic of order q
for all integers q ≥ 3, and we shall describe a few at a later point in the course.

Green’s Theorem and 2-dimensional chains

Many books on multivariable calculus note that Green’s Theorem can be generalized from the
simple sorts of regions treated in all texts to a fairly general class of plane regions bounded by a
finite number of reasonable closed curves. A typical example of such a discussion (from Marsden and
Tromba) is posted in the file greens-thm.pdf. The file green-chains.pdf contains an illustrated
and more detailed discussion which involves the concepts of 2-chains and their boundaries. In
particular, if we are given a closed bounded polygonal region A in the plane which has a simplicial
decomposition whose boundary is a union of finitely many closed curves, then the generalization of
Green’s Theorem to A depends upon the following result:

Existence of triangulating chains. Suppose that we are given A as above, let K be a simplicial
decomposition of A as union of 2-simplices, let ω be a linear ordering of the vertices, and denote the
closed boundary curves of A by Γi where i runs from 1 to the number N of boundary components.
Then there is a 2-chain ΦA in C2(A,K

ω) such that the following hold:

(i) The chain ΦA is equal to
∑

εσ σ, where the sum runs over the free generators σ corre-
sponding to the 2-simplices of K and each coefficient εσ is ± 1.

(ii) The boundary chain d2(ΦA) is a sum of chains zi coming from the subgroups C1(Γi) ⊂
C1(A) such that zi is a closed reduced edge path in Γi (so that zi is a cycle expressible as a sum∑

εκ κ where κ runs through all the edges in Γi and εκ = ± 1).

This relates to the standard derivation of Green’s Theorem in following way. The double
integral over A is the sum of the double integrals over the 2-simplices into which A is decomposed,
and the chain ΦA is an algebraic model for this sum decomposition of the double integral. There is
a partial explanation of the reasons for the ± signs in green-chains.pdf, and the need for signs
traces back to the choice of ordering for the vertices.

The version of Green’s Theorem in multivariable calculus texts implies that the result applies
to each 2-simplex, showing that the double integrals over these pieces are equal to line integrals
over the boundary curves and hence to a sum S of line integrals over various edges in K with
suitable orientations. Some of these terms involve edges which are parts of the boundary curves Γi,
and their contributions to S is a sum of ± the appropriate line integrals over the curves Γi. The
key point in proving Green’s Theorem for A and its boundary curves is that the line integrals over
the remaining edges turn out to cancel in pairs, and the statement about d2(ΦA) is an abstract
algebraic way of expressing this cancellation property. Intuitively speaking, the signs for the line
integrals over the Γi’s are chosen so that a unique outermost curve is taken in the counterclockwise
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sense and the remaining curve is taken in the clockwise sense, but we shall not attempt to make
this precise.

As noted in green-chains.pdf, proving the existence of the chain ΦA for an arbitrary polyg-
onal region requires more machinery than we can develop in this course. If time permits, we shall
post a file green-chains2.pdfwhich explains how one can prove the existence of ΦA using material
from Section 3.3 of Hatcher.

The algebraic framework for homology

This half of the section is basically algebraic, and at first the need for formally introducing
some of the concepts may be unclear. However, the notions described here arise repeatedly in
algebraic topology and other subjects.

Definition. Suppose we are given a diagram of the form

A
f−→ B

g−→ C

in which the objects are abelian groups (possibly with some additional structure) and the morphisms
are abelian group homomorphisms (possibly preserving the extra structure). We shall say that the
diagram is exact at B if the kernel of g is equal to the image of f .

More generally, if we are given a linear diagram such as

· · · −→ Z −→ A −→ B −→ C −→ D −→ · · ·

we shall say that it is an exact sequence if it is exact at every object which is the domain of one
morphism and the codomain of another.

Examples of exact sequences

There are many standard exact sequences in elementary algebra.

1. A short exact sequence is one having the form 0 → A → B → C → 0. Exactness at A
means that the kernel of A → B is the image of 0 → A, which is equivalent to saying
that the map is injective. Similarly, exactness at C means that the kernel of C → 0 is
the image of B → C, which is equivalent to saying that the map is surjective. The short
exact sequence property is then equivalent to saying that A → B is injective, and C is
isomorphic to the quotient of B by the image of A.

2. The cokernel of a homomorphism f : A→ B is defined to be the quotient group B/f [A].
Given an arbitrary homomorphism f : A→ B, one then has the following kernel – cokernel
exact sequence:

0 −→ Ker(f) −→ A −→ B −→ Coker(f) −→ 0

3. The following are elementary but extremely useful observations involving a module ho-
momorphism f : A→ B:

3(a). f is 1–1 if and only if 0→ A→ B is exact.

3(b). f is onto if and only if A→ B → 0 is exact.

3(c). f is an isomorphism if and only if 0→ A→ B → 0 is exact.
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4. Let U be a connected open subset of R2, let C∞(U) denote the infinitely differentiable
real valued functions on U , and let let VF(U) denote the infinitely differentiable (2-
dimensional) vector fields on U in the sense of vector analysis. If we let R → C∞(U)
denote the inclusion of the constant functions and take the gradient map from C∞(U) to
VF(U), then it follows that the sequence R→ C∞(U)→ VF(U) is exact. Furthermore,
if we take the map VF(U)→ C∞(U) which sends a vector field F = (P,Q) to its “scalar
curl” Q1−P2, then the sequence C∞(U)→ VF(U)→ C∞(U) will be exact provided U
is convex (or more generally star-shaped). — On the other hand, the second sequence is
not exact if U = R

2 − {0}, for the previously described vector field on U with coordinate
functions v/r and −u/r has zero scalar curl but is not the gradient of any smooth function
on U ; this follows from Green’s Theorem and the previous line integral calculation.

We can extend the preceding if U is a connected open set in R
3 by considering the following

sequence:
R

constants−−−−−→ C∞(U)
grad−→ VF(U)

curl−→ VF(U)
div−→ C∞(U)

This is again exact at the left hand object C∞(U), and standard results in vector analysis imply that
the kernel of the curl is contained in the image of the gradient, while the kernel of the divergence
is contained in the image of the curl. If U is convex, then one can also show that the sequence is
exact, but in general this is not true.

Examples. In particular, the vector field F on R2 − {0}) ×R defined by

F(u, v) =

(
v

u2 + v2
,
−u

u2 + v2
, 0

)

satisfies ∇ × F = 0, but F cannot be expressed as a gradient over U . To see this, observe that
the line integral of F over the counterclockwise unit circle in the xy-plane is equal to 2π, but if
we could write F = ∇g over U then the line integral over every closed curve in U would be zero.
Similarly, the vector field F on R3−{0} defined by F(x) = |x|−1x satisfies ∇·F = 0, but F cannot
be expressed as the curl of another vector field defined over all of U . One way of seeing this is to
let Σ be the unit sphere in R3 and verify the surface integral computation

∫ ∫

Σ

F · dΣ = 4π .

If F could be written as ∇×G over U then by Stokes’ Theorem the surface integral would be zero
(this is true because the sphere has no boundary curves).

Graded objects

The next concept is simple but indispensable.

Definition. Let A be a set, and let C be a category. A graded object over C with grading set A
is a function X from A to the objects of C. The object corresponding to a is generally denoted by
Xa.

For example, one can construct a graded vector space over the reals with grading set the
integers Z by taking Vn = Rn for n ≥ 0 and setting Vn equal to the zero space if n < 0.

Another example is obtainable from an algebra of polynomials R[x1, · · · , xn] in finitely many
indeterminates. Here we can take Vn to be the set of all homogeneous polynomials of degree n
together with the zero polynomial.
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In this course we shall mainly be interested in nonnegatively graded objects, where the indexing
set is Z and the object Xn is a suitable zero object if n < 0. For the categories of abelian groups
or modules over some associative ring with unit, the meaning of zero object is obvious, and these
categories are the only ones to be considered here.

Definition. If X and Y are nonnegatively graded objects over a category C, then a graded
morphism of degree zero or grade preserving morphism is a function f which assigns to each n ∈ Z

a morphism fn : Xn → Yn in the category C.

In the polynomial example, one can define a grade preserving homomorphism by sending the
homogeneous polynomial p(x1, x2, · · · xn) to the homogeneous polynomial q(x1, x2, · · · xn) =
p(x1, x1 + x2, · · · xn). Obviously there are many other maps of this type.

The following observation is immediate:

PROPOSITION 1. Given a category C, the Z-graded objects over C and graded morphisms
of degree zero form a category.

In fact, this category has many structural properties that are direct analogs of properties that
hold for C (for example, subobjects, quotient objects, direct products, and so on).

Abstrct chain complexes

We are now ready to formulate a purely algebraic version of the groups C∗(P,K
ω) and their

boundary homomorphisms.

Definition. Let C be the category of abelian groups and homomorphisms or a category of unital
modules over an associative ring with unit R. A chain complex over C is a pair (A, d) consisting
of a graded object A over C indexed by the integers together with morphisms dj : Aj → Aj−1 such
that dj−1

odj = 0 for all j.

Here are a few simple examples.

1. Given an arbitrary graded module A, one can make it into a chain complex by taking
dj = 0 for all j. More generally, given a sequence of homomorphisms f2j : A2j → A2j−1,
one can define a chain complex whose graded module is A with d2j = f2j and d2j−1 = 0.

2. Suppose we are given three modules B, H, and B ′. The we can define a chain complex
with A2 = B, A1 = B ⊕ H ⊕ B′, and A0 = B′ and Aj = 0 otherwise such that d2 is
injection into the first summand, d1 is projection onto the third summand, and all other
maps dj must be zero (since either their domain or codomain is zero).

3. If U is open in R2, then one can obtain a chain complex from the previous sequence
involving C∞(U) and VF(U), if one takes A3 to be the reals, A2 and A0 to be the smooth
functions, A0 to be the vector fields, with morphisms given by inclusion of constants from
A3 to A2, gradient from A2 to A1, scalar curl from A1 to A0, and with all other real
vector spaces and morphisms equal to zero. Similarly, if U is open in R3 one has a system
with A4 equal to the reals, A3 and A0 equal to the smooth functions, A2 and A1 equal to
the vector fields, with morphisms given by inclusion of constants from A4 to A3, gradient
from A3 to A2, curl from A2 to A1, divergence from A1 to A0, and with all other real
vector spaces and morphisms equal to zero.

The mapping d is often called a differential; the motivation is related to the preceding examples
where the maps are given by some form of differentiation.
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Definition. Given two chain complexes (A, d) and (B, e) a chain map f : A → B is a graded
morphism such that for all integers j we have ej

ofj = fj−1
odj . In other words, the following

diagram is commutative:

Aj
fj−−−−−→ Bjydj

yej

Aj−1
fj−1−−−−−→ Bj−1

If the differential in a chain complex (A, d) is unambiguous from the context we shall frequently
write A instead of (A, d).

The following consequences of the definitions are elementary but important.

PROPOSITION 2. Given a category C, the chain complexes over over C and chain complex
morphisms form a category.

PROPOSITION 3. If (A, d) and (B, e) are chain complexes over C and f : (A, d) → (B, e) is
a morphism of chain complex such that the mappings fj are all isomorphisms, then the map f−1

of graded modules defined by (f−1)j = f−1
j is also a chain map.

Proof. To simplify the formulas let gj = f−1
j . The conclusion of the proposition is equivalent to

the identities dj
ogj = gj−1

oej as maps from Bj to Aj−1.

Let b ∈ Bj be arbitrary. Since fj−1 is injective, it follows that dj
ogj(b) = gj−1

oej(b) if and
only if fj−1

odj
ogj(b) = fj−1

ogj−1
oej(b). The left hand side is equal to

fj−1
odj

ogj(b) = ej
ofj

ogj(b) = ej(b)

by the defining identity for chain maps and the fact that g is inverse to f , and the latter fact also
implies that the right hand side is equal to ej(b). Therefore it follows that the maps gj satisfies the
defining conditions for a chain map.

As before, the category of chain complexes over C has many structural properties that are
direct analogs of properties that hold for C and the category of graded objects over C (such as
subobjects, quotient objects, direct products).

A few additional remarks about subcomplexes and quotient complexes of a chain complex
seem worthwhile. If (A, d′) is a chain subcomplex of (B, d), then it follows that Aj ⊂ Bj for all j
and that dj maps Aj to Aj−1 via d′j . The quotient complex has chain groups which are quotients
Bj/Aj and a differential d′′ such that d′′j [x] = [djx], where “[· · ·]” denotes the equivalence class in
the appropriate quotient module. There is a well-defined map of this sort because dj maps Aj into
Aj−1.

HOMOLOGY OF CHAIN COMPLEXES. The natural sequel to the preceding discussion is to define
the homology of an arbitrary chain complex (C∗, d∗) by the same type of formula used for the chain
complex of a 2-dimensional simplicial complex:

Hk(C∗, d∗) = Kernel(dk)/Image(dk+1)

Since this section has already considered a very wide range of concepts, we shall postpone further
discsussion to the next unit.
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V. Simplicial chain complexes and homology

The goal of this unit is to define a chain complex C∗(P,K
ω) of abelian groups associated to a

simplicial complex and a linear ordering ω of its vertices. This definition will extend the previous
ones for complexes of dimension ≤ 2, and the homology groups of the chain complex C∗(P,K

ω)
will be called the simplicial homology groups of the complex (with respect to the given linear
ordering of the vertices), and they will be denoted by Hn(P,Kω), where n runs through all the
integers. As in the low-dimensional cases, both the chain and homology groups will be zero if n is
negative.

Homology groups may be interpreted as furnishing an “algebraic picture” of the underlying
topological space P . In order to develop the important properties of these groups it will be necessary
to introduce some basic concepts and results from a subject called homological algebra, but efforts
will be made to keep this to a minimum.

We have stated that the groups provide information about the underlying space P rather than
the simplicial complex (P,K) and vertex ordering ω because these groups turn out to depend only
upon P itself . In most textbooks this is done by defining objects called singular chain complexes

for which the independence of K and ω are true by simple formal properties of the chain complexes
and the fact that they are defined for arbitrary topological spaces. We shall not follow this standard
approach for two reasons:

1. Verifying the fundamental properties of singular chain complexes and singular homology
groups requires more time than is left in the course, and it seems more important to
illustrate how these homology groups are used to study some geometric and topological
questions of independent interest.

2. The motivations for several of the constructions and proofs require a more extensive
treatment of simplicial complexes than we can give within the time constraints of this
course.

Our alternative approach in the next unit will be to give a set of axioms for a singular homology
theory; subsequent parts of the course will depend formally on this axiomatic description, but the
basic methods and proofs will be the same as if we had taken the more standard approach. These
issues will be discussed further at the beginning of the next unit.

V.1 : Simplicial chains and homology

(H, §§1.A, 2.1)

The first part of this section continues the discussion of abstract chain complexes from the
previous unit, and in the second part we shall use some of these general considerations when we
define and study chain complexes associated to simplicial complex.
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Basic facts about abstract homology groups

If (A, d) is a chain complex, then the condition dj
odj+1 implies that the kernel of dj (the

submodule of cycles) contains the image of dj+1 (the submodule of boundaries). The sequence
determined by the chain complex is exact at Aj if and only if these two submodules are equal.
One can view homology groups as measuring the extent to which a chain complex is not an exact
sequence.

Formal Definition. Let (A, d) be a chain complex. The j th (or j-dimensional) homology group
Hj(A) = Hj(A, d) is equal to the quotient module

(Kernel dj)/(Image dj+1) .

By the definitions, the sequence of morphisms determined by a chain complex (A, d) is exact
at Aj if and only if Hj(A) = 0.

Computation of the homology groups for most examples in the previous unit is fairly straight-
forward.

1. If we take an arbitrary graded module A and make it into a chain complex by taking
dj = 0 for all j, then Hj(A, 0) = Aj . If we are given a sequence of homomorphisms
f2j : A2j → A2j−1 and define a chain complex whose graded module is A with d2j = f2j

and d2j−1 = 0, then H2j(A) = Kernel d2j and H2j−1(A) = A2j−1/Image d2j .

2. In Example 2 from the previous section, the homology is zero if U is a convex open subset
of R2 or R3.

The next result is fairly simple to prove but absolutely fundamental.

THEOREM 1. If f : (A, dA) → (B, dB) is a map of chain complexes, then there are unique
homomorphisms f∗ : Hk(A)→ Hk(B) such that if u ∈ Hk(A) is represented by z ∈ Aq, then f∗(u)
is represented by fq(z). Furthermore, if f is an identity chain map then f∗ is also the identity, and
if g : (B, dB)→ (C, dC) is another chain map, then (g of)∗ = g∗ of∗.

The second sentence of the theorem implies that the construction sending f to f∗ defines a
covariant functor from chain complexes to graded modules. Thus the following is immediate.

COROLLARY 2. In the setting above, if f is an isomorphism then so is f∗.

Proof of Theorem 1. The condition in the first sentence of the theorem implies uniqueness,
and the formula for f∗ immediately yields the functoriality properties in the second sentence. Thus
everything reduces to showing that there is indeed a homomorphism f∗ with the asserted property.

First of all, we must check that fq(z) is a cycle if z is a cycle. To see this note that

dB
q

ofq(z) = fq−1
odA

q (z) = fq−1(0) = 0

so there is no problem here. Next, we need to check that if z and w represent the same class in
Aq, then fq(z) and fq(w) represent the same class in Bq. However, it z and w represent the same
class, then z − w = dq+1(y), and hence we have

fq(z)− fq(w) = fq(z − w) = fq
odA

q+1(y) = dB
q

ofq+1(y)
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so that the images of z and w represent the same class in Hq(B). The identities f∗(u1 + u2) =
f∗(u1) + f∗(u2) and f∗(r · u) = r · f∗(u) now follow immediately from the definition of f∗ and the
standard choices of representatives for u1 + u2 and r · u.

Chain complexes associated to simplicial complexes

Our next objective is to define chain complexes and homology groups for simplicial complexes
of arbitrary dimension.

One central feature of algebraic topology is that there are usually several different chain com-
plexes which yield the same homology groups, each of which has its own advantages and disadvan-
tages. Our choice involves relatively small chain complexes.

Definition. Suppose that (P,K) is a simplicial complex, and choose a linear ordering ω for the
vertices of K; we shall use the usual notation v < w to indicate that one vertex precedes another.
For each integer k, the k-dimensional ordered simplicial chain group of (P,K, ω), written Ck(P,Kω),
is a free abelian group on all formal symbols of the form v0 · · · vk, where v0 < · · · < vk. By
construction, it follows that Ck(P,Kω) = 0 if k < 0 or k > dimK. The boundary homomorphism

dk : Ck(P,Kω) −→ Ck−1(P,K
ω)

is defined on free generators by the formula

dk(v0 · · · vk ) =

n∑

j=0

(−1)j v0 · · · v̂i · · · vk

where v̂i means that vi is omitted; by the definition of free generators, it follows that there is a
unique extension to the group Ck(P,Kω).

Since our purpose is to define homology groups, presumably we want to verify that the preced-
ing data define a chain complex. For this purpose it will be helpful to introduce some additional
definitions.

If k > 0 and v0 · · · vk is as above, then the ith face operator ∂
[k]
i (v0 · · · vk ) is given by

v0 · · · v̂i · · · vk .

Frequently we shall suppress the superscript [k] to simplify notation. The following identity for
iterated faces is elementary but fundamentally important:

LEMMA 1. If k − 1 ≥ j ≥ i, then ∂
[k−1]
j

o∂
[k]
i = ∂

[k−1]
i

o∂
[k]
j+1.

The identity is true because the result of applying both composites to v0 · · · vk is given by
deleting vi and vj+1.

With Lemma 1, it is fairly easy to prove that the boundary maps dk define a chain complex.

THEOREM 2. In the setting above we have dk−1
odk = 0.

The proof of this result is given in Lemma 2.1 on pages 105–106 of Hatcher and also in the
course directory file chainboundary.pdf.

We now define the k-dimensional simplicial homology group of (P,K) for ordered simplicial
chains, also called the k-dimensional ordered simplicial homology group and denoted by

Hk(P,Kω)
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to be the k-dimensional homology of the chain complex C∗(P,K
ω), where the differential or bound-

ary is given as above.

The preceding definition depends not only upon the choice of a simplicial decomposition but
also upon choosing a linear ordering of the vertices. It turns out that the homology groups only
depend upon the underlying topological space P , and we shall address this issue in the next unit.
For the time being, we shall give a reference for a proof that different vertex orderings determine
isomorphic homology groups. This can be found in pages 51–60 of the notes

http://math.ucr.edu/∼res/math246A/algtopnotes2010.pdf
starting with the paragraph titled “Second definition” and continuing through the end of the proof
of Theorem 6. However, we shall not need the independence result in this unit.

The following is an immediate consequence of the constructions in Section IV.3:

THEOREM 3. Let (P,K) be a simplicial complex, let (Q,L) be a subcomplex, let i : (Q,L)→
(P,K) be the inclusion mapping, and let ω be a linear ordering for the vertices of K (and hence
also for the vertices of L). Then the map of graded objects

i# : C∗(Q,L
ω) −→ C∗(P,K

ω)

sending a free generator v0 · · · vk in Ck(Q,Lω) to its counterpart in Ck(P,Kω) is a chain complex
inclusion and hence induces homomorphisms i∗ of homology groups from H∗(Q,L

ω) to H∗(P,K
ω).

Both the chain inclusions and homology maps define covariant functors on the category of simplicial
complexes and subcomplex inclusions.

This is true because the boundary chain associated to a simplex v0 · · · vk in L is an integral
linear combination of simplices in L.

Examples. It is important to recognize that the mapping in homology i∗ is usually not
injective. — We shall see many examples of this, but for the time being it is enough to let
P = ∆2 and let Q be the subcomplex of all edges. In this case H1(Q,L

ω) is infinite cyclic but
H1(P,K

ω) is trivial; in fact, the boundary of the generator e0e1e2 is a 1-chain in C1(Q,L
ω)

which generates H1(Q,L
ω), but the corresponding homology class in H1(P,K

ω) must be trivial.
Informally speaking, the 1-chain is a cycle and a boundary in P , and hence it must also be a cycle
in Q, but it is not a boundary in Q.

V.2 : Examples and special cases

(H, §§2.1, 2.2)

The first observation is an immediate consequence of the definitions.

PROPOSITION 0. If P consists of a single point and K is the associated (trivial) simplicial
decomposition of P as a single vertex, then Hk(P,Kω) ∼= Z if k = 0 and Hk(P,K) ∼= 0 if k 6= 0,
where ω is the only possible vertex ordering.

This is true because Ck(P,Kω) ∼= Z if k = 0 and Ck(P,K) ∼= 0 if k 6= 0 by construction, so
that the boundary mappings must be zero, and if (A∗, 0) is a chain complex with zero boundary
mappings then Hk(A) ∼= Ak for all k (why?).
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Since a one point space is a 0-dimensional simplex, the proposition describes the homology
groups of such a simplex. The next step is to prove that the simplicial homology groups of an
arbitrary simplex are all isomorphic to the homology groups of a point. This will require an
algebraic digression.

Acyclic complexes

Definition. An augmented chain complex over a ring R consists of a chain complex (C∗, d) and
a homomorphism ε : C0 → R (the augmentation map) such that ε is onto and ε od1 = 0.

All of the simplicial chain complexes defined above have canonical augmentations given by
sending 0-chains of the form

∑
nv v to the corresponding integers

∑
nv.

Definition. A simplicial complex is said to be acyclic (“has no nontrivial cycles”) if Hj(P,K) = 0
for j 6= 0 and H0

∼= Z, with the generator in homology represented by an arbitrary vertex generator
of C0(P,K).

There is a simple geometric criterion for a simplicial chain complex to be acyclic.

Definition. A simplicial complex (P,K) is said to be star shaped with respect to some vertex v

in K if for each simplex A in K either v is a vertex of A or else there is a simplex B in K such that
A is a face of B and v is a vertex of B. If (P,K) is star shaped with respect to v, then a linear
vertex ordering ω is said to be star shaped with respect to v if v is minimal in the ordering ω. We
shall also say that v is the star vertex of K with the ordering ω.

Some examples are depicted in starshaped.pdf. One particularly important example for the
time being is the standard simplex ∆n with its standard decomposition; in this case the complex
is star shaped with respect to very vertex.

Note that if P is star shaped with respect to some vertex v, then {v} is a strong deformation
retract of P and hence P is contractible. An explicit homotopy from the identity on P to the
constant map is given by the straight line homotopy H(x, t) = (1 − t)x+ tv, whose image always
lies in P .

THEOREM 1. If the simplicial complex (P,K) is star shaped with respect to some vertex v

and the linear vertex ordering ω is star shaped with respect to this vertex, then the augmented
chain complex C∗(P,K

ω) is acyclic, and the map i∗ : H∗({v},L) → H∗(P,K) induced by {v} ⊂ P
is an isomorphism.

Before proving this, we shall use it to extend the example at the end of the preceding section.
Given a simplicial complex (P,K), we have seen that it is isomorphic to a subcomplex of a simplex
A whose vertices are the same as those of K, and of course we can take this ordering for the
vertices of A. If FA is the simplicial decomposition of A given by its faces and P is connected,
then the proposition implies that the homology maps H∗(P,K

ω)→ H∗(A,Fω
A) are isomorphisms in

dimension zero and are zero homomorphisms in all other dimensions. In particular, if Hk(P,Kω) 6=
0 for some k > 0, then this group is not a subgroup of Hk(A,Fω

A) = 0.

Proof. We need to define a modified version of the simplicial chain complex C∗(P,K
ω). As

suggested by the following passage from morgan-lamberson.pdf, this sort of thing happens fre-
quently in homology theory and sometimes makes the subject seem like a real-life version of the
film Groundhog Day (see http://www.imdb.com/title/t0107048).
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The main trouble with algebraic topology is that there are many different ap-
proaches to defining the basic ... homology ... groups. Each approach brings with
it a fair amount of required technical baggage ... one must pay a fairly high price
... as one slogs through the basic constructions and proves the basic results. Fur-
thermore, possibly the most striking feature of the subject, the interrelatedness
(and often equality) of the theories ... requires even more machinery.

The new chain complex C+
∗ (P,Kω) will contain C∗(P,K

ω) along with additional free generators
vv0 · · · vk in dimension k + 1 for each simplex generator v0 · · · vk in dimension k such that v0

is the minimal star vertex v. The boundary mapping on the extra generators is defined exactly
as before in terms of formal faces for these generators, and this yields the desired chain complex.
The 0-dimensional chain groups of both complexes are isomorphic, and one can check that the
augmentation for C∗(P,K

ω) is also an augmentation for C+
∗ (P,Kω) (the only extra free generators

in dimension 1 have the form vv and these are all cycles, so we still have ε od1 = 0 in the larger
chain complex).

The chain complex constructed in the previous paragraph has the following important property:

LEMMA 2. There is a chain map

ρ : C+
∗ (P,Kω)→ C∗(P,K

ω)

whose restriction to C∗(P,K
ω) is the identity.

Proof of Lemma 2. Defining ρ on chains is easy. Send each free generator in the subcomplex
to itself and send the extra free generators to zero. If j is the subcomplex inclusion, then it follows
immediately that ρ oj is the identity, and to complete the proof we only need to verify that ρ is a
chain map; this amounts to showing that ρ odk+1(vv0 · · · vk = 0 if v = v0. By construction we
know that dk+1(vv0 · · · vk ) is equal to

vv1 · · · vk − v0 · · · vk +

k∑

i=1

(−1)i+1 vv0 · · · v̂i · · · vk .

The first two terms cancel because v = v1 and the remaining summation is an integral lin-
ear combination of the extra generators, which are mapped to zero under ρ, and thus we have
ρ o(vv0 · · · vk = 0, which is what we needed to prove the lemma.

Proof of Theorem 1 resumed. The underlying motivation is that the space P is contractible,
and we want to define an algebraic analog of the contracting homotopy described before the state-
ment of the theorem.

Formally, we first define a map of graded abelian groups η : C∗(P,K) → C∗(P,K) such that
ηq in dimension q is zero if q 6= 0 and η0 sends a chain y to ε(y)v. Then η is a chain map because
ε od1 = 0.

We next define the contracting chain homotopy homomorphisms Dq : Cq(P,K)→ Cq+1(P,K)
such that

dq+1
oDq = identity − dq

oDq−1

if q is positive and
d1

oD0 = identity − η0

on C0. We do this by setting Dq(x0 · · · xq) = ρ(vx0 · · · xq) and taking the unique extension
which exists since the classes x0 · · · xq are free generators for Cq. Elementary calculations show
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that the mappings Dq satisfy the conditions given above (see the file chaincontraction.pdf for
the details).

To see that Hq(P,K) = 0 if q > 0, suppose that dq(z) = 0. Then the first formula implies that
z = dq+1

oDq(z). Therefore Hq = 0 if q > 0. On the other hand, if z ∈ C0, then the second formula
implies that d1

oD0(z) = z − ε(z)v. Furthermore, since ε od1 = 0 and d0 = 0, it follows that

(i) the map ε passes to a homomorphism from H0 to Z,

(ii) since ε(v) = 1 this homomorphism is onto,

(iii) the multiples of the class [v] give all the classes in H0.

Taken together, these imply that H0(P,K
ω) ∼= Z, and it is generated by [v]. This completes the

computation of H∗(P,K
ω).

The next step is to find examples with nonzero homology groups in arbitrary positive dimen-
sions. This is relatively easy now.

THEOREM 3. If n ≥ 1 and ∂∆n+1 is the subcomplex given by the union of the simplices in
the set F of proper faces (geometrically, the boundary of the simplex) and ω denotes the standard
ordering of the unit vectors in R

n+2, then Hq(∂∆n+1,Fω) is isomorphic to Z if q = 0 or n, and
Hq(∂∆n+1,Fω) is zero otherwise.

Proof. Consider the chain complex inclusion

C∗(∂∆n+1,Fω) ⊂ C∗(∆n+1,Fω
+)

where F+ consists of all the faces of the simplex including itself (the only face not in F). This
subcomplex inclusion map is bijective except in dimension n+ 1, and this implies that both chain
complexes have the same cycles and boundaries in all dimensions except n + 1 and n. In these
dimensions we have the following exceptional behavior:

(i) The cycles in dimension n are the same for both complexes.

(ii) There are no nonzero cycles or boundaries for either complex in dimension n+ 1 because
dn+1 is injective on the larger complex and there are no nonzero (n + 1)-chains in the
smaller complex.

(iii) The cycles in dimension n form an infinite cyclic group generated by the class of

d(e0 · · · en+1)

in the chain complex for ∆n+1 (because the latter is acyclic). Although this class is an
n-chain for the subcomplex ∂∆n+1, it cannot be a boundary in the chain complex for the
subcomplex because the latter has no nonzero(n+ 1)-chains.

The equality of the chain groups in almost all dimensions implies that the q-dimensional
homology groups of both chain complexes are the same provided q 6= n, n + 1. Points (i) − (iii)
combine to show that Hn+1(∂∆n+1,Fω) = 0 and Hn(∂∆n+1,Fω) must be isomorphic to Z such
that the chain

n∑

j=0

(−1)j v0 · · · v̂i · · · vn

represents a generator.
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In particular, it follows that for each positive integer n there is a simplicial complex (P,K)
such that Hn(P,Kω) is nonzero.

The computation for the homology of ∂∆n+1 indicates that sometimes one can compute the
homology groups of a complex if one knows something about the homology groups of some sub-
complex and vice versa. In the next two section we shall present systematic methods for doing
similar computations in more general situations.

V.3 : Relative groups and exactness properties

(H, §2.1)

The final result of the previous section leads naturally to the following general question:

If i : A → B defines an inclusion of chain complexes, how can we analyze the kernel and
cokernel of the homology maps i∗ : H∗(A)→ H∗(B) in a reasonably effective manner?

As in many other instances, the answer to this question involves some additional constructions.
Let A ⊂ B be a chain complex inclusion, and consider the quotient complex B/A; let i : A → B
denote the inclusion map, and let j : B → A/B denote the projection. We then have the following
result:

PROPOSITION 1. Let i : A→ B and j : A→ A/B be injection and projection maps of chain
complexes as above. Then for each k there is a homomorphism ∂ : Hk(B/A) → Hk−1(A) defined
as follows: If u ∈ Hk(B/A) and x ∈ Bk is such that j(x) represents u, then ∂(u) is represented
by y ∈ Ak−1 such that i(y) = d(x). Furthermore, if we are given a second pair i′ : A′ → B′ and
j′ : B′ → B′/A′ as above and a chain map f : B → B ′ such that f maps A to A′ by a chain
map g and h : B/A → B′/A′ is the map given by passage to quotients, then the corresponding
homomorphisms ∂ and ∂ ′ satisfy g∗ o∂ = ∂′ oh∗.

Proof. First of all, we should check that the definition makes sense. The first step in doing so is
to verify that if we are given x there is always a suitable choice of y. In general the class x need
not be a cycle, but we know that j(x) is a cycle representing u, and therefore 0 = d oj(x) = j od(x),
which means that d(x) = i(a) for some a. This element is a cycle; we know that d(a) = 0 if and
only if i od(a) = 0, and since i od(a) = d o i(a) = d od(x) = 0, it does follow that d(a) = 0 as required.

Next, we need to check that the construction is well defined when one passes to homology.
Suppose that j(x) and j(x′) represent the same class in Hk(B/A). It then follows that j(x− x′) is
a boundary, which means there is some w ∈ Bk+1 such that d(w)− (x− x′) lies in A, which is the
image of i. Express the difference element as i(z); then we have

i(dz) = d(iz) = d
(
d(w) − (x− x′)

)
= d(x′)− d(x)

so that d(x) = i(a) and d(x′) = i(a′) imply that a′ − a = d(z).

Next, we need to check that ∂ is a module homomorphism. Given classes u and u′ represented
by x and x′, it follows that x + x′ represents u + u′, while d(x) = i(a) and d(x′) = i(a′) imply
d(x + x′) = i(a + a′). Thus a + a′ represents u + u′, showing that ∂ is additive. If r ∈ R, then
similar considerations show that ∂(r · u) is represented by r · a, and therefore ∂ is compatible with
scalar multiplication.
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Finally, suppose we have chain maps as described in the proposition, let u ∈ Hk(B/A), and
let x ∈ Bk be such that j(x) represents u. Then a representative for g∗∂(u) is given by g(a), where
ia = dx, while a representative for ∂ ′h∗(u) is given by z such that i′(z) = d′f(x). The right hand
side equals f od(x) = f oi(a) = i′ og(a), and therefore we see that z = g(a), which means that
g∗∂(u) = ∂ ′h∗(u) as desired.

We may now state and prove the following basic result:

THEOREM 2. (Long Exact Homology Sequence Theorem — Algebraic Version). Let i : A→ B
and j : A → A/B be injection and projection maps of chain complexes as above. Then there is a
long exact sequence of homology groups as follows:

· · · Hk+1(B/A)
∂−→ Hk(A)

i∗−→ Hk(B)
j∗−→ Hk(B/A)

∂−→ Hk−1(A) · · ·

This sequence extends indefinitely to the left and right. Furthermore, if we are given chain maps
f , g and h as in Proposition 2, then we have the following commutative diagram in which the two
rows are exact:

· · · Hk+1(B/A)
∂−→ Hk(A)

i∗−→ Hk(B)
j∗−→ Hk(B/A)

∂−→ Hk−1(A) · · ·

· · ·
yh∗

yg∗
yf∗

yh∗
yg∗

· · · Hk+1(B
′/A′)

∂′

−→ Hk(A′)
i′
∗−→ Hk(B′)

j′

∗−→ Hk(B′/A′)
∂′

−→ Hk−1(A
′) · · ·

A proof of this theorem appears on page 117 of Hatcher and in the course directory file
longexact.pdf.

Application to simplicial complexes

In order to apply the preceding algebraic results, we need to define relative homology groups
associated to a simplicial complex pair

(
(P,K), (Q,L)

)

consisting of a simplicial complex (P,K) and a subcomplex (Q,L). To simplify notation, we shall
usually denote such a pair by (K,L). Furthermore, in order to simplify notation we shall frequently
suppress the superscript associated to a linear vertex ordering ω, tacitly assuming that there is some
default choice unless indicated otherwise.

Definition. In the setting above the relative simplicial chain groups, denoted by C∗(K,L), are
given by the corresponding quotient complex

C∗(K)/C∗(L) .

If we are given a (commutative) diagram of simplicial complex inclusions

L −→ K
y

y

L′ −→ K′
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then there are canonical (and functorial) chain maps

ϕ : C∗(K)/C∗(L) −→ C∗(K
′)/C∗(L

′)

defined by passage to quotients. The relative simplicial homology groups, denoted byH ordered
∗ (K,L)

andH∗(K,L) respectively, are then defined to be the homology groups of the corresponding quotient
complexes. We should note that the previously defined (absolute) chain groups may be viewed as
special cases of this definition for which L = ∅.

By Theorem 2 above, we have the following result:

THEOREM 3. (Long Exact Homology Sequence Theorem — Simplicial Version). Let i :
L → K denote a simplicial subcomplex inclusion, and suppose we also have i′ : L′ → K′ such
that everything fits into a commutative diagram as above. Then there are long exact sequences of
homology groups, and they fit into the following commutative diagram, in which the rows are exact
and the vertical arrows represent the canonical maps induced by inclusions of subcomplex pairs:

· · · Hk+1(K,L)
∂−→ Hk(L)

i∗−→ Hk(K)
j∗−→ Hk(K,L)

∂−→ Hk−1(L) · · ·

· · ·
y

y
y

y
y

· · · Hk+1(K
′,L′)

∂−→ Hk(L′)
i′
∗−→ Hk(K′)

j′

∗−→ Hk(K′,L′)
∂′

−→ Hk−1(L
′) · · ·

This follows immediately from the definitions and Theorem 2.

Another proof of Theorem V.2.3. The preceding result yields a much quicker proof of
Theorem V.2.3, which computes the homology of ∂∆n+1; in effect, the theorem is a machine for
outsourcing the detailed examination of the chain groups and their interrelations.

First of all, since n ≥ 2 we know that ∂∆n+1 is connected and therefore the map

H0(∂∆n, ...) → H0(∆n, ...)

is an isomorphism (both groups are infinite cyclic and a generator is represented by the class of a
vertex). Next, the relative homology groups

H∗(∆n+1, ∂∆n+1, ...)

are trivial to compute because the relative chain complex

C∗(∆n+1, ∂∆n+1, ...)

is Z in dimension n+1 and 0 otherwise; since there is only one nonzero group in this chain complex,
all the boundary maps are zero and hence the homology and chain groups are the same. Therefore,
if q 6= n, n+ 1 we have the following exact sequences:

0 = Hq+1(∆n+1, ∂∆n+1) → Hq(∂∆n+1) → Hq(∆n+1) → Hq(∆n+1, ∂∆n+1) = 0

Exactness of the first two morphisms imply that the map fromHq(∂∆n+1) to Hq(∆n+1) is injective,
and exactness of the last two morphisms shows that this map is also surjective, so that the homology
groups of ∂∆n and ∆n+1 are isomorphic if q 6= n, n+ 1. In these cases the homology groups of ∆n

are zero unless q = 0 and Z in the latter case, so the same is true for ∂∆n+1. We also know that
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Hn+1(∂∆n+1) = 0 because the corresponding chain group is zero, so we are left with the following
exact sequence:

0 = Hn+1(∆n+1) → Hn+1(∆n+1, ∂∆n+1) → Hn(∂∆n+1) → Hn(∆n+1) = 0

As in the preceding discussion, this exact sequence implies that Hn+1(∆n+1, ∂∆n+1) ∼= Z and
Hn(∂∆n+1) are isomorphic.

The Five Lemma

Theorem 3 provides one fundamental piece of algebraic input for relating the homology of
a simplicial complex and the homology of a subcomplex. Another important piece of input for
manipulating long exact sequence is given by the following result:

PROPOSITION 4. Suppose we are given a commutative diagram of modules as below in which
the rows are exact and the horizontal maps a, b, d and e are isomorphisms. Then the mapping c is
also an isomorphism:

· · · A
f∗−→ B

g∗−→ C
j∗−→ D

k∗−→ E
ya

yb
yc

yd
ye

A′ f ′

∗−→ B′ g′

∗−→ C ′ h′

∗−→ D′ k′

∗−→ E′

A proof of this theorem appears on page 129 of Hatcher.

One important consequence of the Five Lemma is the following:

COROLLARY 5. Let i : A → B and j : A → A/B be injection and projection maps of chain
complexes as in Theorem 2 and likewise for i′ : A → B and j′ : A → A/B, and let f : B → B ′ be
a chain complex morphism which maps A to A′. Denote the induced maps of subcomplexes and
quotient complexes by g : A → A′ and h : A/B → A′/B′. Then if any two of the graded maps of
homology groups

f∗ , g∗, h∗

is an isomorphism (in all dimensions), then so is the third.

V.4 : Computational techniques

(H, §2.2)

The long exact sequence of the previous section is often a useful tool for comparing the ho-
mology groups of a simplicial complex and a subcomplex, but in many cases we need something
stronger. In this section we shall derive two important principles which are extremely useful for
making quantitative comparisons.

NOTATIONAL CONVENTIONS. The general setting involves a simplicial complex (P,K) which
is a union of two subcomplexes (P1,K1) and (P2,K2), and it will also involve the intersection
subcomplex

(P1 ∩ P2,K1 ∩K2) .
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Throughout this section we shall use such notation without further comment. We shall also assume
that we are given some linear ordering of the vertices, but frequently we shall suppress the associated
superscript in order to simplify the notation. Also, in some cases we shall simply use L to denote
the simplicial complex (Q,L).

Excision for simplicial homology

In the general setting described above, one approach to analyzing the homology of (P,K) is
to start with the homology groups of the subcomplex (P1,K1), the relative homology groups of
the pair (K,K1) and the long exact homology sequence of the pair. The Excision Property for
simplicial homology implies that the relative homology groups only depend upon data involving
the somewhat complementary subcomplex K2.

THEOREM 1. (Simplicial Excision Property) Suppose that the simplicial complex K is the
union K1 and K2. If

(K2,K1 ∩K2) −→ (K = K1 ∪K2,K1)

is the inclusion map of pairs, then the induced homology maps e∗ are isomorphisms in all dimensions.

Proof. In fact, we claim that the chain complex map is an isomorphism (hence the of homology
groups is also an isomorphism). Recall that the relative chain groups Cq(L,M) of a subcomplex
pair (L,M) are free abelian on the q-simplices of L that do not belong to M.

By construction, in each dimension q the chain map

e# : C∗(K2,K1 ∩K2) −→ C∗(K,K1)

takes each free generator representing a q-simplex in K2, but not in K1 ∩K2, to its counterpart
representing a q-simplex in K but not in K1. Since the inclusion of K2 − (K1 ∩K2) in K −K1

is a 1–1 onto mapping under which the q-simplices correspond, it follows that e# maps the free
generators of one chain group to free generators of the other and hence is an isomorphism.

Example. If (K,L) is a simplicial complex pair, then K is said to be an elementary
expansion of L if K is obtained by adjoining a single simplex A such that exactly one maximal
lower-dimensional face of A lies in L. In the file expansion.pdf, the triangle together with any
one of the 2-simplices is an elementary expansion of the triangle, the the entire complex depicted
in that file is obtained from the triangle by a sequence of three elementary expansions (one along
each edge).

CLAIM. If K is an elementary expansion of L, then the inclusion from L to K induces isomor-
phisms in homology. — By the exact homology sequence, the conclusion will hold if H∗(K,L) = 0
in all dimensions. Let A denote the usual simplicial decomposition of A, and let A′ be the corre-
sponding decomposition L ∩A of the face which is the intersection of the two subcomplexes. By
excision the inclusion

(A,A′) −→ (K,L)

induces isomorphisms in homology, so everything reduces to proving that H∗(A,A
′) = 0. This will

follow from the long exact homology sequence of the pair because Hq(A) = Hq(A
′) = 0 if q 6= 0

and the vertex inclusions represented by vertical arrows in the diagram below are isomorphisms;
since the top map is the identity, it follows that the bottom map must also be an isomorphism.

Z ∼= H0({v}) =−→ H0({v}) ∼= Z
y∼=

y∼=
Z ∼= H0(A

′)
i∗−→ H0(A) ∼= Z
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If we apply this result three times to the complex in expansion.pdf, we find that the inclusion of
the triangle in the larger complex (with four 2-simplices) induces isomorphisms in homology.

Simplicial Mayer-Vietoris sequences

One variant of the long exact homology sequence, known as a Mayer-Vietoris, is a particu-
larly effective tool for relating the homologies of K = K1 ∪K2, K1, K2, and K1 ∩K2). It can be
viewed as an analog of an elementary formula for counting elements of finite sets

#(A ∪B) = #(A) + #(B) − #(A ∩B)

and of the Seifert-van Kampen Theorem, which relates the fundamental group of an arcwise con-
nected topological space X to the fundamental groups of arcwise connected open subsets U and V
such that U ∪ V = X and U ∩ V is arcwise connected.

THEOREM 2. (Simplicial Mayer-Vietoris Theorem) Let K be a topological space, and let K1

and K2 be open subsets such that K = K1 ∪K2. Denote the inclusions of K and K in X by i1
and i2 respectively, and denote the inclusions of K1 ∩K2 in K1 and K2 by g1 and g2 respectively.
Then there is a long exact sequence

· · · → Hq+1(K)→ Hq(K1 ∩K2)→ Hq(K1)⊕Hq(K2)→ Hq(K)→ · · ·

in which the map from H∗(K1) ⊕H∗(K2) to H∗(K) is given on the summands by (i1)∗ and (i2)∗
respectively, and the map from H∗(K1∩K2) to H∗(K1)⊕H∗(K2) is given on the factors by −(g1)∗
and (g2)∗ respectively (note the signs!!).

There is a purely formal study of the relationship between long exact homology sequences and
Mayer-Vietoris sequences in Chapter I.15 of Eilenberg and Steenrod. However, in our context it
will be easier to prove the result using the definitions of the chain complexes.

Proof. The underlying chain complex inclusion mappings (i1)# and (i2)# yield a chain map

∇# : C∗(K1)⊕ C∗(K2) −→ C∗(K)

and this map is onto because every simplex of K is either in K1 or K2. Direct calculation shows
that the kernel of ∇# is the image of the chain map

C∗(K1 ∩K2) −→ C∗(K1)⊕ C∗(K2)

which is given on the factors by −(g1)# and (g2)# respectively (equivalently, one could take the
negatives of both maps and still have a correct conclusion, but it is necessary for the signs to be
opposite). These maps fit together to form a short exact sequence of chain complexes, and the
theorem follows by taking the long exact homology sequence associated to the given short exact
sequence of chain complexes.

A somewhat nontrivial but still fairly simple homology computation using Mayer-Vietoris
sequences appears in the file mv-example.pdf.
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V.∞ : Is homology topologically invariant?

(H, §2.1)

Although the results of Section IV.1 show that homeomorphic graphs have isomorphic homol-
ogy groups. However, the proof of this fact is somewhat convoluted; one proves that H1 is free
abelian on the same number of generators that freely generate the nonabelian group π1. It is not
difficult to find plenty of examples suggesting that a similar result holds for arbitrary simplicial
complexes, and at the beginning of the 20th century the issue of topological invariance was an
urgent open question which had major implications for the development of geometric topology.
Ultimately the invariance question was solved by proving something considerably stronger: Ho-
motopy equivalent simplicial complexes have isomorphic homology groups. The first proofs used
properties of simplicial chain complexes and homology that are beyond the scope of this course; the
standard modern approach is based upon the singular homology theory developed by Eilenberg
and Steenrod in the 1940s. We do not have enough time in this course to develop this theory,
which is absolutely central to modern algebraic topology and is based upon ideas from simplicial
homology that we do not have enough time to develop. However, following Eilenberg and Steenrod
we shall give a list of axioms for singular homology (significantly longer than theirs!) which suffice
to yield many basic applications of singular homology.
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VI. Axiomatic singular homology

We shall begin by continuing the discussion in the final paragraph of Unit V.

The basic idea behind the construction of singular homology is simple; given a topological space
X, one constructs a chain complex which is associated to X itself (without any decomposition or
ordering data) which is covariantly functorial with respect to continuous functions and resembles
the simplicial chain complex associated to a simplicial complex with a linear vertex ordering. A
detailed construction of singular homology appears in Chapter 2 of Hatcher and Unit IV of the
following notes:

http://math.ucr.edu/∼res/math246A/algtopnotes2010.pdf
Of course, there are also accounts of singular homology in virtually every textbook on algebraic
topology written during the past 60 years. As noted before, the construction of singular homology
requires a substantial amount of information about simplicial complexes and chain complexes,
including many topics omitted from the present course. One reference for this necessary background
material is Sections III.3 – III.5 of the previously cited online notes.

We have already noted that there is not enough time in the course to present the construc-
tion of singular homology together with a reasonable amount of supporting material that will (a)
explain the geometrical motivation for several key constructions, (b) apply the theory to questions
of independent interest such as results in Sections 55-56 and 61-65 of Munkres’ Book and their
generalizations to higher dimensions. We shall deal with this problem by giving an axiomatic de-
scription of singular homology in this unit and discussing a few standard applications in the next
unit. The possibility of taking such an approach is mentioned in the second full paragraph of
page 98 in Hatcher, and in these notes our approach is near the far end of his contrast between
emphasizing the explicit construction of singular theory and prioritizing its basic formal properties.
However, we should also state very clearly that the construction of singular homology also

has a considerable amount of additional structure that is indispensable to any further

study of algebraic topology; in particular, Chapter 3 of Hatcher studies a major piece additional
structure, and Section 4.L of Hatcher provides a glimpse into yet another key structural aspect of
singular homology (relatively recent results due to M. Mandell show that elaborations of the struc-
ture in Section 4.L completely determine the homotopy type of “reasonably well-behaved” spaces
— here is the reference: Institut des Hautes Études Scientifiques Publications Mathématiques 103

(2006), pp. 213–246).

Finally, we should note that our list of axioms is fairly long to say the least, and it turns out
that there is a great deal of redundancy in our axioms. Of course, one would ultimately like to
have a set of axioms that have little or no logical interdependence, but for our purposes it seems
best to start with a set of axioms which can be used fairly simply and quickly to prove nontrivial
results. At this point, proving that some of these axioms imply the others would cut seriously into
the time available for discussing the applications we want to cover, but in any further study of the
subject it would be necessary to deal with such issues in one way or another.
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VI.1 : Primitive data and basic axioms

(H, Ch. 2 Introduction, §§2.1, 2.3)

In the previous unit it was useful to define relative homology groups for pairs (K,L) consisting
of a simplicial complex K and a subcomplex L. We need to begin by generalizing this concept of
pairs to topological spaces.

Definition. A pair of topological spaces is an ordered pair (X,A) where A is a subspace of X. A
(continuous) map of pairs f : (X,A) → (Y,B) is given by a continuous mapping f : X → Y such
that f [A] ⊂ B. — It follows immediately that pairs of spaces and maps of pairs form a category.

We can embed the category of topological spaces and continuous mappings into the category
of pairs by sending X to (X, ∅), and often we shall use X to denote this pair. Given two pairs
(X,A) and (Y,B), their product in the category of pairs is given by (X ×Y, X×B∪A×Y ). With
this definition, the cartesian product of two maps of pairs becomes a map of pairs (verify this!). In
particular, if B = ∅ then we can write (X,A) × Y = (X × Y,A× Y ).

There is also a natural embedding of the category of spaces with base points into the category
of pairs of spaces. Specifically, if (X,x0) is a space with base point we take the corresponding pair
(X, {x0}), and similarly base point preserving maps define maps of the associated pairs of spaces.

Another important construction in the category of pairs is the natural map j(X,A) : (X, ∅) →
(X,A) which is the identity on X (and the empty function on ∅). We can take this further by
defining two forgetful functors on pairs of spaces by the rules

F1

(
(X,A)

)
= X , F2

(
(X,A)

)
= A

and extending them to morphisms in the obvious fashion. If we do this, then j becomes a natural
transformation from F1 to the identity functor, and similarly one can view the inclusion i : A ⊂ X
defines a natural transformation from F2 to F1.

The data for an abstract singular homology theory

Obviously we want to have homology groups for pairs of spaces, and we would also like to have
an analog of the long exact homology sequence for a simplicial complex pair. The first of these
explains the need to include homology groups into the axioms, and the second indicates that we
need analogs of the connecting maps for long exact homology sequences.

1. For each pair of spaces (X,A) and each integer q we are given an abelian group Hq(X,A)
and a homomorphism ∂q : Hq(X,A)→ Hq−1(A).

We also want some analogs of Mayer-Vietoris exact sequences, and for these we need slightly
different types of connecting homomorphisms for such sequences. One fundamental difference be-
tween singular and simplical homology is that the latter has Mayer-Vietoris sequences for complexes
presented as unions of subcomplexes — which are closed subsets — but in general for singular ho-
mology it is necessary to limit ourselves to Mayer-Vietoris sequences for spaces presented as unions
of open subsets. Since we have already noted that Mayer-Vietoris sequences are somehow anal-
ogous to the Seifert-van Kampen Theorem and the latter involves spaces presented as unions of
open subsets, there is some precedent for restricting attention to such decompositions.

74



2. For each decomposition of a space X = U ∪ V such that Interior(U) ∪ Interior(V ) = X
we are given a homomorphism ∆ : Hq(X)→ Hq−1(U ∩ V ).

Note that the condition on U and V is automatically satisfied if U and V are both open in X,
and in fact this is probably the most important special case for our purposes.

In our discussion of simplicial homology we noted the existence of homology homomorphisms
H∗(L

ω)→ H∗(K
ω) associated to a subcomplex inclusion L ⊂ K. In singular homology we want to

have homology homomorphisms associated to arbitrary continuous mappings of pairs.

3. For each map of pairs f : (X,A)→ (Y,B) and each integer a we are given a homomorphism
f∗ : Hq(X,A)→ Hq(Y,B).

Sometimes such data are called a ∂-functor (pronounced “dell functor”) from the category of
pairs of topological spaces and maps of pairs to the category of abelian groups. The maps ∂ are
frequently called connecting homomorphisms or switchback homomorphisms.

It is also useful (but actually redundant) to assume a relationship between the fundamental
group and the first homology group which is a formal version of the relationship between the
fundamental group and first homology group of a connected graph, and for this we need the
following:

4. There is a family of group homomorphisms h(X,x) : π1(X,x)→ H1(X, {x}).

Finally, we want some sort of relationship between our axiomatized singular homology theory
and the simplicial homology groups we have studied.

5. If (P,K) is a simplicial complex (strictly speaking, with an ordering of the vertices)
and (Q,L) is a subcomplex of (P,K), there is a sequence of homomorphisms θ(Kω ,Lω) :

Hq(K
θ,Lθ)→ Hq(P,Q).

For the sake of notational simplicity, for the rest of this section we implicitly assume that
we are given compatible linear orderings of simplicial complexes (in other words, subcomplexes
inherit the induced ordering) and simplicial homology groups will be written without including the
orderings explicitly.

Functoriality and naturality

One reason the fundamental group is so useful is that it is functorial with respect to continuous
maps; if f and g are two composable maps of pointed spaces and f∗ and g∗ then (g of)∗ = g∗ of∗
and if f is an identity map then so is f∗. We want a similar sort of condition for homology groups.

(A.1) If f : (X,A)→ (Y,B) and g : (Y,B)→ (Z,C) are maps of pairs, then (g of)∗ = g∗ of∗. If
f is the identity map on (X,A), then f∗ is the identity on Hq(X,A) for all integers q.

One important consequence of this is that if f is a homeomorphism of pairs, then the homology
maps f∗ are isomorphisms (if g = f−1, then we have g∗ = (f∗)

−1
by the same sort of argument

which proves an analogous result for fundamental groups).

We have only defined maps in simplicial homology groups from H∗(K,L) to H∗(K
′,L′) when

K and L are subcomplexes of K′ and L′ respectively, but we would like θ to be natural with respect
to such maps of pairs.
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(A.2) If we are given inclusions as in the preceding paragraph and the underlying spaces are
given by (P,Q) and (P ′, Q′) respectively, then for each integer q the diagram

Hq(K,L) −−−−−→ Hq(K
′,L′)

yθ
yθ

Hq(P,Q)
∂−−−−−→ Hq(P

′, Q′)

is commutative, where the horizontal arrows come from subcomplex or subspace inclusions
of pairs.

We also want the homology homomorphisms induced by a map f to be compatible with the
maps ∂ in the following sense:

(A.3) If f : (X,A)→ (Y,B) is a map of pairs, then for each integer q the diagram

Hq(X,A)
∂−−−−−→ Hq−1(A)

yf∗
yf∗

Hq(Y,B)
∂−−−−−→ Hq−1(B)

is commutative.

We also want a similar property for the map ∆ : Hq+1(U ∪V )→ Hq(U ∩V ) given in the data.
It turns out that this is a consequence of other axioms, but we shall not try to prove this.

(A.4) If we are given spaces Xi = Ui ∪ Vi for i = 1, 2, where Interior(Ui) ∪ Interior(Vi) = Xi,
and f : X1 → X2 is a continuous map which maps U1 and V1 into U2 and V2 respectively,
then for all integers q the diagram

Hq(X1)
∆−−−−−→ Hq−1(U1 ∩ V1)yf∗

yf∗
Hq(X2)

∆−−−−−→ Hq−1(U2 ∩ V2)

is commutative.

We also want the connecting homomorphisms from singular and simplicial homology to be
compatible:

(A.5) If (Q,L) is a subcomplex of the simplicial complex (P,K), the for all integers q the diagram

Hq(K,L)
∂−−−−−→ Hq−1(L)

yθ
yθ

Hq(P,Q)
∂−−−−−→ Hq−1(Q)

is commutative.

Finally, we want a naturality property of the map h from fundamental groups to 1-dimensional
homology.
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(A.6) If f : (X,x) → (Y, y) is a continuous base point preserving map of arcwise connected
spaces, then the diagram

π1(X,x)
f∗−−−−−→ π1(Y, y)yh

yh

H1(X, {x}) f∗−−−−−→ H1(Y, {y})
is commutative.

Usually a mapping like h is called a Hurewicz (hoo-RAY-vich) homomorphism.

VI.2 : Exactness, homotopy invariance and support properties

(H, §2.3)

We want singular homology groups to have strong versions of the properties that hold for
simplicial complexes, and we would like to have some sort of relation between the singular homology
of an arbitrary topological space and the the homology of simplicial complexes. Exactness and
homotopy invariance are strengthened versions of the long exact simplicial homology sequence and
the theorem stating that the simplicial homology of a star shaped complex is isomorphic to the
singular homology of a point. The support property states that the singular homology of a space
X is determined by the singular homology of its compact subspaces, and in fact it is determined
by continuous maps from polyhedra into X.

Exactness

In simplicial homology we have a long exact sequence associated to a pair (Q,L) ⊂ (P,K),
and we want a similar exact sequence in singular homology for the pair (P,Q). In fact, we want
such a sequence for an arbitrary pair, and we want it to have good compatibility properties. We
shall start with existence:

(B.1) If (X,A) is a pair of topological spaces then there is a long exact sequence

· · · Hq+1(X,A)
∂−→ Hq(A)

i∗−→ Hq(X)
j∗−→ Hq(X,A)

∂−→ Hq−1(A) · · ·
which extends indefinitely to the left and to the right for all integers q. In this sequence
i∗ is induced by the inclusion map A → X, and j∗ is induced by the inclusion of pairs
from X to (X,A).

We actually need two types of compatibility; namely, compatibility with respect to continuous
maps of pairs and compatibility with the maps θ passing from simplicial to singular homology.
These will be stated individually, and they all follow from (B.1), the first group of axioms, and the
known properties of simplicial homology groups (hence they are redundant).

(B.2) If we are given a continuous map of pairs f : (X,A)→ (Y,B), then we have the following
commutative ladder diagram in which the two rows are exact:

· · · Hq+1(X,A)
∂−→ Hq(A)

i∗−→ Hq(X)
j∗−→ Hq(X,A)

∂−→ Hq−1(A) · · ·

· · ·
yf∗

yf∗
yf∗

yf∗
yf∗

· · · Hq+1(Y,B)
∂−→ Hq(B)

i∗−→ Hq(Y )
j∗−→ Hq(Y,B)

∂−→ Hq−1(B) · · ·
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This statement turns out to be a fairly straightforward consequence of (A.1) and (B.1).

(B.3) Let (X,K) be a simplicial complex, and let (A,L) be a subcomplex. Then there is
a commutative ladder as below in which the horizontal lines represent the long exact
homology sequences of pairs and the vertical maps are the natural transformations from
simplicial to singular homology.

· · · Hq+1(K,L)
∂−→ Hq(L)

i∗−→ Hq(K)
j∗−→ Hq(K,L)

∂−→ Hq−1(L) · · ·

· · ·
yθ

yθ
yθ

yθ
yθ

· · · Hq+1(X,A)
∂−→ Hq(A)

i∗−→ Hq(X)
j∗−→ Hq(X,A)

∂−→ Hq−1(A) · · ·

This statement turns out to be a fairly straightforward consequence of (A.2), (B.1) and the
long exact simplicial homology sequence for the pair (K,L).

This is a good point at which to derive a few simple consequences of the axioms thus far.

PROPOSITION 1. (i) For every space X the groups Hq(X,X) are trivial.

(ii) If X is the empty set then Hq(X) = 0 for all integers q.

Proof. The second statement follows from the first because Hq(X) = Hq(X, ∅).
To prove the first statement, consider the long exact homology sequence for the pair (X,X),

and especially the following piece:

Hq(X)
i∗−→ Hq(X)

j∗−→ Hq(X,X)
∂−→ Hq−1(X)

i∗−→ Hq−1(X)
j∗−→ Hq−1(X,X)

In this sequence i denotes the identity map on X so that i∗ is the identity on H∗(X). By
exactness this implies that j∗ and ∂ are both zero mappings (the first because i∗ is onto, the
second because i∗ is 1–1). Now j∗ = 0 implies that the map ∂ is 1–1 by exactness, and its image
is isomorphic to Hq(X,X). On the other hand, we also know that ∂ = 0, and this implies that
Hq(X,X) = 0.

There will eventually be one more axiom concerning long exact sequences (the Mayer-Vietoris
Sequence Axiom), but we we postpone its statement because if fits more naturally into another
group of assumptions.

Homotopy invariance

We have seen that the simplicial homology of an n-simplex is isomorphic to the simplicial
homology of a one point complex, with H0(P,K) ∼= Z and Hq(P,K) = 0 for q 6= 0, and our
proof used an algebraic analog of the standard topological homotopy contracting the simplex into
a vertex. Also, for spaces with base points we know that base point preservingly homotopic maps
induce the same homomorphisms of fundamental groups. The Homotopy Invariance Axiom is a
very strong analog of these phenomena. For the sake of completeness, we note that a two maps of
pairs f0, f1 : (X,A)→ (Y,B) are homotopic as maps of pairs if there is a continuous map

H : (X,A) × [0, 1] =
(
X × [0, 1], A× [0, 1]

)
−→ (Y,B)

such that the restriction of H to X × {i} is fi for i = 0, 1.
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(C.1) If f0, f1 : (X,A) → (Y,B) are homotopic as maps of pairs, then their induced homology
homomorphisms f0 ∗ and f1 ∗ are equal.

One important consequence of this is that if f is a homotopy equivalence of pairs in the
appropriate sense, then the homology maps f∗ are isomorphisms. This is analogous to a basic
result for fundamental groups, and the proof is also analogous: Let g be a homotopy inverse so
that g of and f og are homotopic to the respective identity maps. Then homotopy invariance
and functoriality imply that g∗ of∗ and f∗ og∗ are identity maps in homology, and hence f∗ is an
isomorphism with inverse g∗.

Compact supports and polyhedral generation

Two important properties of the fundamental group are that

(1) each class in π1(X,x) comes from π1(C, x) for some compact subset C containing x,

(2) if C is a compact subset of C containing x, then a class α ∈ π1(C, x) maps to the trivial
element of π1(X,x) (under the inclusion induced map) if and only if there is some compact
subset D such that C ⊂ D ⊂ X and α maps to the trivial element of π1(D,x) (under the
inclusion induced map).

These results hold because the image of a closed curve is always compact subset, and similarly
for a nullhomotopy of a closed curve. We need a similar property for singular homology which is
sometimes called a compact supports property :

(C.2) If u ∈ Hq(X,A) then there is a pair of compact subsets (C,C ′) such that u is in the image
of the map from Hq(C,C

′) to Hq(X,A) induced by inclusion. Furthermore, if (C,C ′) is
a pair of compact subsets and v ∈ Hq(C,C

′) maps trivially to Hq(X,A) under the map
induced by inclusion, then there is some compact pair (D,D ′) such that C ⊂ D, C ′ ⊂ D′,
and v maps trivially to Hq(D,D

′) under the map induced by inclusion.

Although this does not correspond to any of the original axioms due to Eilenberg and Steenrod,
it plays a very important role in the applications of singular homology theory and the proof of its
uniqueness.

The compact supports property is adequate for most basic applications of singular homology
theory, but in order to prove uniqueness we need a slightly stronger polyhedral generation property ,
which essentially says that the singular homology of a space is somehow given by the singular
homology of simplicial complexes.

(C.3) If u ∈ Hq(X,A) then there is a simplicial complex pair (P ′,K′) ⊂ (P,K) (K,K′) and a
continuous map of pairs

f : (P, P ′) −→ (X,A)

such that u is in the image of the map f∗ from Hq(P, P
′) to Hq(X,A). Furthermore, if

(K,K′) is a simplicial complex pair with underlying space pair (P, P ′) and v ∈ Hq(P, P
′)

maps trivially to Hq(X,A) under the map f∗, then there is another simplicial complex pair
(Q′,L′) ⊂ (Q,L) and a continuous function g : (Q,Q′) → (X,A) such that the following
hold:

(i) The pair (P, P ′) is contained in (Q,Q′) such that P ′ and P correspond to subcomplexes
of L′ and L respectively.

(ii) The restriction of g to (P, P ′) is equal to f .
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(iii) The image of v in Hq(Q,Q
′), under the map induced by inclusion, is zero.

Note. Nothing is stated or assumed about the relationship between K and L; in particular,
K is not necessarily a subcomplex of L.

It is at least somewhat known that the polyhedral exhaustion property holds for singular
homology (in particular, this is an immediate consequence of results on geometric realizations of
semisimplicial sets; one reference is J. P. May, Simplicial Objects in Algebraic Topology , University
of Chicago Press, Chicago IL, 1982). Although one can give a fairly direct proof of (C.3) for the
standard construction of singular homology using machinery from algebraic topology appearing in
most textbooks, a direct reference for such a proof seems hard to find, so we shall give a proof of
this sort in Section VI.∞.

The implication (C.3) =⇒ (C.2) is very short and simple. The continuous image of a polyhedron
is a compact subset of the codomain, and hence in (C.2) we can take the compact sets to be suitable
continuous images of polyhedra.

VI.3 : Normalization properties

(H, §§2.3, 2.A)

These properties are analogous to specifying the initial value for a solution to a differential
equation; in a variety of special cases, singular homology groups should be given by objects and
principles we already understand. First of all, we want singular homology to be the same as sim-
plicial homology for polyhedral pairs, and the natural transformation from simplicial to singular
homology is an obvious candidate for an isomorphism between the two types of homology groups.
Furthermore, we also want homology groups to vanish in negative dimensions, we want the homol-
ogy groups of a space to split into a directs sum of the homology groups of its arc components,
and — as in the case of connected graphs — we want the first homology group of an arcwise
connnected space to be the abelianization of the fundamental group (the last of these is the reason
for introducing the natural homomorphism from π1 to H1 as part of the structure). We shall state
the redundancies as we introduce the axioms, but we do not have the time to give any proofs.

The first axiom involves the equivalence of singular and simplicial homology.

(D.1) If (Q,L) is a subcomplex of (P,K), is a linear ordering of the vertices in K, then for all
integers q the map θ : Hq(K,L)→ Hq(P,Q) is an isomorphism.

We should note that the topological invariance of simplicial homology groups and

their independence of the vertex ordering are immediate consequences of this axiom,
and if we combine these with homotopy invariance we conclude that simplicial homology groups
depend only on the homotopy type of the underlying topological space.

The next axiom is a splitting principle for the homology of a space into a sum of the homology
groups of the arc components. If (P,K) is a polyhedron then we have seen that H0(K) is free
abelian on the set of components (equivalently, arc components), and H∗(K) splits into a direct
sum of the homology groups for the various components, and we want a similar principle for singular
homology:
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(D.2) If X is written as a union of its (pairwise disjoint) arc components Xα, then the inclusion
maps iα : Xα → X define an isomorphism from the (weak) direct sum ⊕α H∗(Xα) to
H∗(X).

The weak direct sum of the abelian groups Gα consists of all elements of
∏

α Gα such that
only finitely many coordinates are nonzero (with addition defined coordinatewise). This coincides
with the direct product if and only if the family {Gα} is finite.

The next assumption is that the homology of an arcwise connected space is always given by
the same rule which applies to simplicial complexes.

(D.3) If X is arcwise connected, then H0(X) ∼= Z.

The preceding two axioms imply that if X is arbitrary, then H0(X) is isomorphic to a free
abelian group on the arc components of X.

Here are a few specific consequences of (D.2) and (D.3) that are very useful in many situations.

PROPOSITION 1. (i) If X is an arcwise connected space and p ∈ X, let P = {p}. Then the
inclusion of P in X induces an isomorphism from H0(P ) to H0(X).

(ii) If X is a space whose arc components are the subspaces Xα, let eα ∈ H0(X) denote
the image of the standard generator of H0({1}) ∼= Z under the homomorphism induced by the
composite {1} ∼= {pα} ⊂ Xα where pα ∈ Xα. Let f : X → Y be continuous, and define Yβ , eβ ,
pβ to be the analogs of Xα, eα, pα for Y . If f maps the arc component Xv of X into the arc
component Yw of Y , then f∗ sends ev to ew.

Proof. Let c : X → P be the constant map. Then the composite P ⊂ X → P is the identity, so
that the composite map in homology

Z ∼= H0(P ) → H0(X) → H0(P ) ∼= Z

is also the identity. Since H0(X) ∼= Z, it follows that the maps H0(P ) → H0(X) and H0(X) →
H0(P ) must be isomorphisms.

The second part involves the following commutative diagram, in which we abuse notation and
let f refer generically to various mappings defined using f :

{pv} ⊂−→ Xv
⊂−→ X

yf
yf

yf

{f(pv)} ⊂−→ Yv
⊂−→ Y

If we take the associated commutative diagram of homology groups, the conclusion of the second
part drops out immediately.

The next axiom is actually redundant, but we are assuming it for the sake of convenience:

(D.4) If q < 0 then for all pairs (X,A) we have Hq(X,A) = 0.

The final axiom in this group is also redundant, but it provides an important relationship
between 1-dimensional homology and the fundamental group. An early version of this result was
due to H. Poincaré.

(D.5) If X is an arcwise connected space and x ∈ X, then the homomorphism h(X,x) :
π1(X,x)→ H1(X, {x}) is onto and its kernel is the commutator subgroup.
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VI.4 : Excision and Mayer-Vietoris sequences

(H, §2.3)

These axioms are variants of the simplicial homology isomorphism

H∗(K1,K1 ∩K2) −→ H∗(K1 ∪K2,K1)

and the long exact Mayer-Vietoris that were derived in Unit V. One can prove each of the three
statements below is basically equivalent to the others.

The first statement is analogous to excision in simplicial homology. However, one major
difference is the restriction on pairs; in the simplicial excision result there is no hypothesis that the
subcomplex have a nonempty interior, but in the singular excision axiom the subspace must have
a nonempty interior.

(E.1) Suppose that the space X can be written as a union of subsets A∪B such that the interiors
of A and B form an open covering of X. Then the inclusion of pairs from (B,A ∩B) to
(X = A ∪B,A) induces isomorphisms in homology.

In particular, this axiom applies if A and B are open subsets of X.

The second excision axiom is an alternative form of the first one; it goes back to the work of
Eilenberg and Steenrod, and it is the version most often found in textbooks.

(E.2) Suppose that (X,A) is a pair of spaces and U is a subset of A such that the closure U is
contained in the interior of A. Then the inclusion of pairs from (X −U,A−U) to (X,A)
induces isomorphisms in homology.

One can derive (E.2) as a consequence of (E.1) by taking B = X − U (note that the open set
X − U is contained in X − U).

AS noted in the first chapter of Eilenberg and Steenrod, the preceding axioms imply the
existence of corresponding Mayer-Vietoris sequences. As noted in Unit V, Mayer-Vietoris sequences
may be viewed as analogs of the Seifert-van Kampen Theorem, which describes the fundamental
group of a space X in terms of the fundamental groups of two open subspaces U and V such that
X = U ∪V and all the spaces X, U, V, U ∪V, X = U ∩V are nonempty and arcwise connected. If
X is the union of two open subsets U and V (with not restrictions involving arcwise connectedness),
these Mayer-Vietoris sequences exhibit a corresponding relationship involving the homology groups
of U, V, X = U ∪ V and U ∩ V . Once again, to avoid lengthy digressions we shall assume the
existence of such sequences.

(E.3) Let X be a topological space with X = U ∪ V such that Interior(U) ∪ Interior(V ) = X.
Denote the inclusions of U and V in X by iU and iV respectively, and denote the inclusions
of U ∩ V in U and V by gU and gV respectively. Then there is a long exact sequence

· · · → Hq+1(X)→ Hq(U ∩ V )→ Hq(U)⊕Hq(V )→ Hq(X)→ · · ·

in which the map from H∗(U)⊕H∗(V ) to H∗(X) is given on the summands by (jU )∗ and
(jV )∗ respectively, the map from Hq+1(X) to Hq(U ∩ V ) is the map ∆ in the axiomatic
data, and the map from H∗(U ∩ V ) to H∗(U) ⊕H∗(V ) is given in coordinates by (iU )∗
and −(iV )∗ respectively (note the signs!!).
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As before, this axiom applies if U and V are open subsets of X.

We shall also need a naturality property for Mayer-Vietoris sequences with respect to suitably
defined mappings of triads (X;U, V ). Specifically, let Xi = Ui ∪ Vi, where i = 1, 2 and Ui, Vi

satisfy the condition in (E.3). If f : X1 → X2 is a continuous mapping such that f [U1] ⊂ U2

and f [V1] ⊂ V2 (this is what we shall call map of triads), then we want this sequence to have the
following naturality properties with respect to f :

(E.4) In the setting of the preceding paragraph, assume we are given a map of triads f from
(X1;U1, V1) to (X2;U2, v2). Then there is a commutative ladder as below in which the
horizontal lines represent the long exact Mayer-Vietoris sequences of (E.3) and the vertical
maps are all induced by f :

· · · → Hq+1(X1) → Hq(U1 ∩ V1) → Hq(U1)⊕Hq(V1) → Hq(X1) → · · ·
↓ ↓ ↓ ↓

· · · → Hq+1(X2) → Hq(U2 ∩ V2) → Hq(U2)⊕Hq(V2) → Hq(X2) → · · ·

In analogy with the naturality properties of (B.2) and (B.3), axiom (E.4) turns out to be a
fairly straightforward consequence of (E.3) and (A.4).

VI.∞ : Existence and uniqueness theorems

(H, §2.3, 3.F)

TO BE COMPLETED
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VII . Some elementary applications

The motivation for developing delicate and abstract topological machinery like singular homol-
ogy is that such constructions are useful for answering mathematical questions that were interesting
but difficult to handle with previously existing tools. One of the most obvious examples is the Jor-
dan Curve Theorem, which states that the complement of a simple closed curve in the plane has
two connected components, and the curve is the boundary of each component. Experience strongly
suggests that such a result is true, but even in simple cases like regular smooth curves the proof is
challenging (for example, see the proof in M. do Carmo, Differential Geometry of Curves and Sur-
faces, Prentice-Hall, 1976). There is a proof of this result in Munkres which does not use homology
theory, but it is long and delicate. We shall use homology theory to give a fairly short proof of
the Jordan Curve Theorem and its higher dimensional generalizations; one needs the full force of
homology theory for the latter, for they cannot be proved using the concepts in Munkres’ book.

Likewise, homology theory provides a very simple proof that the coordinate spaces Rm and
Rn are not homeomorphic if m 6= n. Once again, the material in Munkres yields these results if
n = 1 or 2 but cannot be used to draw any conclusions if m,n ≥ 3. We shall also use homology
theory to give alternate proofs for two results of Munkres about graphs which are not topologically
embeddable in R2 (although we know that all graphs are nicely embeddable in R3). Finally, if time
permits we shall use homology theory to derive a classical formula of R. Descartes and L. Euler
relating the numbers of edges, vertices and faces in a polyhedron which bounds a convex linear cell
in R3:

E + 2 = V + F

Many additional uses of homology theory are mentioned very briefly in morgan-lamberson.pdf.

VII.1 : Consequences of the axioms

(H, §§2.1–2.3, 2.B)

Our first objective is to show that the coordinate spaces R
n and R

m are not homeomorphic if
m 6= n. For the sake of clarity and convenience we begin by showing that certain convex sets in
Rn are homeomorphic. We have already stated more general results and referred to files for their
proofs, but it seems worthwhile to give direct, simple proofs for the specific examples of interest to
us here.

Semi-explicit homeomorphisms of various convex sets

The sets of interest to us are the n-simplex En in Rn given by the inequalities

xi ≥ 0 ,
∑

i

xi ≥ 1

the hypercubes [a, b]n which are homeomorphic to each other because all closed intervals in R are
homeomorphic, and the usual unit disk Dn.
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THEOREM 1. All of the sets listed above are homeomorphic such that interior points of one
correspond to interior points of the other and boundary points of one correspond to boundary
points of the other.

Proof. We begin with the easiest pair; namely, the disk and the hypercube [−1, 1]n. Given a
vector x ∈ Rn, let |x|2 denote its length with respect to the usual inner product and let |x|∞ be the
maximum of the absolute values of the coordinates (= maxi |xi|). Both of these define norms on
Rn, and the unit disks with respect to these norms are Dn and [−1, 1]n respectively. If one defines
a map f of Rn to itself by f(0) = 0 and by

f(x) =
|x|∞
|x|2

· x

if x 6= 0, then it follows that f is 1–1 onto and a homeomorphism except possibly at 0, and that
for each r > 0 the map f sends points satisfying |x|2 = r to points satisfying |x|∞ = r; one can
check continuity of f and its inverse at 0 using the elementary inequalities

|x|∞ ≤ |x|2 ≤ n · |x|∞ .

It follows that f defines a homeomorphism from Dn to [−1, 1]n.

Since all n-dimensional hypercubes are homeomorphic, it will suffice to show that En is home-
omorphic to the hypercube [0, 1]n such that their boundaries correspond. For this we need the
“taxicab norm” |x|1 =

∑
i |xi|. Let Fn be the unit disk with respect to this norm. Then En and

[0, 1]n are the intersections of the unit disks Fn and [−1, 1]n with the closed first orthant in Rn

defined by the inequalities xn ≥ 0. In analogy with the previous paragraph define a mapping g by
g(0) = 0 and

g(x) =
|x|∞
|x|1

· x

if x 6= 0. Then g has similar properties to f , with continuity at 0 is true because of the inequalities

|x|∞ ≤ |x|1 ≤ n · |x|∞ .

By construction, both f and g map the first orthant into itself such that the boundary points (those
for which some coordinate xi = 0) are sent to themselves. The boundaries of En and [0, 1]n are
given by their intersections with the orthants and their intersections with the sets |x|p = 1 where
p = 1 and ∞ respectively, and therefore it follows that g defines the desired homeomorphism from
En to [0, 1]n.

Some nonhomeomorphic spaces

THEOREM 2. If m and n are distinct positive integers, then Sm and Sn are not homeomorphic,
and similarly Rm and Rn are not homeomorphic.

Proof. By Theorem 1 we know that Sk is homeomorphic to the boundary of the simplex Ek+1,
and hence Hq(S

k) = Z if q = 0, k and zero otherwise. In particular, this means that the homology
groups of Sm and Sn are not isomorphic if m 6= n, so the spaces cannot be homeomorphic.

If Rm and Rn were homeomorphic, then it follows that their one point compactifications would
also be homeomorphic (verify this as a general statement about locally compact Hausdorff spaces!).
Since these one point compactificatons are homeomorphic to Sm and Sn respectively, it follows that
Rm and Rn cannot be homeomorphic if m 6= n.
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Local homology at a point

Intuitively it is clear that a closed interval is not homeomorphic to a Y shaped graph because
the latter has a vertex which lies on exactly three edges. Similarly, in Munkres it is noted that
a figure eight space (8) is not homeomorphic to a figure theta (θ) space even though they are
homotopy equivalent, and one expects this because the first space has a graph decomposition for
which there is a vertex lying on four edges and the analogous statement for the second space
appears to be false. These statements appear to reflect something about the topological nature of
neighborhoods of points in a space. Local homology provides an efficient means for handling such
problems.

Definition. Let X be a Hausdorff topological space, and let x ∈ X. The local homology groups
of x in X are given by H∗(X,X − {x}).

These groups have the following important properties:

PROPOSITION 3. (Localization property) Let x ∈ X where X is Hausdorff, and let U be an
open neighborhood of x. Then the inclusion map of pairs induces isomorphisms fromHq(U,U−{x})
to Hq(X,X − {x}) for all integers q.

Proof. This is an immediate consequence of the excision axiom (E.1) to U and V = X −{x}, for
then X = U ∪ V and U ∩ V = U − {x}.
PROPOSITION 4. (Topological invariance) If X and Y are Hausdorff spaces with x ∈ X, and
if f : X → Y is a homeomorphism, then there is an isomorphism of local homology groups from
H∗(X,X − {x}) to H∗(Y, Y − {f(x)}).
Proof. The homeomorphism f induces a homeomorphism of pairs (X,x − {x}) ∼= (Y, Y − {y}),
so the associated homology groups must be isomorphic.

For computational purposes the following result is very helpful when working with local ho-
mology groups:

LEMMA 5. Suppose that B ⊂ A ⊂ X and B is a deformation retract of A. Then the inclusion
map of pairs induces isomorphisms from H∗(X,B) to H∗(X,A).

Proof. By the exactness axiom (B.2) we have the following commutative diagram in which the
rows are long exact homology sequences:

· · · Hq+1(X,B)
∂−→ Hq(B)

i∗−→ Hq(X)
j∗−→ Hq(X,B)

∂−→ Hq−1(B) · · ·

· · ·
yg∗

yf∗
y=

yg∗
yf∗

· · · Hq+1(X,A)
∂−→ Hq(A)

i∗−→ Hq(X)
j∗−→ Hq(X,A)

∂−→ Hq−1(A) · · ·

The mappings f and g are the associated inclusions of spaces or pairs. Since B is a deformation
retract of A the maps f∗ are isomorphisms, and of course the identity maps on H∗(X) are also
isomorphisms. Therefore the Five Lemma implies that the mappings g∗ are also isomorphisms.

Example. The hypotheses of the proposition do not imply that the inclusion (X,B) ⊂ (X,A)
is a homotopy equivalence of pairs; as noted in Hatcher, the inclusion (Dn, Sn−1) ⊂ (Dn, Dn−{0})
satisfies the hypothesis but this map is not a homotopy equivalence of pairs.

Application to graphs

If (X, E) is a graph then it is easy to compute the local homology of X at all points.
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THEOREM 6. Let (X, E) be a connected graph, and let x ∈ X. Then the local homology group
H1(X,X − {x}) is given as follows:

(i) If x is not a vertex for E then H1(X,X − {x}) ∼= Z.

(ii) If x is a vertex which lies on exactly n edges, then H1(X,X − {x}) ∼= Zn−1.

In particular, if nk(X, E) is the number of vertices which lie on k vertices and k 6= 2, then
Theorem 6 implies that nk(X, E) depends only upon the topological space X because it is the
number of points in X for which the 1-dimensional local homology is isomorphic to Zk−1. Stated
differently, if the underlying spaces of the connected graphs (X, E) and (X ′, E ′) are homeomorphic,
then nk(X, E) and nk(X ′, E ′). One can apply this very easily to determine whether graphs corre-
sponding to various letters of the alphabet are homeomorphic to each other, and there is a problem
of this type in the exercises.

Proof of Theorem 6. By the Localization Property it suffices to compute the relative groups
H1(U,U − {x}) where U is some open neighborhood of x.

(i) Suppose that x lies in the edge E but is not an endpoint, and let F be the union of all the
edges except E together with the vertices of E, and let U = X − F ; then U is open and contains
x, and the pair (U,U − {x}) is homeomorphic to (V, V − {t}) where V is the open unit interval
(0, 1) and t ∈ V . The local homology of the latter pair can be studied using the tail end of the long
exact homology sequence:

· · · → 0 = H1(V )→ H1(V, V − {t})→ H0(V − {t})→ H0(V ) = Z

The homology groups of V are given as in this sequence because V is convex and hence contractible.
Since the space V − {t} has two components, axiom (D.2) and Proposition VI.3.1 implies that
H0(V − {t}) ∼= Z2 and each free generator of the latter maps onto a free generator of H0(V ). It
follows immediately that the local homology group must be isomorphic to Z.

(ii) Let V be the open star on the vertex x as defined in Unit III. Then {x} is a deformation
retract of V by Proposition III.1.7 and V − {x} is homeomorphic to a union of pairwise disjoint
subsets Vj = Ej − [endpoints], where Ej runs through the n edges which have x as one of their
endpoints. Since V is contractible one has an exact sequence for computing H1(V, V −{t}) just like
the one in the preceding paragraph. However, in this case we know that that H0(V − {t}) ∼= Zn

and each free generator of the latter maps onto a free generator of H0(V ). It follows immediately
that the local homology group must be isomorphic to Z

n−1.

Local homology also yields the following strengthening of Theorem 2.

THEOREM 7. (Invariance of dimension, L. E. J. Brouwer) Let U and V be nonempty open
subsets of Rm and Rn respectively. If U is homeomorphic to V , then m = n.

Proof. It suffices to prove that if W is a nonempty open subset of Rk then Hk(W,W −{p}) ∼= Z

and Hj(W,W − {p}) = 0 if j 6= k. Thus the local homology groups at points x ∈ U and y ∈ V are
not isomorphic if m 6= n, and accordingly U and V cannot be homeomorphic in that case.

By the localization property it suffices to prove that the local homology groups H∗(R
k,Rk −

{p}) are given as in the preceding paragraph. Furthermore, it suffices to consider the case where
p = 0, for the translation map T (x) = x + p is a homeomorphism which induces isomorphisms
H∗(R

k,Rk − {0}) ∼= H∗(R
k,Rk − {p}).

It will be convenient to treat the case k = 1 separately. We can use the argument in the first
part of Theorem 6 to prove that H1(R,R− {0}) ∼= Z. Since R− {0} has the homotopy type of S0
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it follows that its homology vanishes in all dimensions except zero, so for each q ≥ 2 we have the
following exact sequence in which all terms except the relative group are known to be zero:

0 = Hq(R)→ Hq(R,R− {0})→ Hq−1(R− {0})→ Hq−1(R) = 0

It follows that Hq(R,R − {0}) must also be zero if q ≥ 2. Finally the 0-dimensional relative
homology is given by the following piece of the long exact homology sequence

H0(R− {0})→ H0(R)→ H0(R,R− {0})→ 0

since homology groups vanish in negative dimensions. We already know that the map at the left of
this exact sequence is onto, and by exactness it follows that the second map is zero and the third
is 1–1. These combine to imply that H0(R,R− {0}) = 0.

Since Sk−1 is a deformation retract of Rk − {0} it follows that the homology groups of the
latter are Z in dimensions 0, k − 1 and zero otherwise. If q > 0, then we have the exact homology
sequence

0 = Hq(R
k)→ Hq(R

k,Rk − {0})→ Hq−1(R
k − {0})→ Hq−1(R

k) .

If q ≥ 2 then the groups at the end of this sequence are both zero, and therefore we have

Hq(R
k,Rk − {0}) ∼= Hq−1(R

k − {0})

for q ≥ 2. This yields the conclusion of the theorem except in the cases q = 0, 1. The 0-dimensional
case can be established by the same argument employed in the previous paragraph, so we are left
with the 1-dimensional case, for which we have the following exact sequence:

0 = H1(R
k)→ H1(R

k,Rk − {0})→ H0(R
k − {0})→ H0(R

k) = Z

Since k ≥ 2 the space Rk − {0} is connected and hence the map at the right is an isomorphism.
This implies that the map in the middle is zero and hence the map on the left is onto. Since the
domain of the latter map is zero, it follows that H1(R

k,Rk − {0}) = 0.

Further nonhomeomorphism theorems

We know that two spheres and two Euclidean spaces of different dimensions cannot be home-
omorphic, and it is natural to ask similar questions about other familiar pairs like Dm and Dn or
Rm

+ and Rn
+ where Rk

+ denotes the points in Rk whose first coordinate is nonnegative. Invariance
of domain provides effective criteria for dealing with such questions, and the following result will
show that the paired spaces cannot be diffeomorphic if their dimensions are unequal:

THEOREM 8. Suppose that Xm and Xn are subspaces of some Rp and for k = m,n the set
Xk has an open dense subset which is homeomorphic to an open subset of R

k. If Xm and Xn are
homeomorphic, then m = n.

Proof. Let Uk ⊂ Xk be the open dense subset, and let h : Xm → Xn be the homeomorphism.
Then h−1[Un] is dense in Xm because h is a homeomorphism, and it is open by the continuity of h,
and h[Um] has analogous properties. It follows that the intersections Um ∩h−1[Un] and h[Um]∩Un

are open subsets of Um and Un respectively and hence are homeomorphic to open subsets of Rm

and Rn respectively. These sets are homeomorphic because h maps the first to the second, and
therefore Invariance of Dimension implies that m = n.
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VII.2 : Nonretraction and fixed point theorems

(H, §2.B; M, §55)

Recall that a continuous mapping f : X → Y is a retract if there is a continuous mapping
g : Y → X such that g of is the identity on X, and a continuous mapping p : X → Y is a
retraction if there is a continuous mapping q : Y → X such that p oq is the identity on Y . It
follows that the mappings q and f are 1–1 and the mappings p and g are onto; also, q is a retract
and g is a retraction. Many but not all subspace inclusion mappings are retracts, and the following
result shows the special natures of retracts.

PROPOSITION 1. Suppose that the mapping f : X → Y is a retract. Then the induced maps
in homology f∗ are injections onto direct summands.

Proof. The composite g∗ of∗ = (g of)∗ is the identity on H∗(X). Therefore the identity g∗f∗(a) =
a implies that the kernel of f∗ is zero so that f∗ is 1–1. One can then check directly that each
group Hq(Y ) is isomorphic to the direct sum of the image of f∗ and the kernel of g∗.

COROLLARY 2. For every k ≥ 2, the sphere Sk−1 is not a retract of the disk Dk.

This is true because the homology groups of Dk vanish in all positive dimensions but the group
Hk−1(S

k−1) is nonzero.

The Brouwer Fixed Point Theorem

At this point it is almost traditional to state and prove the Brouwer Fixed Point Theorem.

THEOREM 3. (Brouwer Fixed Point Theorem) For all n ≥ 0 every continuous map f : Dn →
Dn has a fixed point; in other words, there is a point x in Dn such that f(x) = x.

Proof. If n = 1 this is a fairly simple exercise in point set topology. Suppose that i : S 0 → D1

is the inclusion mapping and r : D1 → S0 is such that r oi is the identity on S0. As noted before,
it follows that r is onto; since D1 is connected but S0 is not, this is impossible and consequently
there cannot be a continuous mapping r such that r oi is the identity.

In the remaining cases, the standard proof is analogous to the argument on page 32 of Hatcher
for the case n = 2. Assume that there is a continuous mapping f : Dn → Dn with no fixed point,
so that f(x) 6= x for all x. For each point x ∈ Dn, let r(x) ∈ Sn−1 be the unique point where the
ray from f(x) through x meets the boundary sphere. By construction r(x) = x if x ∈ Sn−1, and if
r is continuous then it follows that Sn−1 is a retract of Dn because r oi is the identity.

The argument in Hatcher states that the “continuity of r is clear”; although this seems reason-
able, it is still necessary to check the continuity of the geometrically described mapping r retraction
explicitly. For the sake of completeness we have written up the details in brouwer.pdf.

An application to matrices with nonnegative entries

The Brouwer Fixed Point Theorem and its generalizations play important roles in many
branches of mathematics and their applications to other subjects. Here is one online reference
for further information:

http://en.wikipedia.org/wiki/Brouwer fixed-point theorem
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In these notes we shall only use the theorem to prove a result on eigenvalues and eigenvectors of
matrices. The first step is the following elementary fact:

LEMMA 4. Let X be a topological space which is homeomorphic to Dn for some n ≥ 0. Then
every continuous map f : X → X has a fixed point.

Proof. Let f : X → X be continuous, and let h : X → Dn be a homeomorphism. Then h of oh−1

is a continuous map from Dn to itself and thus has a fixed point p by Brouwer’s Theorem. In other
words we have h of oh−1(p) = p. If we take q = h(p), straightforward computation shows that
f(q) = q.

THEOREM 5. (Perron – Frobenius) Let n > 1, and let A be an n × n matrix which is
invertible and has nonnegative entries. Then A has a positive eigenvalue λ such that λ has a
nonzero eigenvector with nonnegative entries.

Proof. Recall that the 1-norm on Rn is defined by |x|1 =
∑

j |xj |, where the coordinates of
x are given by x1, · · · , xn. For each x ∈ ∆n (the standard simplex whose vertices are the unit
vectors), define

f(x) = ( |Ax|1)−1 · Ax .

Observe that the coordinates of Ax are all nonnegative because the entries of A and the coordinates
of x are nonnegative, this vector is nonzero because A is invertible, and if y is a nonzero vector
with nonnegative entries then |y|−1

1 y must lie in ∆n. Therefore we indeed have a continuous map
f from the simplex to itself.

By the lemma, we know that f has a fixed point; in other words, there is some v ∈ ∆n such
that

v = ( |Av|1)−1 · Av

and since the latter is equivalent to saying that Av is a positive multiple of v, this completes the
proof.

COROLLARY 6. In the setting of the theorem above, if all the entries of the matrix A are
positive, then the eigenvector has positive entries.

Proof. Let y be the eigenvector obtained in the theorem. Since Ay is a positive scalar multiple
of y, it will suffice to prove that the entries of Ay are all positive. But these entries are given by
expressions of the form

zi =
∑

j

ai,jyj

and if we choose k such that yk 6= 0 then it follows that zi ≥ ai,kyk; the right hand side is a product
of

VII.3 : Separation and invariance theorems

(H, §2.B; M, §63)

Most of this has become standard in algebraic topology texts, and we shall quote Hatcher as
appropriate. The following result corresponds to the first half of Proposition 2B.1 on page 169 of
that reference.
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PROPOSITION 1. If A ⊂ Sn is homeomorphic to Dk for some k < n, then the Hi(S
n −A) is

infinite cyclic if i = 0 and trivial otherwise.

Note. The hypotheses imply that A must be a proper subset of Rn because the homology
groups of A and Sn are not isomorphic.

Proof. The proof proceeds by induction on k. If k = 0 then Sn −A is homeomorphic to Rn and
the conclusion in this case follows immediately. Assume now that the result is known whenever a
subset A is homeomorphic to Dk−1 for some k satisfying 1 ≤ k ≤ n, and assume now that A ⊂ Sn

is homeomorphic to Dk.

The homeomorphisms of Section VII.1 imply that Dn is homeomorphic to Dn−1 × [0, 1]. If
t ∈ [0, 1] let At ⊂ A correspond to Dn−1×{t} under some fixed homeomorphism A ∼= Dn−1× [0, 1],
and if a < b let A[a, b] ⊂ A correspond to Dn−1 × [a+, b−], where a+ is the larger of a and 0, and
b− is the smaller of b and 1.

Suppose now that u ∈ Hq(S
n −A) lies in the kernel of the homomorphism c∗ : Hq(S

n −A)→
Hq(P ), where P is a one point space and c : Sn − A → P is the constant map. We want to show
that u = 0; the compact supports property implies the existence of a compact subset L ⊂ Sn − A
such that u lies in the image of the map Hq(L) → Hq(A) induced by inclusion; let u′ be a class
which maps to u in this fashion. If

jt : Sn −A −→ Sn −At

is the inclusion mapping, then the inductive hypothesis implies that jt∗(u) = 0 for each t ∈ [0, 1].

By the compact supports property, for each t there is some compact subset Kt such that
L ⊂ Kt ⊂ Sn −At such that u maps to zero under the homology map associated to the inclusion
Hq(L) → Hq(Kt). Since At and Kt are disjoint compact subsets of Sn, there is some ε(t) > 0
such that Kt and A[t−ε(t),t+ε(t)] are disjoint. It follows that the image of u in the homology of
Hq(A[t− ε(t), t + ε(t)]) is zero.

The open or half open intervals (t − ε(t), tε(t)) ∩ [0, 1] form an open covering of [0, 1], so by
the Lebesgue Covering Lemma there is some M > 0 such that every closed interval of length
≤ 1/M lies in some subset of this open covering. It follows that u maps to zero in each of the sets
Hq(S

n − A[j − 1/M, j/M ]) where j = 1, ...,M . The next objective is to show by induction on j
that u maps to zero in Hq(S

n − A[0, j/M ]); the case j = 1 is known by the preceding discussion,
and when j = M the set A[0, j/M ] is all of A.

Assume now that u maps to zero in Hq(S
n − A[0, j/M ]) where 1 ≤ j ≤ M − 1. Then the

identities

A[0, (j+1)/M ] = A[0, j/M ]∪A[j/M, (j +1)/M ] , Aj/M = A[0, j/M ]∩A[j/M, (j +1)/M ]

and their complementary analogs

Sn −A[0, (j + 1)/M ] = (Sn −A[0, j/M ]) ∩ (Sn −A[j/M, (j + 1)/M ])

Sn −Aj/M = (Sn −A[0, j/M ]) ∪ (Sn −A[j/M, (j + 1)/M ])

and the latter determine a long exact Mayer-Vietoris sequence. Consider the following piece of that
sequence:

Hq+1(S
n−Aj/M )→ Hq(S

n−A[0, (j+1)/M ]) → Hq(S
n−A[0, j/M ])⊕Hq(S

n−A[j/M, (j+1)/M ])
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If u′ ∈ Hq(S
n − A[0, (j + 1)/M ]) is the image of u under the map induced by the inclusion

Sn − A ⊂ Sn − A[0, (j + 1)/M ], then the inductive hypotheses and the previous arguments show
that u′ maps to zero in each of the groups Hq(S

n − A[0, j/M ]) and Hq(S
n − A[j/M, (j + 1)/M ]).

Therefore by exactness u′ lies in the image of Hq+1(S
n−Aj/M ). Since the latter group vanishes, it

follows that u′ must be zero, completing the inductive argument with respect to j. As noted in the
preceding paragraph, this implies that u = 0 and completes the inductive argument with respect
to the dimension k such that A ∼= Dk.

The Jordan-Brouwer Separation Theorem

If we remove a circle from the plane, we obtain two connected regions — an interior and an
exterior region — and mathematically these regions are defined by the inequalities |x− a| < r and
|x − a| > r, where a is the center of the circle and r is its radius. Similarly, if we are given a
relatively simple example of a simple closed curve in the plane, it is generally easy to see that the
complement is a union of two disjoint connected components, and it is natural to conjecture that
the same is true for an arbitrary simple closed curve in the plane. However, as curves become more
complicated it becomes increasingly difficult to verify this explicitly for examples like the curve in
the file fishmaze.pdf (note that the bounded component of the curve’s complement is the pink
shaded region in fishmaze2.pdf). The online article

http://en.wikipedia.org/wiki/Jordan curve theorem

discusses the history of this result fairly extensively (and corrects some widely circulated misin-
formation), and the article is definitely worth reading. Everyday experience with geometric objects
in 3-space strongly suggests that there are analogous results for suitably defined closed surfaces
in R3 which include subsets homeomorphic to S2, and the Jordan-Brouwer Separation Theorem
generalizes the Jordan Curve Theorem to subsets of Rn which are homeomorphic to Sn−1 for all
values of n.

Our statement the Jordan-Brouwer Theorem contains a somewhat stronger conclusion than
the version in Hatcher; the case n = 2 is the classical Jordan Curve Theorem.

THEOREM 2. (Jordan-Brouwer Separation Theorem. ) Let n ≥ 2, and suppose that A ⊂ Sn

is homeomorphic to Sn−1. Then Sn − A contains two components, and A is the frontier of each
component.

Note. In the discussion preceding the statement of this theorem we have considered compact
subsets A ⊂ Rn which are homeomorphic to Sn−1, and in fact the analogous conclusion for subsets
of Rn follows from the theorem by passing to one point compactifications. In fact, one can say
slightly more; namely, exactly one of the components of Rn − A must be a bounded open subset
(specifically, the component not containing the point at infinity in the one point compactification
of R

n under the identification of the latter with Sn).

It is natural to ask if one also has similar results if A is homeomorphic to some other closed
surface such as the torus T n−1, and the answer is that similar conclusions hold more generally.
In particular this follows from results on the homology of compact manifolds and the Alexander
Duality Theorem in Section 3.3 of Hatcher.

The standard textbook proof of the Jordan-Brouwer Separation Theorem involves proving
the following complementary result on the homology of subsets of Sn which are homeomorphic to
spheres of dimension ≤ n− 2.

PROPOSITION 3. Let A ⊂ Sn be homeomorphic to Sk where 0 ≤ k ≤ n − 2. Then the
homology groups of Sn −A are homeomorphic to the homology groups of Sn−k−1.
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It is important to note that the complement does not necessarily have the homotopy type of
Sn−k−1. In particular, there are simple closed (knotted) curves K in R3 and S3 for which the
fundamental group is nonabelian and hence not isomorphic to π1(S

1); there is an extensive theory
of knotted curves in 3-space which goes far beyond the scope of this course, and currently there is
a high level of activity aimed at answering many open questions about such curves.

On the other hand, for the standard linear embedding of Sk in Sn corresponding to

Sk ⊂ Rk+1 = Rk+1 × {0} ⊂ Rk+1 × Rn−k ∼= Rn+1

(note that the image is contained in Sn), the complement is homeomorphic to Sn−k−1 × Rk+1

such that Sn−k−1 × {0} corresponds to the unit sphere in {0} × Rn−k (see the file sphere-

complement.pdf).

Proof of Proposition 3. The proof proceeds by induction on k, so we need to start by verifying
the result in that case, in which A consists of two points. Since Sn is highly symmetric we can
assume that one of the points is the unit vector en+1 ∈ Rn+1, which implies that if one point of
A is removed the complement is homeomorphic to Rn. If we now remove the second point we are
left with a subset homeomorphic Rn − {p}, and since the latter is homeomorphic to Sn−1 ×R the
conclusion about homology groups in this case follows immediately.

Suppose now that the result is known for subsets homeomorphic to Sk−1, where 1 ≤ k ≤ n−2.
Let A be a subset which is homeomorphic to Sn, and let A± ⊂ A be the subspace corresponding to
the hemisphere Dn

± ⊂ Sn defined by the coordinate inequalities xn+1 ≥ 0 (for Dn
+) and xn+1 ≤ 0

(for Dn
−). Let A0 = A+ ∩ A−, so that A0 is homeomorphic to Sk−1. Consider now the Mayer-

Vietoris sequence for the decomposition

Sn −A0 = (Sn −A+) ∪ (Sn −A−) , where Sn −A = (Sn −A+) ∩ (Sn −A−) .

We are particularly interested in the following pieces of this exact sequence:

Hq+1(S
n−A+)⊕Hq+1(S

n−A−)→ Hq+1(S
n−A0)→ Hq(S

n−A)→ Hq(S
n−A+)⊕Hq(S

n−A−)

If q > 0 then the first and last terms of this exact sequence are zero by Proposition 1, and hence the
map from the second term to the third is an isomorphism. By induction we know thatHq+1(S

n−A0)
is trivial for all q ≥ 1 except q+1 = n−(k−1)−1 and is infinite cyclic in the latter case. Therefore
we have Hq(S

n−A) = 0 if q > 0 and q 6= n−k− 1, and in the latter case we have Hq(S
n−a) ∼= Z.

Suppose now that q = 0 in the displayed exact sequence. Then H1(S
n−A0) = 0 and H0(S

n−
A0) = Z because k − 2 ≤ n, and therefore the extended Mayer-Vietoris sequence reduces to

0 = H1(S
n −A0)→ H0(S

n −A)→ H0(S
n −A+)⊕H0(S

n −A−) ∼= Z⊕ Z→ H0(S
n −A0) = Z

where the map at the right is surjective, so that its kernel is isomorphic to Z. By exactness this
kernel is the image of H0(S

n −A), and the mapping from the latter onto the kernel is 1–1, so that
we have H0(S

n −A) ∼= Z. This completes the proof of the inductive step.

Proof of the Jordan-Brouwer Separation Theorem. The first step is to prove that the
complement has exactly two components. Let A± and A0 be defined as in the preceding proposition
and consider the corresponding Mayer-Vietoris sequence; in particular, we are interested in the
following piece:

0 = H1(S
n −A+)⊕H1(S

n −A−)→ H1(S
n −A0)→ H0(S

n −A)→ (next line)
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H0(S
n −A+)⊕H0(S

n −A−) ∼= Z⊕ Z→ H0(S
n −A0) = Z

In this case we know that H1(S
n−A0) ∼= Z and hence the latter maps injectively into H0(S

n−A).
Furthermore, we can use the same argument as in Proposition 3 to conclude that the image of
H0(S

n − A) in the direct sum is also isomorphic to Z, and therefore by exactness we must have
H0(S

n −A) ∼= Z⊕ Z, so that Sn −A has exactly two components.

It remains to prove that points of A are limit points of each component. Suppose that Sn−A
is the union of the two open, connected, disjoint subsets U and V .

Assume that not every point of A is a limit point of both U and V . Without loss of generality,
it is enough to consider the case where x ∈ A is not a limit point of V . Since x 6∈ V , it follows that
there is some open set W0 in Sn such that x ∈W0 and W0 ∩ V = ∅.

Consider the open set W0 ∩A in A; since the latter is homeomorphic to Sn−1, it follows that
there is a subneighborhood of the form A−E, where E ⊂ A is homeomorphic to a closed (n− 1)-
disk and A−E is homeomorphic to an open (n− 1)-disk centered at x. If W = W0 ∩Sn−E, then
W is still open in Sn and we still have x ∈W and W ∩ V = ∅.

By construction we have Sn − E = U ∪ A − E ∪ V where the pieces are pairwise disjoint.
Furthermore, we have A−E ⊂W and hence U ∪W is an open set of Sn−E which is disjoint from
V and contains U and A−E. Therefore it follows that Sn−E is a union of the nonempty disjoint
open sets U ∪W and V and hence is disconnected. On the other hand, since E is homeomorphic
to a closed disk we know that Sn −E is connected, so we have a contradiction. The source of this
contradiction was our assumption that x was not a limit point of V , and hence this must be false.
Therefore x must be a limit point of V , and as noted above it follows that every point of A is a
limit point of both U and V .

The Mayer-Vietoris sequence in Theorem 2 also has the following implication; details of the
proof are left to the reader (remember that the homology groups of Sn−A± and Sn−A0 in positive
dimensions are known to vanish except for H1(S

n −A0)):

COROLLARY 4. In the setting of Theorem 2 the homology groups of each component of Sn−A
are zero in every positive dimension.

If n = 2 a remarkable theorem of A. Schönflies yields a much stronger conclusion: If U is a
component of S2 − A then its closure U is homeomorphic to D2 such that A corresponds to S1

(it is also possible to use results from complex variable theory to the prove weaker result that the
open set U is simply connected — see the file ahlfors.pdf). On the other hand, if n ≥ 3 then a
component U of Sn − A need not even be simply connected. The standard example when n = 3
is the Alexander Horned Sphere discussed in Example 2.B.2 on pages 170–172 of Hatcher. The
following online site has an interesting video showing the recursive construction of the Alexander
sphere:

http://www.youtube.com/watch?v=Pe2mnrLUYFU

With the preceding results at our disposal, we can prove the following basic result exactly as
in Hatcher:

THEOREM 5. (Invariance of Domain, Brouwer) Let U be an open subset of Rn for some n ≥ 2,
and let h : U → Rn be continuous and 1 − 1. Then h is an open mapping, the image h[U ] is an
open subset of Rn, and h maps U homeomorphically onto h[U ].

The name of the result refers to the fact that if V is homeomorphic to an open subset of Rn,
then V must also be an open subset of Rn.
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Proof. It will suffice to prove that h is an open mapping, and to prove the latter it will suffice
to show that if D ⊂ U is an ordinary closed disk of some radius about a point of U and ∂D is the
boundary sphere of D, then f [D − ∂D] is an open subset of Rn (since every open subset of U is a
union of open disks that are interiors of closed disks). Since f is 1–1 it follows that f maps D and
∂D homeomorphically onto their images.

As usual, view Rn as Sn−{p} via one point compactification. Then the preceding results imply
that Sn− f [D] is a connected open subset and Sn− f [∂D] is an open subset with two components,
say W1 and W2; label these so that Sn − f [D] ⊂W1. Now we also have

Sn − f [∂D] = (Sn − f [D]) ∪ (Sn − f [D − ∂D])

and the subsets on the right hand side are disjoint; since f [D− ∂D] is connected it is contained in
one of the componentsW1,W2. If f [D−∂D] were contained inW1 then we would have Sn−f [∂D] ⊂
W1 ⊂ Sn − f [∂D] so that the two sets would be equal, contradicting the fact that Sn − f [∂D] is
disconnected. Therefore f [D− ∂D] must be contained in W2. This gives us the chain of inclusions

(Sn − f [D]) ∪ (Sn − f [D − ∂D]) ⊂ W1 ∪W2 ⊂ Sn − f [∂D] , where

(Sn − f [D]) ∩ (Sn − f [D − ∂D]) = ∅ = W1 ∩W2 .

Since Sn−f [D] ⊂W1 and Sn−f [D−∂D] ⊂W2, the set-theoretic relations combine to imply that
Sn − f [D] = W1 and Sn − f [D − ∂D] = W2. This proves that f [D − ∂D] is an open subset of Rn

(hence also of U), by the statement at the beginning of the proof this also completes the proof of
the theorem.

We shall limit ourselves to one simple consequence.

COROLLARY 6. If Rn
+ is defined to be the set of all points whose last coordinate is nonnegative,

then Rn
+ is not homeomorphic to Rm for any positive integer m.

Proof. We first consider the cases where n ≤ m. In these cases the sets cannot be homeomorphic
by Invariance of Domain because Rn

+ is not an open subset of Rm (as usual, we identify Rn with
the set of all points in Rm whose last m− n coordinates are all zero).

Suppose now there is a homomorphism f from Rm to Rn
+ where m < n. If H is the hyperplane

in Rn of all points whose last coordinate is zero and W = Rm − f−1[H], then f defines a homeo-
morphism from W to Rn

+ −H ∼= Rn. This is impossible by invariance of dimension, and therefore
Rn

+ cannot be homeomorphic to Rm if m < n.

VII.4 : Nonplanar graphs

(M, §64)

We have already seen that every graph has a nice rectilinear embedding in R
3. In this section

we shall use homology theory to prove that some graphs do not admit any topological embeddings
into R2. We shall treat two examples, and at the end of this section we shall explain why they are
particularly important. The approach in this section is close to that in Munkres, the main difference
being that we use homology theory to give simpler proofs of some key steps in the arguments.
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The utilities network

This is a fairly well-known example with three vertices a, b, c representing houses and another
three vertices g, w, e representing gas, water and electricity utilities. There are nine edges which
they join the individual houses to each of the three utilities, and the question is whether this can
be done on a flat surface with none of the lines crossing over or under each other. This example
is depicted in Figure 1 of graphpix4.pdf, and in the literature of graph theory it is often called
K3,3. In mathematical terms, here is what we what to prove:

THEOREM 1. The utilities network K3,3 is not homeomorphic to a subset of S2.

In fact, one has the same conclusion if S2 is replaced by R
2 because K3,3 and S2 are not

homeomorphic — the quickest way to see this is to note that H2(K3,3) = 0 for dimensional reasons
but H2(S

2) ∼= Z.

As suggested by Figure 1 in graphpix4.pdf, it is fairly easy to embed the subgraph of K3,3

by removing one edge; the point of the proof is that there cannot be some clever way of inserting
the remaining edge.

The proof of Theorem 1 involves separation theorems that are similar to the Jordan Curve
Theorem but are somewhat more complicated to state and prove. The first of these involves theta
spaces which can be expressed as unions of three subsets E1, E2, E3 which are all homeomorphic to
[0, 1] and whose intersections are given by their endpoints. Figure 2 in graphpix4.pdf is a simple
but typical example. We want to prove that every theta space in S2 has the separation properties
which are apparent in the figure. This can be stated formally as follows:

PROPOSITION 2. If X ⊂ S2 is a theta space with edges E1, E2, E3 meeting at the common
endpoints {A,B}, then S2 −X has three connected components U, V,W such that

the boundary of U is E1 ∪E2,

the boundary of V is E2 ∪E3,

the boundary of U is E1 ∪E3.

Note that we can make X into a graph by taking the derived decomposition that we defined
in Unit III.

Proof. There are three main steps. First, we prove that S2 −X has exactly three components.
Next, we prove that E1 ∪E3 is the boundary of one of these components. Finally, we use the same
sort of argument to obtain similar conclusions for E2 ∪ E3 and E1 ∪ E2. Since the simple closed
curves given by E1 ∪ E2, E2 ∪ E3, are distinct, it follows that they bound distinct components
of S2 −X, and since there are exactly three components in the latter, it follows that each is the
boundary of one of the given simple closed curves.

By the preceding discussion, we need only show the assertions that S2−X has three components
and one component of S2 − X has E1 ∪ E3 as its boundary. We shall begin by proving the first
statement, and it will be convenient to introduce some notation for certain open subsets of S 2. For
i = 1, 2, 3 let Ui = S2 −Ei and if i 6= j let Ui,j be

S2 − (Ei ∪Ej) = Ui ∩ Uj .

Finally, let U1,2,3 be S2−X and note that the latter is equal to U1 ∩U2 ∩U3. Consider the Mayer-
Vietoris exact sequence associated to the decomposition U3 = U1,3 ∪ U2,3, noting that U1,2,3 =
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U1,3 ∩ U2,3. Since U3 has the homology of a point by Proposition 1 of the preceding section, the
final nontrival terms in the Mayer-Vietoris sequence are given as follows:

0 = H1(U3)→ H0(U1,2,3)→ H0(U1,2)⊕H0(U2,3)→ H0(U3) ∼= Z

By the Jordan Curve Theorem the direct sum isomorphic to Z4, and the axiom regarding 0-
dimensional homology implies that the standard free generators for this direct sum all map to the
standard free generator of H0(U3) ∼= Z. Therefore the kernel of the map from the direct sum into
H0(U3) is isomorphic to a free abelian group on three generators, and by exactness this group is
isomorphic to the image of the map ϕ from H0(U1,2,3) to H0(U1,2)⊕H0(U2,3). Since H1(U3) = 0 it
also follows that ϕ is 1–1, and therefore we have shown that H0(U1,2,3 = S2 −X) is a free abelian
group on three generators. This computation implies that the open set U1,2,3 has exactly three
components, so we have completed the first step of the proof.

The only point remaining is to prove that E1∪E3 is the boundary of one component in S2−X.
By the Jordan Curve Theorem, the set U1,3 = S2 − (E1 ∪ E3) has two components and E1 ∪ E2

is the boundary of each one. Denote these components by V and W , and notice that one of them
must contain the connected set E2 − {A,B}. Without loss of generality, we may assume that this
component is W (if not, reverse the roles of V and W in the discussion which follows). We then
have

U1,2,3 = V ∪ (W − (E2 − {A,B}) ) .

Each of the summands on the right is an open and closed subset of U1,2,3, and therefore each
component of U1,2,3 is contained in V or W . Now we know that V ⊂ U1,2,3, and V must be a
component of U1,2,3 because V is a maximal connected subset of U1,3, which contains U1,2,3, and
hence V is also a maximal connected subset of U1,2,3. By construction the boundary of V is E1∪E3,
and thus we have shown that the latter bounds one component of U1,2,3 = S2 −X. Since we have
already noted that this assertion (plus the one about three components) imply the conclusion of
the proposition, this completes the proof.

At a later point we shall also need information about the higher homology groups of the
(components of the) space S2 −X when X is a theta space. The result is analogous to Corollary
VII.3.4.

COROLLARY 3. If X ⊂ S2 is a theta space and U is a component of S2 −X, then Hi(U) = 0
for all i > 0, and likewise for Hi(S

2 −X).

Proof. The proof of the proposition shows that the boundary of each component is a simple closed
curve, and thus we can apply Corollary VII.3.4 directly to find the higher dimensional homology of
U . The statement about S2 −X follows because this space is locally arcwise connected and hence
its homology is the direct sum of the homology of its components.

We are now ready to prove that the graph K3,3 is not topologically embeddable in R2.

Proof of Theorem 1. We shall assume that there is a topological embedding of the graph in S 2

and derive a contradiction. It may be worthwhile to look at Figure 3 in graphpix4.pdf in order
to visualize the steps in the argument.

Let X be a graph, and let X0 ⊂ X be the subgraph consisting of all edges that do not have
e as a vertex. If p and q are vertices which are endpoints of some edge, denote that edge by Epq .
Then X0 is a theta space with edges

L1 = Eag ∪Eaw , L2 = Ebg ∪Ebw , L3 = Ecg ∪Ecw .
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Then Proposition 2 implies that Sn −X0 has three components, and the remaining vertex e ∈ X
must lie in one of them, say U . It follows that each of the half-open intervals

Eae − {a} , Ebe − {b} , Ece − {c}

must be contained in the component U because each is connected and contains e. Therefore each
of a, b, c must lie in the closure U of U .

Trial and error suggests that the conclusion of the preceding sentence is impossible, and we
shall now give mathematical reasons for this. The endpoints of L1, L2 and L3 are g and w, and we
also know that a ∈ L1, b ∈ L2 and c ∈ L3 but none of these points can be endpoints of an edge Li.
Proposition 2 implies that the boundary of U is the union of exactly two of these edges, so only two
of the points in {a, b, c} can lie in U , and thus we have derived a contradiction. The source of this
contradiction was the assumption that X could be topologically embedded in S 2, and therefore we
know this assumption is false. As noted earlier, this suffices to complete the proof of the theorem.

The complete graph on 5 vertices

We now proceed to the next example. Recall that the complete graph on n vertices is a graph
with n vertices such that for each pair of vertices {p, q} there is an edge whose endpoints are p and
q.

THEOREM 3. The complete graph on 5 vertices is not homeomorphic to a subset of S 2.

We have already noted that the complete graph on 4 vertices can be embedded in S 2, and the
standard embedding is given in Figure 4 of graphpix4.pdf. The vertices of this graph are denoted
by A,B,C,D, and the 6 edges will be labeled lexicographically (alphabetical order) as follows:

E1 = AB , E2 = AC , E3 = AD , E4 = BC , E5 = BD , E6 = CD

The first step in the proof of Theorem 3 is to prove that an arbitrary topological embedding of
the complete graph on 4 vertices into S2 has the same separation properties that evidently hold in
Figure 4:

THEOREM 4. Let X ⊂ §2 be homeomorphic to the graph described above, and label its edges
and vertices as in the preceding discussion. Then S2−X has four components U, V,W,O such that

the boundary of U is E1, E3 and E5,

the boundary of V is E2, E3 and E6,

the boundary of W is E4, E5 and E6,

the boundary of O is E1, E2 and E4.

Proof of Theorem 4. The strategy is similar to the method for proving Proposition 2:

(1) Prove that S2 −X has four components.

(2) Prove that Γ = E1 ∪E2 ∪E4 is the boundary of one component.

(3) Use similar arguments to show that the other three triangular graphs in the theorem
statement bound components of S2 − X. As before, each of the four triangular graphs
bounds a component, and since there are exactly four components it follows that each
component is the boundary of one such graph,
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To prove the first step, let X0 be obtained from X by deleting the interior points of the edge
E4 (see Figure 5 in graphpix4.pdf), and let X1 be the triangle graph whose edges are E4, E5 and
E6. Then X0 ∪X1 = X and X0 ∩X1 = E5 ∪E6; note that the latter is homeomorphic to a closed
interval. Consider the Mayer-Vietoris exact sequence for the decomposition

S2 − (E5 ∪E6) = (S2 −X0) ∪ (S2 −X1) , S2 −X = (S2 −X0) ∩ (S2 −X1) .

By construction X0 is a theta space and X1 is a simple closed curve, so the homology groups of
S2 − X0 and S2 − X1 are known (and likewise for the homology groups of S2 − (E5 ∪ E6) by
Proposition VII.3.2). If we feed this into the long exact Mayer-Vietoris sequence, we find that the
final nontrivial terms of the Mayer-Vietoris sequence are given as follows:

0 = H1(S
2− (E5 ∪E6))→ H0(S

2−X)→ H0(S
2−X0)⊕H0(S

2−X1)→ H0(S
2− (E5 ∪E6)) = Z

The results of this section and the preceding ones imply that the direct sum is isomorphic to
Z3 ⊕ Z2 ∼= Z5; furthermore, the standard free generators of this group map to the standard free
generator of H0(S

2− (E5 ∪E6)) = Z. As before, it follows that H0(S
2−X) is a free abelian group

on 4 generators, which means that S2 −X has four components, completing the proof of the first
step.

In the second step we are interested in the complement of the triangular subgraph Γ = E1 ∪
E2 ∪E4. By the Jordan Curve Theorem S2 − Γ has two components, say G and H. One of these
components contains the remaining vertex D; as before, without loss of generality we might as well
assume that D ∈ H.

The half open intervals E3 − {A}, E5 − {B}, E6 − {C} are all connected, disjoint from Γ, and
contain D, so they are all contained in H. Then we have

S2 − X = G ∪ (H − (E1 ∪E2 ∪E3) )

where G and (H − (E1 ∪E2 ∪E3) ) are nonempty, open and disjoint (hence both are also closed
in S2 −X).

Let Q1, Q2, Q3, Q4 be the components of S2 −X, and number them such that G ⊂ Q1. Since
G is open and closed in S2 −X, every connected subset of the latter is either contained in G or
disjoint from it. In particular, since G is contained in Q1 we know that these two sets are not
disjoint and hence the connected component Q1 must be contained in G, so that the two sets are
equal. Since the boundary of G is E1 ∪E2 ∪E4, this proves the statement needed to complete the
second step of the argument. As noted at the beginning of this proof, the third step follows once
we have completed the first two, and therefore we have completed the proof of the theorem.

Proof of Theorem 3. Assume that the complete graph on 5 vertices is homeomorphic to some
subset Y ⊂ S2, and let a, b, c, d, e be its vertices. Let X ⊂ Y be the subgraph of all edges which
do not have e as an endpoint, so that X is homeomorphic to a complete graph on 4 vertices. We
shall now use Theorem 4 to analyze S2 −X.

Let Euv be the edge joining the vertices u and v in Y . Without loss of generality, we can
assume that e lies in the component of S2 −X whose boundary is Eab ∪ Ebc ∪ Eac. In any case,
the vertex e lies in one component of S2 −X, and we can treat the other cases by permuting the
roles of a, b, c, d. Note that d does not lie in the closure U of U by the proof of Theorem 4.

Now each of the sets (Exe − {x}) — where x = a, b, c, d — is connected and contains e, so
each of these connected sets must be contained in U . This implies that each boundary endpoint x
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of Exe − {x} must be contained in U . However, we have already observed that d does not lie in
this subset, and therefore we have a contradiction. The problem arises from our assumption that
Y ⊂ S2 is homeomorphic to a complete graph on 5 vertices, and consequently no such subset can
exist.

Kuratowski’s Theorem

The results of this section lead to the more general question of determining which connected
graphs are not topologically embeddable in R2. Clearly a graph which contains a subgraph iso-
morphic to the utilities network or the complete graph on 5 vertices cannot be homeomorphic to
a subset of R

2. The end of Section 64 in Munkres mentions a remarkable converse to this result
attributed to C. Kuratowski (1896–1980): Every graph which is not homeomorphic to subset of R

2

must contain a subgraph homeomorphic to either the utilities network or the complete graph on
five vertices. Here is an online reference for the proof:

http://cs.princeton.edu/∼ymakaryc/papers/kuratowski.pdf
The file kuratowski.pdf contains clickable links to other proofs and further information,

including independent discoveries of this result by others.

VII.5 : Rationalizations of abelian groups

(H, §2.2)

Frequently it is useful to begin the analysis of fundamental groups by considering their abelian-
izations, which are the corresponding 1-dimensional homology groups; one reason for this is that
the structure theory of finitely generated abelian groups is completely understood while the theory
of finitely presented — and not necessarily abelian — groups is not (in fact, their are theorems
stating that certain basic problems about groups cannot be solved by systemaic recursive pro-
cesses). Similarly, since the structure and morphism theory of finite-dimensional vector spaces
over a field is much simpler than the structure and morphism theory of finitely generated abelian
groups, and there are many situations in which it is useful to work with versions of homology theory
that take values in some category of vector spaces over some field k and k-linear transformations.
The purpose of this section is to prove the existence of an axiomatic homology theory valued in
the category of rational vector spaces. It turns such a theory can be constructed out of a theory
valued in the category of abelian groups by purely algeraic means. Accordingly, we being with a
method for converting abelian groups into rational vector spaces; the construction is a straightfor-
ward generalization of the standard way to construct the rationals out of the integers using formal
fractions.

Modules of quotients

Despite the similarity of names, modules of quotients are quite different from quotient modules.
In a very precise sense, modules of quotients resemble the field of quotients associated to an integral
domain, while quotient modules correspond to quotient rings associated to an integral domain.

The constructions described in these notes can be carried out in far greater generality than
the situations we consider, but we specialize here in order to simplify the discussion.

100



Definition. Let G be an abelian group. The rationalization or G, or the localization of G over
the rationals is formed by a construction very similar to the construction of the rationals from
the integers. One starts with ordered pairs (g, r) where g ∈ G and r is a nonzero integer, and
one identifies (g, r) with (h, s) if there is a nonzero integer t such that t(sg − rh) = 0 (this is
slightly stronger than the condition in the construction of Q from Z, in which t is always 1). This
condition defines an equivalence relation on the set of all ordered pairs, and we let G(0) denote the
set of equivalence classes. Formally, the class of (g, r) is supposed to represent an object of the
form r−1 · g, and motivated by this we define addition and multiplication by a rational number as
follows:

[g, r] + [h, s] = [sg + rh, rs] , pq−1[g, r] = [pg, qr]

At this point it is necessary to verify that our definitions of sums and scalar products do not depend
upon the choices of representatives for equivalence classes; this is elementary and entirely similar
to the corresponding proof for the formal definition of rational numbers in terms of integers. The
following result is also elementary:

THEOREM 1. The object G(0) constructed above is a rational vector space, and the construction
also has the following properties:

(i) If g1, · · · , gm generate G, then their images under jG span the rational vector space G(0).

(ii) For each abelian group G there is a group homomorphism jG : G → G(0) sending g ∈ G
to the equivalence class [g, 1]. This map is an isomorphism if G is a rational vector space.

(iii) If f : G → H is a homomorphism then there is an associated linear transformation of
rational vector spaces f(0) : G(0) → H(0) such that the constructions sending an object or morphism
Γ to Γ(0) define an ADDITIVE covariant functor (call it L for the sake of definiteness) from the
category of abelian groups and homomorphisms to the category of rational vector spaces and linear
transformations. Furthermore, the maps jG define a natural transformation from the identity to
this functor L.

(iv) The construction sends the infinite cyclic group Z to Q and it sends every finite cyclic
group to 0. Furthermore, for all abelian groups G and H we have [G ⊕H](0) ∼= G(0) ⊕H(0), and
likewise for (weak) infinite direct sums.

In particular, if G is a finitely generated abelian group which is the direct sum of β infinite
cyclic groups and several finite cyclic groups, then G(0) is a rational vector space whose dimension
is equal to β.

Comments on the proof. Most of the verifications are extremely straightforward and left to the
reader, so we shall simply note a few key features. First of all, scalar multiplication by a rational
number n/m (where m 6= 0) is given by

(n/m) · [g, r] = [ng,mr]

and similarly the mapping g(0) is defined by the formula

f(0)[g, r] = [ f(g), r ] .

We shall need the second formula for our next result.

The following property of the rationalization construction is somewhat less trivial, and it has
far-reaching consequences.
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THEOREM 2. The functor Γ→ Γ(0) sends exact sequences to exact sequences.

Proof. Every exact sequence is essentially built from short exact sequences; for example, if
A→ B → C is an exact sequence involving f : A→ B and g : B → C, then the sequence is given
by fitting together the following sequences:

0→ Ker(f)→ A→ Image(f) = Kernel(g)→ 0

0→ Image(f) = Kernel(g)→ B → Image(g)→ 0

0→ Image(g)→ C → Cokernel(g)→ 0

Therefore it will be enough to prove the result for short exact sequences. In other words, if
0→ A→ B → C → 0 is exact, we need to prove the same holds for 0→ A(0) → B(0) → C(0) → 0.

We shall only prove that the sequence is exact at the middle object; the proofs at the other two
objects are similar and left to the reader. Suppose that f : A→ B is 1–1 and g : B → C is onto such
that the image of f is the kernel of g. Then g of = 0 and additivity imply that g(0)

on(0) = 0, and
therefore it follows immediately that the image of n(0) is contained in the kernel of g(0). Suppose
now that [b, t] lies in the kernel of g(0). By definitions it follows that there is a nonzero integer
s such that s · g(b) = 0. By exactness of the original sequence, there is some a ∈ A such that
f(a) = sb, and we claim that n(0) maps [a, st] to [b, t]. To see this, note that n(0)[a, st] = [sb, st]
and the right hand side is equal to to [b, t] because stb− tsb = 0.

The preceding results have the following implication for chain complexes.

COROLLARY 3. Let (C, d) be a chain complex of abelian groups. Then rationalization defines
a chain complex (C(0), d(0) ) of rational vector spaces, and the homology of this chain complex is
isomorphic to the rationalized homology groups H∗(C)(0).

Application to homology theories

Since the functor Γ → Γ(0) sends exact sequences to exact sequences and sends Z to Q, we
have the following:

Construction of rational simplicial homology. The rationalized simplicial chain groups
C∗(K,L)(0) form chain complexes whose homology groups are the rationalized simplicial homology
groups H∗(K,L)(0). These rationalized groups have the same exactness and excision properties
as ordinary homology groups, and they have the analogous properties except for the results on
H0 of an arcwise connected space except that if K is starshaped with respect to a vertex then
H0(K)(0) ∼= Q.

Construction of rational singular homology. Suppose that we are given the data for an
axiomatic singular homology as in Unit VI. If we apply the functor Γ → Γ(0) to these data, the
result is data which satisfy all the axioms of Unit VI with the following modifications:

(i) In axiom (D.3), the statement should be changed as follows: If X is arcwise connected then
H0(X)(0) ∼= Q.

(ii) Axiom (D.4) is excluded.

Frequently it is much simpler to work with the rationalized theory because (i) the rationalized
homology groups are rational vector spaces, and the isomorphism type of a vector space is given
by its dimension, (ii) linear transformations of rational vector spaces are completely determined
by their ranks. In particular, this eliminates issues involving nonzero elements of finite order in
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abelian groups and proper subgroups of finite index. We shall study one application for which
this simplification is particularly useful. It turns out that there are many other places in algebraic
topology where it is much easier to “work over the rational numbers,” and there is an extensive
body of work on this topic. Here are two general references:

http://en.wikipedia.org/wiki/Rational homotopy theory

P. J. Hilton, Serre’s contribution to the development of algebraic topology. Ex-
positiones Mathematicæ 22 (2004), 375–383.

VII.6 : Cell decompositions and Euler’s Formula

(H, Ch. 0, §2.2, Appendix)

In this final section we shall use ideas from homology theory to derive a well-known formula
relating the number of vertices, edges and faces of a convex 2-dimensional polyhedron in the sense
of elementary solid geometry; in our terminology, this is the boundary of a convex linear cell with
a nonempty interior. By the results of convexbodies.pdf and convexbodies2.pdf, each of these
objects is homeomorphic to S2.

EULER’S POLYHEDRON FORMULA. Suppose that P ⊂ R3 is the boundary of a convex
linear cell with a nonempty interior, so that P has a decomposition into closed regions congruent
to convex polygonal regions (faces), every pair of which meets in either one common edge or one
common vertex. Then the numbers V , E and F of vertices, edges and faces satisfy the equation

V − E + F = 2 .

The online site

http://www.ics.uci.edu/∼eppstein/junkyard/euler/
contains further information about this result and its history.

Regular cell complexes

We shall need a generalization of the notion of simplicial complex called a regular cell complex.
Such objects can be described recursively as follows:

Definition. Let k be a nonnegative integer. If (X,A) is a pair of spaces, we shall say that X is
obtained from A by regularly attaching a k-dimensional cell if there is a 1–1 continuous mapping
f : (Dk, Sk−1) → (X,A) such that X = f [Dk] ∪ A and f [Sk−1] = f [Dk] ∩ A; this differs from the
usual definition of cell attachment because it assumes that the restriction of f to Sk−1 is 1–1 (see
Hatcher for further information and comments).

A regular cell decomposition of a compact (Hausdorff) space X is a finite family E = {Eα of
closed subsets Eα (called cells) such that

(i) each Eα is homeomorphic to a closed disk Dk(α) for some nonnegative integer k(α) called
the dimension of Eα.
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(ii) for each cell Eα, the boundary set ∂Eα
∼= Sk(α)−1 is a union of cells whose dimensions are

less than k(α) called faces of Eα,

(iii) for each pair of distinct cells Eα and Eβ , the intersection Eα ∩Eβ is a common face.

The simplicial decomposition of a simplicial complex is a special type of regular cell complex,
but there are many other examples, the most obvious of which are convex polygonal regions in the
plane and 3-dimensional objects like a solid cube or pyramid, for which there is one 3-dimensional
cell and whose boundary cells are the usual concept of face (for example, in the cube these are the
six squares on the boundary). More generally, results in [MunkresEDT] and the book by Hudson
yield a similar result for convex linear cells.

STANDARD DECOMPOSITION OF CONVEX LINEAR CELLS. Let E be a convex
linear cell in Rn with nonempty interior. Then E has a regular cell decomposition with exactly one
n-dimensional cell such that each cell in the boundary is also a convex linear cell.

This provides the geometric input that we need; the next step will involve constructions from
algebraic topology.

Homology and cell attachment

The next step is to examine the significance of cell attachment in algebraic topology. Here is
the main result:

THEOREM 1. Suppose that the pair (X,A) is obtained by regularly attaching a k-cell to A, and
let D ⊂ X denote the image f [Dk], and let S ⊂ X denote the image f [Sk−1]. Then the inclusion
of (D,S) in (X,A) induces isomorphisms of homology groups from H∗(D,S) to H∗(X,A).

Proof. As suggested in the statement of the theorem, let f : (Dk, Sk−1) → (D,S) be the
homeomorphism describing the cell attachment. Define subsets F0 and G0 of Dk by the inequalities
|v| > 3

4 and |v| ≥ 1
2 respectively (see the drawing in cell-add.pdf), let F = f [F0] and G = f [G0],

and define new subsets B = A∪F , C = A∪G. Observe that C is a closed subset of X and B is an
open subset (its complement is the image of the closed disk of radius 1

2
). Furthermore, the closure

B is contained in the interior of C.

Consider the following commutative diagram:

H∗(D − F,G − F )
p∗−→ H∗(D,G)

yg∗
yf∗

H∗(X −B,C −B)
q∗−→ H∗(X,C)

The mappings p∗ and q∗ are induced by inclusions, and g is a homeomorphism of pairs given by
f . It follows that g∗ is an isomorphism, and the excision axiom implies that p∗ and q∗ are also
isomorphisms. Therefore the commutativity of the diagram implies that the map H∗(X − B,C −
B)→ H∗(X,C) is also an isomorphism.

Now S is a strong deformation retract of G, and this implies that A is a strong deformation
retract of C. We CLAIM that the homology mappings

H∗(D,S)→ H∗(D,G) , H∗(X,A)→ H∗(X,C)

are also isomorphisms. prove.
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Consider the commutative diagrams of long exact homology sequences given by axiom (B.2)
and the pair inclusions (D,S) → (D,G), (X,A) → (X,C). In the first diagram the inclusion
mappings induce homology isomorphismsH∗(X)→ H∗(X) (which are identity maps) andH∗(S)→
H∗(G) (which are isomorphisms since S is a strong deformation retract of G). Since all these maps
are isomorphisms, the Five Lemma (Proposition V.3.4) implies the maps H∗(D,S) → H∗(D,G)
are also isomorphisms. Similar considerations imply that the maps H∗(X,A)→ H∗(X,C) are also
isomorphisms.

To conclude the proof, consider the following commutative diagram:

H∗(D,S) −→ H∗(D,G)
y

y

H∗(X,A) −→ H∗(X,C)

The immediately preceding discussion implies that the horizontal arrows are isomorphisms, and we
had previously shown that the left hand vertical arrows are isomorphisms; combining these with a
diagram chase, we see that the right hand vertical arrows are also isomorphisms.

This result has a simple but important application to (finite) regular cell complexes.

PROPOSITION 2. If X has a finite regular cell complex structure with cells of dimension ≤ n,
then Hq(X) is finitely generated for all q and Hq(X) = 0 for q > n.

Proof. The definitions imply that X has an increasing finite sequence of subspaces

∅ = X−1 ⊂ · · · XN = X

such that each is obtained from the preceding one by attaching a cell, and if p < q all the p-cells
are attached before any q-cells are attached. The conclusion of the proposition is trivial for X−1;
assume by induction that the conclusion is true for Xk−1. We want to prove that the result is also
true for Xk; this will suffice to prove the result for X = XN .

The key step is the following observation: If A → B → C is exact and both A and C are
finitely generated abelian groups, then B is also a finitely generated abelian group. — To see this,
note that B lies inside a short exact sequence

0→ A′ → B → C ′ → 0

where A′ is a quotient of A and C ′ is a subgroup of C. Since subgroups and quotient groups of
finitely generated abelian groups are also finitely generated, it follows that A′ and C ′ are finitely
generated, and this implies that B must also be finitely generated.

We now apply this to the exact sequences Hq(Xk−1) → Hq(Xk) → Hq(Xk, Xk−1). The
first group is finitely generated by the induction hypothesis, and the second is finitely generated by
Theorem 1, so the preceding paragraph implies that Hq(Xk) is also finitely generated. Furthermore,
if q > n then Hq(Xk−1) = 0 by induction and Hq(Xk, Xk−1) = 0 by Theorem 1, and these plus
exactness imply that Hq(Xk) = 0.

Euler characteristics

At this point we generalize the Euler characteristic of a graph to finite regular cell complexes
in two ways; these invariants are integer valued, and we shall show that these are equal.
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Definition. Let X be a topological space such that Hq(X) is a finitely generated abelian group
for all q > 0. The qth Betti number βq(X) is equal to the rank of Hq(X); by definition the rank
of a finitely generated free abelian group A is equal to the number of infinite cyclic generators in a
standard decomposition (this number depends only upon the group)and is equal to the dimension
of the rational vector space A(0).

Definition. Suppose that X has a finite regular cell complex structure, so that Proposition 2
applies. The homological Euler characteristic χH(X) is defined to be the alternating sum

∑

q

(−1)q βq(X) .

This sum is actually finite because Hq(X) is trivial for all sufficiently large values of q (and is zero
if q < 0).

Definition. Suppose thatX has a finite regular cell complex structure E , and for each nonnegative
integer q let cq(X, E) denote the number of q-cells in E . The cellular Euler characteristic χC(X, E)
is defined to be the alternating sum

∑

q

(−1)q cq(X, E) .

Euler’s Polyhedron Formula — and its analogs in higher dimensions — will follow quickly from
the next result.

THEOREM 3. Suppose that X has a finite regular cell complex structure E . Then the two
Euler characteristics χH(X) and χC(X, E) are equal.

Proof. We shall use the same increasing chain of subspaces

∅ = X−1 ⊂ · · · XN = X

described in the proof of Proposition 2.

Once again, the result is is trivial for X−1, once again we assume by induction that the
conclusion is true for Xk−1, and once again it will suffice to prove the conclusion of the theorem
for Xk.

The crucial steps are to study what happens to both Euler characteristics when one adds a
single cell of dimension r to form Xk from Xk−1. It is easy to see what happens to the cellular
Euler characteristic; since we are adding a single cell in dimension r we have

χC(Xk−1, Ek−1) + (−1)r = χC(Xk, Ek) + (−1)r

where Ej denotes the induced cell structure on Xj .

The analysis of the homological Euler characteristic requires a closer examination of the exact
homology sequence of the pair (Xk, Xk−1) and its rationalization. Since there is only one nonzero
homology group of the latter pair and it is in dimension r, it follows that the inclusion map
Hq(Xk−1)→ Hq(Xk) is an isomorphism if q 6= r, r−1, so that βq(Xk−1) = βq(Xk) for q 6= r, r−1. To
compare the remaining two Betti numbers, we need to look at the nontrivial part of the rationalized
exact homology sequence:

0→ Hr(Xk−1)(0) → Hr(Xk)(0) → Hr(Xk, Xk−1)(0) ∼= Q→ Hr−1(Xk−1)(0) → Hr−1(Xk)(0) → 0
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There are two cases depending upon whether or not the map ∂ from Q = Hr(Xk, Xk−1)(0) to
Hr−1(Xk−1)(0) is trivial or nontrivial. If ∂ is trivial then by exactness we have

βr−1(Xk) = βr−1(Xk−1) , βr(Xk) = βr(Xk−1) + 1

and thus we also have

χH(Xk) − χH(Xk−1) = (−1)r = χC(Xk, Ek) − χC(Xk−1, Ek−1)

which combines with χH(Xk−1) = χC(Xk−1, Ek−1) to imply that χH(Xk) = χC(Xk, Ek). On the
other hand, if ∂ is nontrivial then by exactness we have

βr−1(Xk) + 1 = βr−1(Xk−1) , βr(Xk) = βr(Xk−1)

and thus we also have

χH(Xk−1) − χH(Xk) = (−1)r−1 = χC(Xk−1, Ek−1) − χC(Xk, Ek)

which combines with χH(Xk−1) = χC(Xk−1, Ek−1) to imply that χH(Xk) = χC(Xk, Ek).

Euler’s Polyhedral Formula now follows as the specialization of the final result to n = 2.

COROLLARY 4. Let P be the boundary of a convex linear cell in Rn+1 with nonempty interior,
and for each integer k between 0 and n let Vk denote the number of k-dimensional faces in the
standard regular cell decomposition. Then the alternating sum

∑

k

(−1)k Vk

is 0 if k is odd and 2 if k is even.

Proof. The homological Euler characteristic of P is 1 + (−1)n which is 0 if k is odd and 2 if k is
even. Therefore the result follows from Theorem 3.
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