Convex bodies and radial projection

Recall that a convex set in \mathbb{R}^{n} is a set K such that if $x, y \in K$ and $0 \leq t \leq 1$ then $t x+(1-t) y \in$ K. Geometrically, this means that if x and y are in K then the closed line segment joining them is also contained in K. Visually, this means that the set has no dents or holes.

Definition. A convex body in \mathbb{R}^{n} is a compact convex set K with nonempty interior, and it is regular if it is the set of points satisfying an inequality of the form $h(v) \geq 0$ for some continuous real valued function h defined on an open neighborhood of K and the point set theoretic boundary (or frontier) ∂K of K is the set of all points where $h(v)=0$.

DEFAULT HYPOTHESIS. Unless stated otherwise, all convex bodies considered here are assumed to be regular.

Examples. 1. The simplest example is the solid unit disk D^{n} in \mathbb{R}^{n}, which is defined by the inequality

$$
1-\sum_{i} x_{i}^{2} \geq 0
$$

2. Clearly we want a subspace like the hypercube defined by $-1 \leq x_{i} \leq 1$ to be a convex body. This and many other examples will follow from a few simple observations which we shall now describe.

PROPOSITION. Let K be a compact convex subset of \mathbb{R}^{n} with nonempty interior such that K is defined by a finite set of inequalities $h_{j}(v) \geq 0$ where each h_{j} is a smooth real valued function such that $h_{j}(v)=0$ implies $\nabla h_{j}(v) \neq \mathbf{0}$. Then h is a regular convex body.

Proof. Let h be the minimum of the functions h_{j}. Then K is the set of points where $h(v) \geq 0$. If $h(v)>0$ then $h_{j}(v)>0$ for all j and in fact there is an open neighborhood V of v in \mathbb{R}^{n} such that each h_{j} is positive on V. Therefore v is an interior point of K. If $h(v)=0$, then $h_{i}(v)=0$ for some i. By the Inverse/Implicit Function Theorem, we know that every open neighborhood of v contains points z such that $h_{i}(z)<0$, and therefore v must be a frontier point of $K . \boldsymbol{\square}$

The preceding result holds for the hypercube, and hence the latter is a regular convex body as defined above. More generally, the result applies if each h_{j} is a first degree polynomial in the coordinates. This yields examples like the following:
3. The n-simplex $\Sigma_{n} \subset \mathbb{R}^{n}$ consisting of all points (x_{1}, \cdots, x_{n}) such that each $x_{i} \geq 0$ and $\sum_{i} x_{i} \leq 1$.
4. The prism in \mathbb{R}^{n+1} consisting of all points $\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)$ such that $\left(x_{1}, \cdots, x_{n}\right)$ lies in Σ_{n} and $0 \leq x_{n+1} \leq 1$.

The following theorem is intuitively what one would expect, but it plays an important role in many contexts:

THEOREM. If K is a regular convex body in \mathbb{R}^{n}, then there is a homeomorphism from (D^{n}, S^{n-1}) to ($K, \partial K$).
Proof. First of all, we claim it suffices to consider regular convex bodies such that $\mathbf{0} \in \mathbb{R}^{n}$ lies in the interior. If K is a regular convex body which contains the point p and T is the isometry of \mathbb{R}^{n} sending x to $x-p$, then $K^{\prime}=T[K]$ is also a regular convex body, but it contains the zero vector
in its interior, and if the conclusion of the theorem holds for $\left(K^{\prime}, \partial K^{\prime}\right)$ then it clearly also holds for (K, ∂K).

Assuming now that $\mathbf{0}$ lies in the interior of K, we know that there is some $\varepsilon>0$ such that the open ε-disk centered at $\mathbf{0}$ lies in the interior of K. Let $v \in S^{n-1}$ be given, and consider the intersection of K with the closed ray $L(v)$ consisting of all points of the form $t v$, where $t \geq 0$. Then $K \cap L(v)$ is a closed bounded convex set containing all points $t v$ for $t \leq \varepsilon$, and therefore it follows that $K \cap L(v)$ must be a close interval consisting of all $t v$ where $0 \leq t \leq b(v)$ for some $b(v)>0$.

CLAIM: The point $b(v) v$ is the unique point in $\partial K \cap L(v)$.
To prove the claim, first note that the intersection $\partial K \cap L(v)$ is a closed bounded subset of \mathbb{R}^{n}, and since it is disjoint from an open neighborhood of $\mathbf{0}$ there will be a least positive number $a(v)$ such that $a(v) v$ lies in that intersection. The assertion in the claim is equivalent to saying that $a(v)=b(v)$; we shall prove that $a(v)<b(v)$ leads to a contradiction. If this condition holds, then choose $a^{\prime}(v)$ such that $0<a^{\prime}(v)<a(v)$, and let $\eta>0$ such that the open η-disk centered at $a^{\prime}(v)$ is contained in the interior of K. Let E denote the disk consisting of all points w such that $w=w_{0}+a(v) v$, where w_{0} is perpendicular to v and $\left|w_{0}\right|<\frac{1}{2} \eta$. By convexity the set K contains all convex combinations of the form $t b(v) v+(1-t) w$, where w is as above and $0 \leq t \leq 1$. If M denotes this set, then M is a cone which contains the point $a(v) v$ in its interior; this can be proved in a variety of ways, and one argument is sketched at the end of this document. Since we assumed that $a(v) v$ was a frontier point of K, we have derived a contradiction, and therefore we must have $a(v)=b(v)$, proving the claim.

The next step is to prove that $b(v)$ is a continuous function of $v \in S^{n-1}$. Since $\mathbf{0}$ lies in the interior of K, it follows that $b(v) \geq \varepsilon$, where ε is as above. Furthermore, since K is bounded it follows that $b(v)$ is bounded from above by some constant. Thus we have a well-defined function b from S^{n-1} to some closed interval $[m, M]$ for suitable constants satisfying $M>m>0$.

Under the standard radial homeomorphism from $\mathbb{R}^{n}-\{\mathbf{0}\}$ to $S^{n-1} \times(0, \infty)$, the boundary ∂K corresponds to the graph of b. Since ∂K is a closed subset of \mathbb{R}^{n}, the continuity of b will be an immediate consequence of the following result:
LEMMA. (Closed graph property) Let $f: X \rightarrow Y$ be a map of compact Hausdorff spaces. Then f is continuous if and only if its graph is a closed subset of $X \times Y$.

Proof. Suppose that X and Y are Hausdorff and f is continuous. Let $F: X \times Y \rightarrow Y$ and $G: X \times Y \rightarrow Y$ be the functions $F(x, y)=y$ and $G(x, y)=f(x)$. Then the graph of $f(=$ the set of (x, y) such that $y=f(x))$ is the set of all points where $F=G$. Since this set of points is closed for maps into a Hausdorff space, it follows that the graph is closed in he product.

Now assume both spaces are also compact and that the graph Γ of f is a closed subset of the product. Then the map f factors into a composite of $\gamma(f): X \rightarrow X \times Y$ - which is defined by $\gamma(f)(x)=(x, f(x))$ - and the projection $P: X \times Y \rightarrow Y$ onto the second coordinate. Let Γ denote the image of $\gamma(f)$, so that Γ is a compact subset of the product; it follows that $\gamma(f)$ defines a 1-1 correspondence γ^{\prime} from X to Γ. If $Q: X \times Y \rightarrow X$ is projection onto the first coordinate and $g=Q \mid \Gamma$, then g is continuous and is an inverse to γ^{\prime}. But since Γ and X are compact Hausdorff, the map g must be a homeomorphism, so that its inverse, which is γ^{\prime} must be continuous. The latter implies that $\gamma(f)$ is continuous, which in turn implies that $f=P^{\circ} \gamma(f)$ is also continuous.-

EXAMPLE. The preceding result does not extend to noncompact spaces. For example, let X be the nonnegative integers with the usual metric, and let Y be the set of all points on the real line of the form 0 or $1 / n$ for some positive integer n. Then the map $f: X \rightarrow Y$ sending 0 to itself and $n>0$ to $1 / n$ is continuous because every map from a discrete space is continuous. Clearly the
map is also $1-1$ and onto, but its inverse is not continuous. But the graph of f^{-1} is the set of all (y, x) such that $y=f(x)$ (why?) and hence it is closed in $Y \times X$.

Completion of the proof of the theorem. Define the radial projection mapping $\rho: D^{n} \rightarrow K$ by $\rho(\mathbf{0})=\mathbf{0}$ and for nonzero points of the form $t v$ where $0<t \leq 1$ and $v \neq 0$ define $\rho(t v)=t b(v) v$. It follows immediately that this map is $1-1$ onto and continuous except possibly at $\mathbf{0}$. To see continuity at $\mathbf{0}$, let M_{0} be the maximum value of the function b, and let $h>0$. Then $\rho(x) \leq M_{0}|x|$ holds, and therefore we know that $|x|<h / M_{0}$ implies $|\rho(x)|<h$, proving continuity at $\mathbf{0}$. Since D^{n} is compact and K is Hausdorff, it follows that ρ must be a homeomorphism.

Appendix

We shall prove the following result, which was one step in the proof of the main theorem:
PROPOSITION. Let a be a nonzero vector in \mathbb{R}^{n}, let b be a vector in \mathbb{R}^{n}, let $\delta>0$ be a positive real number, and let E be the $(n-1)$-dimensional disk consisting of all points $w=b+w_{0}$, where w_{0} is perpendicular to a and $\left|w_{0}\right| \leq \delta$. Let H be the smallest convex set containing E and $a+b$. Then H contains all points of the form $b+t a$, where $0<t<1$, in its interior.

In the application to the proof of the main theorem, we take $b=a^{\prime}(v) v$ and $a=\left(b(v)-a^{\prime}(v)\right) v$. The point $a(v) v$ then can be rewritten as

$$
a(v) v=a^{\prime}(v) v+\frac{a(v)-a^{\prime}(v)}{b(v)-a^{\prime}(v)}\left(b(v)-a^{\prime}(v)\right) v
$$

and since

$$
0<\frac{a(v)-a^{\prime}(v)}{b(v)-a^{\prime}(v)}<1
$$

this translates to the equation $a(v) v=b+t a$ were $0<t<1$ and hence the point $a(v) v$ lies in the interior, which was the objective.

Proof. The first step is to reduce this to a case where a and b have particularly simple forms. Specifically, if $T_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is translation by $-a$, then T_{1} transforms the entire picture into one for which $a=0$, and since we have

$$
T_{1}(s u+(1-s) v)=s T_{1}(u)+(1-s) T_{1}(v)
$$

for all u and b (verify this!), it follows that $T_{1}[H]$ is the smallest convex set containing $T_{1}(a+b)=b$ and the disk $T_{1}[E]$; in effect, this reduces everything to proving the result when $b=0$. Similarly, if T_{2} is an orthogonal transformation sending b to a positive multiple of the last unit vector $\mathbf{e}_{n}=(0, \ldots, 1)$, we can reduce everything to the case where $a=k \mathbf{e}_{n}$ for some $k>0$.

If a and b are given as above, then we claim that H is the solid cone consisting of all points $\left(x_{1}, \cdots, x_{n}\right)$ satisfying the inequalities $x_{n} \geq 0$ and

$$
\frac{x_{n}}{k} \leq 1-\frac{1}{\delta} \sqrt{\sum_{i=1}^{n-1} x_{i}^{2}}
$$

If this is true, then the points specified the corresonding strict inequality (with $>$ replacing \geq), which defines an open subset of the solid cone, and hence these point must lie in the interior of H as claimed.

Consider a typical 2-dimensional section H^{\prime} of H obtained by intersecting it with a the 2dimensional vector subspace P spanned by \mathbf{e}_{n} and some unit vector \mathbf{u} perpendicular to \mathbf{e}_{n}; there is a drawing in the file convexbodies2.pdf. Elementary considerations show that H^{\prime} must contain the solid triangle in P with vertices $y \mathbf{e}_{n}$ and $\pm \delta \mathbf{u}$, which is the smallest convex set containing the given three vertices. The union of these plane sections is just the cone described by the preceding inequality, and therefore H must contain this solid cone. Finally, straightforward computation implies that this solid cone is convex, and therefore H must be the solid cone.

