Convex bodies and radial projection

Recall that a convex set in R" is a set K such that if z,y € K and 0 <t < 1 then tx+ (1—t)y €
K. Geometrically, this means that if x and y are in K then the closed line segment joining them
is also contained in K. Visually, this means that the set has no dents or holes.

Definition. A convex body in R" is a compact convex set K with nonempty interior, and it is
regular if it is the set of points satisfying an inequality of the form hA(v) > 0 for some continuous
real valued function A defined on an open neighborhood of K and the point set theoretic boundary
(or frontier) 0K of K is the set of all points where h(v) = 0.

DEFAULT HYPOTHESIS. Unless stated otherwise, all convex bodies considered here are as-
sumed to be regular.

Examples. 1. The simplest example is the solid unit disk D™ in R", which is defined by

the inequality
1—> a7 >0.
i

2. Clearly we want a subspace like the hypercube defined by —1 < z; < 1 to be a convex
body. This and many other examples will follow from a few simple observations which we shall
now describe.

PROPOSITION. Let K be a compact convex subset of R" with nonempty interior such that K
is defined by a finite set of inequalities h;j(v) > 0 where each h; is a smooth real valued function
such that hj(v) = 0 implies Vh;(v) # 0. Then h is a regular convex body.

Proof. Let h be the minimum of the functions h;. Then K is the set of points where h(v) > 0.
If h(v) > 0 then hj(v) > 0 for all j and in fact there is an open neighborhood V' of v in R™ such
that each h; is positive on V. Therefore v is an interior point of K. If h(v) = 0, then h;(v) =0
for some 4. By the Inverse/Implicit Function Theorem, we know that every open neighborhood of
v contains points z such that h;(z) < 0, and therefore v must be a frontier point of K.m

The preceding result holds for the hypercube, and hence the latter is a regular convex body
as defined above. More generally, the result applies if each h; is a first degree polynomial in the
coordinates. This yields examples like the following:

3. The n-simplex ¥, C R" consisting of all points (xy, --- ,x,) such that each z; > 0 and
4. The prism in R™"! consisting of all points (1, -++ ,Tp,Tp41) such that (zq, --- ,x,) lies

in¥, and 0 <z, <1,
The following theorem is intuitively what one would expect, but it plays an important role in
many contexts:

THEOREM. If K is a regular convex body in R", then there is a homeomorphism from
(D", 5" 1) to (K, 0K).

Proof. First of all, we claim it suffices to consider regular convex bodies such that 0 € R" lies in
the interior. If K is a regular convex body which contains the point p and T is the isometry of R"
sending = to = — p, then K’ = T[K] is also a regular convex body, but it contains the zero vector
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in its interior, and if the conclusion of the theorem holds for (K’,0K") then it clearly also holds for
(K,0K).

Assuming now that O lies in the interior of K, we know that there is some € > 0 such that
the open e-disk centered at 0 lies in the interior of K. Let v € S™~! be given, and consider the
intersection of K with the closed ray L(v) consisting of all points of the form tv, where ¢ > 0. Then
K N L(v) is a closed bounded convex set containing all points tv for ¢t < e, and therefore it follows
that K N L(v) must be a close interval consisting of all tv where 0 < ¢ < b(v) for some b(v) > 0.

CLAIM: The point b(v) v is the unique point in 0K N L(v).

To prove the claim, first note that the intersection K N L(v) is a closed bounded subset of
R", and since it is disjoint from an open neighborhood of 0 there will be a least positive number
a(v) such that a(v)v lies in that intersection. The assertion in the claim is equivalent to saying
that a(v) = b(v); we shall prove that a(v) < b(v) leads to a contradiction. If this condition holds,
then choose a’(v) such that 0 < a’(v) < a(v), and let n > 0 such that the open n-disk centered at
a’(v) is contained in the interior of K. Let E denote the disk consisting of all points w such that
w = wo + a(v) v, where wy is perpendicular to v and |wo| < 7. By convexity the set K contains
all convex combinations of the form tb(v)v + (1 —t¢)w, where w is as above and 0 <¢ < 1. If M
denotes this set, then M is a cone which contains the point a(v) v in its interior; this can be proved
in a variety of ways, and one argument is sketched at the end of this document. Since we assumed
that a(v) v was a frontier point of K, we have derived a contradiction, and therefore we must have
a(v) = b(v), proving the claim.

The next step is to prove that b(v) is a continuous function of v € S”~!. Since 0 lies in the
interior of K, it follows that b(v) > e, where € is as above. Furthermore, since K is bounded it
follows that b(v) is bounded from above by some constant. Thus we have a well-defined function b
from S™~! to some closed interval [m, M| for suitable constants satisfying M > m > 0.

Under the standard radial homeomorphism from R"™ — {0} to S"~! x (0,00), the boundary
OK corresponds to the graph of b. Since 0K is a closed subset of R™, the continuity of b will be an
immediate consequence of the following result:

LEMMA. (Closed graph property) Let f: X — Y be a map of compact Hausdorff spaces. Then
f is continuous if and only if its graph is a closed subset of X x Y.

Proof. Suppose that X and Y are Hausdorff and f is continuous. Let F' : X XY — Y and
G : X xY — Y be the functions F(x,y) =y and G(x,y) = f(z). Then the graph of f (= the set
of (z,y) such that y = f(z)) is the set of all points where F' = G. Since this set of points is closed
for maps into a Hausdorff space, it follows that the graph is closed in he product.

Now assume both spaces are also compact and that the graph I' of f is a closed subset of the
product. Then the map f factors into a composite of v(f) : X — X x Y — which is defined by
v(f) () = (z, f(x)) — and the projection P : X x Y — Y onto the second coordinate. Let T’
denote the image of v(f), so that I" is a compact subset of the product; it follows that v(f) defines
a 1-1 correspondence 7’ from X toI'. If Q : X x Y — X is projection onto the first coordinate and
g = Q|T, then g is continuous and is an inverse to «’. But since I' and X are compact Hausdorff,
the map g must be a homeomorphism, so that its inverse, which is 4’ must be continuous. The
latter implies that «(f) is continuous, which in turn implies that f = Pe°v(f) is also continuous.m

EXAMPLE. The preceding result does not extend to noncompact spaces. For example, let X
be the nonnegative integers with the usual metric, and let Y be the set of all points on the real
line of the form 0 or 1/n for some positive integer n. Then the map f: X — Y sending 0 to itself
and n > 0 to 1/n is continuous because every map from a discrete space is continuous. Clearly the

2



map is also 1-1 and onto, but its inverse is not continuous. But the graph of f~! is the set of all
(y,x) such that y = f(z) (why?) and hence it is closed in ¥ x X.

Completion of the proof of the theorem. Define the radial projection mapping p : D™ — K by
p(0) = 0 and for nonzero points of the form tv where 0 < t < 1 and v # 0 define p(tv) = tb(v) v.
It follows immediately that this map is 1-1 onto and continuous except possibly at 0. To see
continuity at 0, let My be the maximum value of the function b, and let h > 0. Then p(x) < My|z|
holds, and therefore we know that |z| < h/M, implies |p(z)| < h, proving continuity at 0. Since
D™ is compact and K is Hausdorff, it follows that p must be a homeomorphism.m

Appendix

We shall prove the following result, which was one step in the proof of the main theorem:

PROPOSITION. Let a be a nonzero vector in R™, let b be a vector in R™, let § > 0 be a positive
real number, and let E be the (n — 1)-dimensional disk consisting of all points w = b+ wq, where
wy is perpendicular to a and |wg| < 6. Let H be the smallest convex set containing F and a + b.
Then H contains all points of the form b+ ta, where 0 < t < 1, in its interior.

In the application to the proof of the main theorem, we take b = a/(v) v and a = (b(v)—a’(v) ) v.
The point a(v) v then can be rewritten as

and since
a(v) —a'(v)
b(v) — a’(v)

this translates to the equation a(v)v = b+ ta were 0 < ¢t < 1 and hence the point a(v) v lies in
the interior, which was the objective.

Proof. The first step is to reduce this to a case where a and b have particularly simple forms.
Specifically, if T7 : R™ — R" is translation by —a, then T; transforms the entire picture into one
for which a = 0, and since we have

Ti(su + (1—s)v) = sTi(u) + (1—s)T1(v)

for all u and b (verify this!), it follows that T [H| is the smallest convex set containing T} (a+b) = b
and the disk 7 [E]; in effect, this reduces everything to proving the result when b = 0. Similarly, if T
is an orthogonal transformation sending b to a positive multiple of the last unit vector e,, = (0, ..., 1),
we can reduce everything to the case where a = ke,, for some k& > 0.

If @ and b are given as above, then we claim that H is the solid cone consisting of all points
(21, ,x,) satisfying the inequalities x,, > 0 and




If this is true, then the points specified the corresonding strict inequality (with > replacing >),
which defines an open subset of the solid cone, and hence these point must lie in the interior of H
as claimed.

Consider a typical 2-dimensional section H’ of H obtained by intersecting it with a the 2-
dimensional vector subspace P spanned by e,, and some unit vector u perpendicular to e,,; there is
a drawing in the file convexbodies2.pdf. Elementary considerations show that H’' must contain
the solid triangle in P with vertices y e, and + d u, which is the smallest convex set containing the
given three vertices. The union of these plane sections is just the cone described by the preceding
inequality, and therefore H must contain this solid cone. Finally, straightforward computation
implies that this solid cone is convex, and therefore H must be the solid cone.n



