
Convex bodies and radial projection

Recall that a convex set in R
n is a set K such that if x, y ∈ K and 0 ≤ t ≤ 1 then tx+(1−t)y ∈

K. Geometrically, this means that if x and y are in K then the closed line segment joining them
is also contained in K. Visually, this means that the set has no dents or holes.

Definition. A convex body in R
n is a compact convex set K with nonempty interior, and it is

regular if it is the set of points satisfying an inequality of the form h(v) ≥ 0 for some continuous
real valued function h defined on an open neighborhood of K and the point set theoretic boundary
(or frontier) ∂K of K is the set of all points where h(v) = 0.

DEFAULT HYPOTHESIS. Unless stated otherwise, all convex bodies considered here are as-
sumed to be regular.

Examples. 1. The simplest example is the solid unit disk Dn in R
n, which is defined by

the inequality

1 −
∑

i

x2
i ≥ 0 .

2. Clearly we want a subspace like the hypercube defined by −1 ≤ xi ≤ 1 to be a convex
body. This and many other examples will follow from a few simple observations which we shall
now describe.

PROPOSITION. Let K be a compact convex subset of R
n with nonempty interior such that K

is defined by a finite set of inequalities hj(v) ≥ 0 where each hj is a smooth real valued function

such that hj(v) = 0 implies ∇hj(v) 6= 0. Then h is a regular convex body.

Proof. Let h be the minimum of the functions hj . Then K is the set of points where h(v) ≥ 0.
If h(v) > 0 then hj(v) > 0 for all j and in fact there is an open neighborhood V of v in R

n such
that each hj is positive on V . Therefore v is an interior point of K. If h(v) = 0, then hi(v) = 0
for some i. By the Inverse/Implicit Function Theorem, we know that every open neighborhood of
v contains points z such that hi(z) < 0, and therefore v must be a frontier point of K.

The preceding result holds for the hypercube, and hence the latter is a regular convex body
as defined above. More generally, the result applies if each hj is a first degree polynomial in the
coordinates. This yields examples like the following:

3. The n-simplex Σn ⊂ R
n consisting of all points (x1, · · · , xn) such that each xi ≥ 0 and

∑

i
xi ≤ 1.

4. The prism in R
n+1 consisting of all points (x1, · · · , xn, xn+1) such that (x1, · · · , xn) lies

in Σn and 0 ≤ xn+1 ≤ 1.

The following theorem is intuitively what one would expect, but it plays an important role in
many contexts:

THEOREM. If K is a regular convex body in R
n, then there is a homeomorphism from

(Dn, Sn−1) to (K, ∂K).

Proof. First of all, we claim it suffices to consider regular convex bodies such that 0 ∈ R
n lies in

the interior. If K is a regular convex body which contains the point p and T is the isometry of R
n

sending x to x − p, then K ′ = T [K] is also a regular convex body, but it contains the zero vector
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in its interior, and if the conclusion of the theorem holds for (K ′, ∂K ′) then it clearly also holds for
(K, ∂K).

Assuming now that 0 lies in the interior of K, we know that there is some ε > 0 such that
the open ε-disk centered at 0 lies in the interior of K. Let v ∈ Sn−1 be given, and consider the
intersection of K with the closed ray L(v) consisting of all points of the form tv, where t ≥ 0. Then
K ∩ L(v) is a closed bounded convex set containing all points tv for t ≤ ε, and therefore it follows
that K ∩ L(v) must be a close interval consisting of all tv where 0 ≤ t ≤ b(v) for some b(v) > 0.

CLAIM: The point b(v) v is the unique point in ∂K ∩ L(v).

To prove the claim, first note that the intersection ∂K ∩ L(v) is a closed bounded subset of
R

n, and since it is disjoint from an open neighborhood of 0 there will be a least positive number
a(v) such that a(v) v lies in that intersection. The assertion in the claim is equivalent to saying
that a(v) = b(v); we shall prove that a(v) < b(v) leads to a contradiction. If this condition holds,
then choose a′(v) such that 0 < a′(v) < a(v), and let η > 0 such that the open η-disk centered at
a′(v) is contained in the interior of K. Let E denote the disk consisting of all points w such that
w = w0 + a(v) v, where w0 is perpendicular to v and |w0| < 1

2
η. By convexity the set K contains

all convex combinations of the form t b(v) v + (1 − t)w, where w is as above and 0 ≤ t ≤ 1. If M
denotes this set, then M is a cone which contains the point a(v) v in its interior; this can be proved
in a variety of ways, and one argument is sketched at the end of this document. Since we assumed
that a(v) v was a frontier point of K, we have derived a contradiction, and therefore we must have
a(v) = b(v), proving the claim.

The next step is to prove that b(v) is a continuous function of v ∈ Sn−1. Since 0 lies in the
interior of K, it follows that b(v) ≥ ε, where ε is as above. Furthermore, since K is bounded it
follows that b(v) is bounded from above by some constant. Thus we have a well-defined function b
from Sn−1 to some closed interval [m,M ] for suitable constants satisfying M > m > 0.

Under the standard radial homeomorphism from R
n − {0} to Sn−1 × (0,∞), the boundary

∂K corresponds to the graph of b. Since ∂K is a closed subset of R
n, the continuity of b will be an

immediate consequence of the following result:

LEMMA. (Closed graph property) Let f : X → Y be a map of compact Hausdorff spaces. Then

f is continuous if and only if its graph is a closed subset of X × Y .

Proof. Suppose that X and Y are Hausdorff and f is continuous. Let F : X × Y → Y and
G : X × Y → Y be the functions F (x, y) = y and G(x, y) = f(x). Then the graph of f (= the set
of (x, y) such that y = f(x)) is the set of all points where F = G. Since this set of points is closed
for maps into a Hausdorff space, it follows that the graph is closed in he product.

Now assume both spaces are also compact and that the graph Γ of f is a closed subset of the
product. Then the map f factors into a composite of γ(f) : X → X × Y — which is defined by
γ(f)(x) = (x, f(x)) — and the projection P : X × Y → Y onto the second coordinate. Let Γ
denote the image of γ(f), so that Γ is a compact subset of the product; it follows that γ(f) defines
a 1–1 correspondence γ ′ from X to Γ. If Q : X ×Y → X is projection onto the first coordinate and
g = Q|Γ, then g is continuous and is an inverse to γ ′. But since Γ and X are compact Hausdorff,
the map g must be a homeomorphism, so that its inverse, which is γ ′ must be continuous. The
latter implies that γ(f) is continuous, which in turn implies that f = P oγ(f) is also continuous.

EXAMPLE. The preceding result does not extend to noncompact spaces. For example, let X
be the nonnegative integers with the usual metric, and let Y be the set of all points on the real
line of the form 0 or 1/n for some positive integer n. Then the map f : X → Y sending 0 to itself
and n > 0 to 1/n is continuous because every map from a discrete space is continuous. Clearly the
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map is also 1–1 and onto, but its inverse is not continuous. But the graph of f −1 is the set of all
(y, x) such that y = f(x) (why?) and hence it is closed in Y × X.

Completion of the proof of the theorem. Define the radial projection mapping ρ : Dn → K by
ρ(0) = 0 and for nonzero points of the form tv where 0 < t ≤ 1 and v 6= 0 define ρ(tv) = t b(v) v.
It follows immediately that this map is 1–1 onto and continuous except possibly at 0. To see
continuity at 0, let M0 be the maximum value of the function b, and let h > 0. Then ρ(x) ≤ M0|x|
holds, and therefore we know that |x| < h/M0 implies |ρ(x)| < h, proving continuity at 0. Since
Dn is compact and K is Hausdorff, it follows that ρ must be a homeomorphism.

Appendix

We shall prove the following result, which was one step in the proof of the main theorem:

PROPOSITION. Let a be a nonzero vector in R
n, let b be a vector in R

n, let δ > 0 be a positive

real number, and let E be the (n − 1)-dimensional disk consisting of all points w = b + w0, where

w0 is perpendicular to a and |w0| ≤ δ. Let H be the smallest convex set containing E and a + b.
Then H contains all points of the form b + t a, where 0 < t < 1, in its interior.

In the application to the proof of the main theorem, we take b = a′(v) v and a =
(

b(v)−a′(v)
)

v.
The point a(v) v then can be rewritten as

a(v) v = a′(v) v +
a(v) − a′(v)

b(v) − a′(v)

(

b(v) − a′(v)
)

v

and since

0 <
a(v) − a′(v)

b(v) − a′(v)
< 1

this translates to the equation a(v) v = b + t a were 0 < t < 1 and hence the point a(v) v lies in
the interior, which was the objective.

Proof. The first step is to reduce this to a case where a and b have particularly simple forms.
Specifically, if T1 : R

n → R
n is translation by −a, then T1 transforms the entire picture into one

for which a = 0, and since we have

T1(s u + (1 − s)v) = s T1(u) + (1 − s)T1(v)

for all u and b (verify this!), it follows that T1[H] is the smallest convex set containing T1(a+b) = b
and the disk T1[E]; in effect, this reduces everything to proving the result when b = 0. Similarly, if T2

is an orthogonal transformation sending b to a positive multiple of the last unit vector en = (0, ..., 1),
we can reduce everything to the case where a = k en for some k > 0.

If a and b are given as above, then we claim that H is the solid cone consisting of all points
(x1, · · · , xn) satisfying the inequalities xn ≥ 0 and

xn

k
≤ 1 −

1

δ

√

√

√

√

n−1
∑

i=1

x2
i .
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If this is true, then the points specified the corresonding strict inequality (with > replacing ≥),
which defines an open subset of the solid cone, and hence these point must lie in the interior of H
as claimed.

Consider a typical 2-dimensional section H ′ of H obtained by intersecting it with a the 2-
dimensional vector subspace P spanned by en and some unit vector u perpendicular to en; there is
a drawing in the file convexbodies2.pdf. Elementary considerations show that H ′ must contain
the solid triangle in P with vertices y en and ± δ u, which is the smallest convex set containing the
given three vertices. The union of these plane sections is just the cone described by the preceding
inequality, and therefore H must contain this solid cone. Finally, straightforward computation
implies that this solid cone is convex, and therefore H must be the solid cone.
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