
Homology groups of disks with holes

THEOREM. Let p1, · · · , pk} be a sequence of distinct points in the interior unit disk Dn where

n ≥ 2, and suppose that for all j the sets Ej ⊂ IntDn are closed, pairwise disjoint subdisks. Let

Sj denote the boundary of Ej , and let F = Dn −∪j IntEj . Then the following hold:

(i) The homology groups Hq(F ) are zero if q 6= 0, n− 1, and H0(F ) ∼= Z.

(ii) In the remaining dimension we have Hn−1(F ) ∼= Z
k, and the inclusion induced mappings

Hn−1(Sj)→ Hn−1(F ) send generators of the domains into a set of free generators for the codomain.

(iii) If we define standard generators for Hn−1(Sj) by taking the images of the standard

generator for Hn−1(S
n−1) under the canonial homeomorphims Sn−1 → Sj , then the image of

the geerator for Hn−1(S
n−1) in Hn−1(F ) is equal to the sums of the standard free generators for

Hn−1(F ).

Geometrically, F is a disk with k holes; a picture of one example is included on the last page of
this document. The standard homeomorphisms Sn−1 → Sj arise from the homeomorphisms from
R

n to itself which send v ∈ R
n to (rj · v) + pj , where rj is the radius of Ej .

Proof of the theorem

The first step is to replace F by an open set.

CLAIM 1. The closed set F is a strong deformation retract of R
n − {p1, · · · , pk}.

Proof of Claim 1. Observe that R
n − {p1, · · · , pk} is the union of F with the punctured

closed disks Ej − {pj}, and the intersection is ∪j Sj . Therefore it is enough to show that for each
j the sphere Sj is a strong deformation retract of Ej − {pj}. We can construct the retractions
Ej − {pj} → Sj by the standard formula

ρj(v) = pj +
rj

|v − pj |
· (v − pj)

for pushing points into the boundary radially, and if ϕj : Sj → Ej − {pj} is the inclusion mapping
then ϕ oρj is homotopic to the identity by a straight line homotopy.

CLAIM 2. If D ⊂ R
n is a closed metric disk, then (Rn)• −D is homeomorphic to the interior of

Dn.

Proof of Claim 2. The first step is to reduce the proof to the familiar case where D is the unit
disk Dn ⊂ R

n.

If the result is true when D = Dn, then it is also true for every closed disk E centered at
the origin, for the homeomorphism Mr : R

n → R
n defined by v → r · v (where v > 0) sends Dn

to the disk of radius r, and for general reasons it extends to a homeomorphism of the one point
compactification (Rn)•. If r is the radius of E, then this homeomorphism sends Dn to E and hence
also sends the complement of Dn homeomorphically to the complement of E.

Next, if the result is true for every closed disk E centered at the origin, then it is true for all
closed metric disks D, for if p is the center of D, then T (v) = v + p is a homeomorphism of R

n

to itself and hence extends to a homeomorphism from (Rn)• to itself. If we choose E to have the
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same radius as D, then this homeomorphism maps D to E and hence also maps the complement
of D to the complement of E.

Finally, we have to show the result is true for Dn. Let G ⊂ R
n be the set of all vectors v

such that |v| ≥ 1. We claim that G is homeomorphic to Dn − {0}; an explicit homeomorphism is
given by sending v to |v|−2 · v, so that the image of v points in the same direction but has length
|v|−1. If we extend this homeomorphism to one point compactifications and note that the one point
compactification of Dn − {0} is homeomorphic to Dn, we obtain a homeomorphism from G• to
Dn such that the unit sphere is sent to itself. Taking complements of the unit sphere, we see that
G• − Sn−1 ∼= (Rn)• −Dn is homeomorphic to the interior of Dn.

STEP 3. Computation of H∗(R
n − {p1, · · · , pk}) for n ≥ 2.

Let Uj denote the interior of the disk Ej . Then by excision we have

H∗(R
n, Rn − {p1, · · · , pk}) ∼= H∗(∪j Uj , ∪j Uj − {pj}) ∼=

⊕

j

H∗(Uj , Uj − {pj})

where the second isomorphism holds because the homology of a space splits into the direct sum
of the homology groups of its arc components. These relative groups are Z in dimension n and
zero otherwise, and since n ≥ 2 the result in this case follows because the long exact homology
sequence of (Rn, Rn − {p1, · · · , pk}) yields isomorphisms from Hq+1(R

n, Rn − {p1, · · · , pk}) to
Hq(R

n − {p1, · · · , pk}) if q > 0 and from H0 of the latter to H0(R
n) ∼= Z.

Before proceeding to the final step, we shall discuss the construction of canonical genera-
tors in more detail. For our purposes it will suffice to begin by taking a canonical generator for
Hn−1(bbR

n, Rn = {0}) ∼= Z; there are ways of choosing such generators for all values of n canoni-
cally, but we shall not try to explain how this can be done.

Consider the following commutative diagram, in which p ∈ IntDn and we identify Sn with the
one point compactification of R

n:

Hq−1(S
n − {p}) ←− Hq−1(S

n −Dn) −→ Hq−1(S
n − {0})

x





x





x





Hq(S
n, Sn − {p}) ←− Hq(S

n, Sn −Dn) −→ Hq(S
n, Sn − {0})

x





x





x





Hq(R
n, Rn − {p}) ←− Hq(R

n, Rn −Dn) −→ Hq(R
n, Rn − {0})

By Claim 2 we know that Sn−Dn is contractible, and we also know that Sn−{p} is contractible for
all p in the interior of Dn by the symmetry properties of Sn and the fact that Sn−{v} ∼= R

n if v is the
point at infinity. Therefore the homomorphisms in the first row of the diagram are isomorphisms.
Next, the vertical arrows from the second row to the first are the boundary homomorphisms in long
exact sequences of pairs, and therefore a Five Lemma argument shows that the homomorphisms
in the second row are also isomorphisms. Finally, the vertical arrows from the third row to the
second are excision isomorphisms, and therefore the homomorphisms in the third row are also
isomorphisms. We can then use the third row to define a canonical generator for Hn(Rn, Rn−{p})
by taking the class corresponding to the chosen generator for Hn(Rn, Rn − {0}).

STEP 4. Computation of the image of Hn(Rn, Rn−{0}) ∼= Z in Hn(Rn, Rn−{p1, · · · , pk}) ∼= Z
k

for n ≥ 2.
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By the splitting result mentioned earlier, it suffices to consider the maps Hn(Rn, Rn−{0})→
Hn(Rn, Rn−{pj}) for each j, and the preceding discussion shows that these maps are isomorphisms
which preserve canonical generators. Therefore the image of Hn(Rn, Rn−{0}) ∼= Z in Hn(Rn, Rn−
{p1, · · · , pk}) ∼= Z

k is merely the sum of the canonical free generators or the codomain.

STEP 5. Computation of the image of Hn−1(S
n−1) ∼= Z in Hn−1(F ) ∼= Z

k for n ≥ 2.

For each j such that 1 ≤ j ≤ k, let Fj = Dn−Uj , where Uj is the small open disk centered at
pj . We shall begin by analyzing a commutative diagram which is related to the previous one:

Hn(Rn, Rn − {p1, · · · , pk})
∼=
−→ ⊕j Hn(Rn, Rn − {pj})





y

∼=




y

∼=

Hn−1(R
n − {p1, · · · , pk}) −→ ⊕j Hn−1(R

n − {pj})
x





∼=
x





∼=

Hn−1(F ) −→ ⊕j Hn−1(Fj)

The arrow in the first row is an isomorphism by excision, the arrows from the first to second rows
are isomorphisms by the long exact homology sequences for the pairs (the adjacent terms in each
case are positive dimensional homology groups of R

n), and the arrows from the third to second rows
are isomorphisms by Step 1. By the direct sum decompositions on the right, it suffices to analyze
the image in homology when we are only removing the point pj or the open disk Uj centered at pj ,
where 1 ≤ j ≤ k.

At this point we need to be careful about choosing the right signs for our free generators of
homology groups, especially in view of the application we have in mind. If Σ is a sphere of radius r

centered at p ∈ R
n, we take the homeomorphism Sn−1 → Σ constructed in Step 2: First stretch or

shrink the sphere Sn−1 of radius 1 centered at 0 to a concentric sphere of radius r, and then map
this to the corresponding sphere centered at p via the translation v → v+p. Then by the comments
in the preceding paragraph we shall have proved the proposition if we can show the following:

Let S1 ⊂ R
n be the sphere of radius a centered at p, suppose that the disk it bounds

is contained in the interior of the disk of radius b centered at some point q, and let S2

denote the boundary sphere of that disk. Let f1 : Sn−1 → S1 and f : Sn−1 → S2 be the

homeomorphisms given as above. Choose a generator ω of Hn−1(S
n−1). Then the images

of f1∗(ω) and f2∗(ω) in R
n − {p} are equal.

To prove this, let S3 be the sphere of radius b centered at p, and let j1 and j3 denote the inclusions
into R

n = {p}. Then j3 of3 ' j1 of1 by the radial stretching homotopy sending (x, t) to (1 −
t) f1(x) + t f3(x). Therefore f1∗(ω) = f3∗(ω). By definition we also have f2(x) = f3(x) + q − p; if
j2 is th inclusion of S2 in R

n − {p}, it will suffice to prove that j3
of2 ' j2 of2, and this will follow

if the image of the straight line homotopy H(x, t) = f3(x)+ (1− t)(q− p) is contained in R
n−{p}.

Since |q − p| = d and a is the radius of the disk bounded by S1, the condition that one sphere
is contained in the interior of the open disk bounded by the other means that d + a < b (Proof: If
w is chosen so that w − p is a negative multiple of q − p and |w − p| = a, then w ∈ S1, so that
w is also in the open disk bounded by S2 and therefore b > |w − q| = |w − p| + |q − p| = a + d).
We need to show that |x| = b implies that H(x, t) 6= p, or equivalently that |x| = b implies that
|H(x, t)− p| > 0. But we have

H(x, t) − p = f3(x) − p + (1− t) (q − p)
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which means that if 0 ≤ t ≤ 1 (hence also 0 ≤ 1− t ≤ 1) then

|H(x, t) − p| ≥ |f3(x)− p| − (1− t) |q − p| > b (1− t) d ≥

b − d > a > 0

which is what we wanted to prove.

A degree formula

We shall use the theorem to prove an abstract, multidimensional version of a result which plays
a key role in complex analysis when n = 2.

COROLLARY. Let F be as in the theorem, and suppose that we are given a continuous mapping

g : F → R
n − {0}, and for each j let Ej be the subdisk in Dn whose interior is removed to form

F . Let hj : Sn−1 → F be the composite of the standard homeomorphism Sn−1 → Bdy Ej with the

inclusion of Bdy Ej in F . Then we have a summation formula

deg (g|Sn−1) =
∑

j

deg (g ohj) .

Section 4.5 of Ahlfors, Complex Analysis (Third Edition), describes implicatons of this result
for complex function theory.

Proof of the corollary. Let ω be the standard generator of Hn−1(S
n−1) described in Step 5, and

let h0 : Sn−1 → F be the inclusion mapping. Then by the theorem we have h0∗(ω) =
∑

j hj∗(ω)
and if we apply g∗ to both sides we obtain a similar identity with hj∗ replaced by g∗ ohj∗ = (g ohj)∗
for all j. By the definition of degree we know that the image of ω under the latter map is equal
to the degree of g ohj times ω if j > 0, and if h = 0 then the image of ω is equal to the degree of
g|Sn−1 times ω.
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Drawing of a disk with holes 
 

 

The following is a picture of a typical set  F  satisfying the conditions in the main theorem.   

 

 
 
 
Note that the holes may be irregularly distributed throughout the disk and that the radii of the 

holes may also differ.  Also, in general the center of the circle might not be one of the deleted 

center points.  In the 2 – dimensional case, the main theorem implies that outer circle with a 

counterclockwise parametrization is homologous to the sum of the inner circles with 

counterclockwise parametrizations (in other words, the two  1 – dimensional configurations 

determine the same  homology class). 
 
 
 


