Topological embeddings of graphs in graphs

The purpose of this document is to prove the following assertion which appears on page 362 of Munkres, *Topology*:

NONEMBEDDING EXAMPLE. If E is a graph homeomorphic to a Figure Eight and T is a graph homeomorphic to a Figure Theta, then neither is homeomorphic to a subspace of the other.

The proof of this assertion has two parts. One uses the local homology groups at points which are defined in Section VII.1 of algtop-notes.pdf, and the other involves an abstract result on topological embeddings of graphs which may be interesting for its own sake.

Throughout this document, a continuous mapping $f: X \to Y$ is called a (topological) embedding if it is a 1–1 continuous map which is a homeomorphism onto its image. By Theorem III.1.8 in gentopnotes2014.pdf, every continuous 1–1 mapping from a compact Hausdorff space into a Hausdorff space is a topological embedding, and by III.4.6 in the same notes every continuous strictly increasing mapping from an open interval (a, b) into the real line is a topological embedding with an open image. However, the Figure Eight curve $\varphi(t) = (\sin 2t, \sin t)$ for $t \in (0, 2\pi)$ is a regular smooth curve (differentiable with nowhere zero tangent vectors) which is 1–1, but its image is homeomorphic to a Figure 8 space (notice that the parametrization extends to $[0, 2\pi]$ and the extended curve passes through the origin at t = 0, π and 2π), so the image is compact but the domain is not.

We shall begin with the result on topological embeddings of one graph into another.

THEOREM 1. Let (X_0, \mathcal{E}_0) and (X_1, \mathcal{E}_1) be finite graph complexes in the sense of algtopnotes.pdf, and let $h: X_0 \to X_1$ be a topological embedding. Then there are subdivisions \mathcal{E}'_i of \mathcal{E}_i (where i = 0, 1) such that h maps (X_0, \mathcal{E}'_0) isomorphically onto a subgraph of (X_1, \mathcal{E}'_1) .

One can informally summarize this result by saying that an embedding of one graph in another is well behaved or *tame*. When one passes to higher dimensions, the behavior of topological embeddings of graphs can be extremely wild, even for embeddings of S^1 into \mathbb{R}^n . The following textbook provides a comprehensive account of topological embeddings which exhibit various types of wild behavior.

T. B. Rushing, Topological embeddings. Pure and Applied Mathematics, Vol. 52. Academic Press, New York – London, 1973. ISBN: 0-12-603550-4.

Proof of Theorem 1. Given a graph (Y, \mathcal{G}) and a finite set of points $V' \subset Y$, we can use the points in V' which are not vertices to construct a new subdivision whose vertices are the union of V' with the vertices of Y; specifically, if an edge E contains some nonvertex points in V', we use this points to split E into subintervals.

We shall now apply the reasoning of the preceding paragraph to (X_0, \mathcal{E}_0) and (X_1, \mathcal{E}_1) as follows: Let $V_0 V_1$ be the vertices in these respective graph complexes. Now add the vertices $h[V_0]$ to the vertices of \mathcal{E}_1 and let (X_1, \mathcal{E}'_1) be the associated subdivision of \mathcal{E}_1 described above. Finally, add the vertices of $h^{-1}[V_1]$ and let (X_0, \mathcal{E}'_0) be the associated subdivision of \mathcal{E}_1 described above.

We claim that (X_0, \mathcal{E}'_0) is isomorphic to a subgraphof (X_1, \mathcal{E}'_1) . By construction the vertices of (X_0, \mathcal{E}'_0) are exactly the vertices of (X_1, \mathcal{E}'_1) which lie in X_0 . Hence the proof of the assertion in the first sentence reduces to showing that if A is an edge of (X_0, \mathcal{E}'_0) , then h[A] is an edge of (X_1, \mathcal{E}'_1) . Given the edge A of (X_0, \mathcal{E}'_0) , let $A^{\mathbf{O}}$ be the open edge obtained by removing the end points. Then the complement of $A^{\mathbf{O}}$ is a finite union of edges and isolated points, which implies the complement

is closed and $A^{\mathbf{O}}$ is open. Since its image in X_1 does not contain any vertices of X_1 , it follows that this image is contained in the union W_1 of the open edges in (X_1, \mathcal{E}'_1) . By construction the connected components of W_1 are the open edges of the latter graph, and since $A^{\mathbf{O}}$ is connected it follows that its image in X_1 must be contained in a single open edge; denote this open edge by $C^{\mathbf{O}}$, and let $C \in \mathcal{E}'_1$ be its closure. The continuity of the embedding h implies that A must be contained in C, and the condition on vertices implies that $C^{\mathbf{O}}$ does not contain either endpoint of A; if we combine these observations, we see that the endpoints of A must also be the endpoints of C. Since $h[A] \subset C$ and by continuity h[A] must be a closed interval, it follows that h[A] = C, which is what we wanted to prove.

Suppose now that we have an embedding h which maps the graph (X_0, \mathcal{E}_0) isomorphically onto a subgraph of (X_1, \mathcal{E}_1) , and let v be a vertex of the subgraph. We shall also need the following elementary comparison principle relating the local homology groups at v in X_0 to the local homology groups at v in X_1 .

PROPOSITION 2. Suppose that (X_0, \mathcal{E}_0) is a subgraph of (X_1, \mathcal{E}_1) and v is a vertex of the subgraph. Then the local homology group $H_1(X_0, X_0 - \{v\})$ is isomorphic to a subgroup of $H_1(X_1, X_1 - \{v\})$.

Proof. For i = 0, 1 let m_i be the number of edges in (X_i, \mathcal{E}_i) which contain v as one of their endpoints. By Theorem VII.1.6 in algtop-notes.pdf we know that $H_1(X_i, X_i - \{v\})$ is free abelian of rank $m_i - 1$. Since X_0 is a subgraph of X_1 we know that $m_0 \leq m_1$ (every edge in the subgraph is also an edge in the larger graph), and if we combine this with the previous sentence we obtain the conclusion of the proposition.

Proof of the assertion on page 362 of Munkres. Let E be the Figure Eight graph, and let T be the Figure Theta graph. The proof that neither is homeomorphic to a subset of the other splits naturally into two parts.

(1) T is not homeomorphic to a subset of E.

Suppose that there is a topological embedding $h: T \to E$. Then by Theorem 1 we can subdivide standard graph structures on T and E to realize some subdivision of T as a subgraph of some subdivision of E. Since there are two vertices v_1, v_2 of T such that $m_T(v_i) = 3$ and hence $H_1(T, T - \{v_i\}) \cong \mathbb{Z}^2$, we can use Proposition 2 to conclude that $H_1(E, E - \{v_i\}) \supset \mathbb{Z}^2$. However, there is only one vertex w of E such that $H_1(E, E - \{w\}) \cong \mathbb{Z}^m$ with $m \ge 2$, and hence we have a contradiction. The source of this contradiction is the assumption that there was a topological embedding of T in E, and consequently no such topological embedding can exist.

(2) E is not homeomorphic to a subset of T.

Suppose that there is a topological embedding $h: E \to T$. Then by Theorem 1 we can subdivide standard graph structures on E and T to realize some subdivision of E as a subgraph of some subdivision of T. Since there is one vertex w of E such that $m_E(w) = 4$ and hence $H_1(E, E - \{w\}) \cong$ \mathbb{Z}^3 , we can use Proposition 2 to conclude that $H_1(T, T - \{w\}) \supset \mathbb{Z}^3$. However, for every vertex v of T we have $H_1(T, T - \{v\}) \cong \mathbb{Z}^m$ with $m \leq 2$, and this yields a contradiction. The source of this contradiction is the assumption that there was a topological embedding of E in T, and consequently no such topological embedding can exist.

Clearly the same methods are applicable to analyze many other pairs of examples.