1. [30 points] (a) Let $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be a basepoint preserving continuous mapping of connected spaces, and let $p:\left(E, e_{0}\right) \rightarrow\left(X, x_{0}\right)$ and $q:\left(T, t_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be simply connected covering space projections. Prove that there is a unique continuous mapping $F:\left(E, e_{0}\right) \rightarrow\left(T, t_{0}\right)$ such that $q{ }^{\circ} F=f{ }^{\circ} p$.
(b) If f is a homeomorphism, prove that F is also a homeomorphism. [Hint: Let $g=f^{-1}$, and let G be constructed as in the first part. Why is $p^{\circ} G \circ F=p=p^{\circ} \mathrm{id}_{E}$ and what does this imply?]

SOLUTION.

(a) The Lifting Criterion states that such a map exists if and only if the image of $\pi_{1}(E)$ in $\pi_{1}(Y)$ under the map $\left(p^{\circ} f\right)_{*}=p_{*}{ }^{\circ} f_{*}$ is contained in the image of q_{*}. Since the domain of $\left(p^{\circ} f\right)_{*}$ is the trivial group, this condition is automatically satisfied.
(b) Let G be the lifting of $q^{\circ} g$ which exists by (a). Then we have $q{ }^{\circ} F=f{ }^{\circ} p$ and $p^{\circ} G=g{ }^{\circ} q$. Therefore

$$
p^{\circ} G^{\circ} F=g^{\circ} q^{\circ} F=g^{\circ} f^{\circ} p=p
$$

where the last equation follows from the assumption that $g=f^{-1}$. Since $p=p \circ \mathrm{id}_{E}$, this yields the equations in the last sentence of the hint. By construction, both $G{ }^{\circ} F$ and the identity on E are liftings of $p: E \rightarrow B$ to E which preserve basepoints, and therefore the maps $G^{\circ} F$ and id_{E} are equal by the uniqueness of liftings. If we interchange the roles of $\{p, E, X, q, T, Y, F, G\}$ with those of $\{q, T, Y, p, E, X, G, F\}$ in the preceding argument, we also obtain the identity $F^{\circ} G=\mathrm{id}_{T}$. Therefore F is a homeomorphism and G is its inverse.
2. [25 points] Suppose that the arcwise connected space is the union of the arcwise connected open subsets U and V such that $U \cap V$ is also arcwise connected, and assume further that the inclusion induced homomorphism $\pi_{1}(U \cap V) \rightarrow \pi_{1}(V)$ is an isomorphism. Prove that the inclusion induced homomorphism $\pi_{1}(U) \rightarrow \pi_{1}(X)$ is also an isomorphism. [Hint: If $\alpha: K \rightarrow H$ is a group isomorphism and $\beta: K \rightarrow G$ is a homomorphism, show that

has the Universal Mapping Property for pushouts.]

SOLUTION.

Since the fundamental group of X is the pushout of the diagram

$$
\pi_{1}(V) \leftarrow \pi_{1}(U \cap V) \rightarrow \pi_{1}(U)
$$

it will suffice to prove that the diagram in the hint has the Universal Mapping Property for pushouts.

Now suppose that we have homomorphisms f, g in a commutative diagram as below, where $K=\pi_{1}(U \cap V), G=\pi_{1}(U)$, and $H=\pi_{1}(V)$; the homomorphisms α and β are taken to be induced by the appropriate inclusion mappings:

We need to show that there is a unique homomorphism $\theta: G \rightarrow \Gamma$ such that $\theta \circ{ }^{\circ} \mathrm{id}_{G}=f$ and $\theta^{\circ}\left(\beta \alpha^{-1}\right)=g$.

Uniqueness. The first condition implies that if θ has the desired properties then $\theta=\theta \circ \mathrm{id}_{G}=f$.

Existence. We claim that f has the desired properties. The first follows from $\theta \circ \mathrm{id}_{G}=f$, and if we compose the relation $f \circ \beta=g^{\circ} \alpha$ with α^{-1} we see that $f \circ\left(\beta \alpha^{-1}\right)=g$.
3. [20 points] Let X be a connected space whose fundamental group is cyclic of order 30. Describe a finite set \mathcal{M} of covering space projections for X such that every connected covering of X is equivalent to an example in \mathcal{M}. Assume also that X is locally simply connected.

SOLUTION.

The connected covering spaces are classified by the the subgroups of $\pi_{1}(X)=\mathbb{Z}_{30}$, and the associated subgroup is just the fundamental group of the covering space. Therefore we need only count the subgroups of \mathbb{Z}_{30}.

These subgroups are given by the finite cyclic groups whose orders divide 30 (we include the trivial group as a cyclic group of order 1). Now $30=2 \cdot 3 \cdot 5$, so the subgroups are given by the eight integers $d=2^{\alpha} 3^{\beta} 5^{\gamma}$ where $\alpha, \beta, \gamma \in\{0,1\}$. Let \widetilde{X} be the universal covering space of X, and for each such d let X_{d} be the covering space $\widetilde{X} / \mathbb{Z}_{d}$. Then the fundamental group of X_{d} is cyclic of order d and hence every covering space is equivalent to one of the eight coverings whose total spaces are given by X_{d} where d runs through the eight integral divisors of 30 .
4. [25 points] If X is the union of the edges in a triangular prism, then X is decomposed into 9 edges with a total of 6 vertices a, b, c, d, e, f and edges given by the following list:

$$
a b, b c, a c, d e, e f, d f, a d, b e, c f
$$

Find a maximal tree in X with respect to this decomposition and compute the fundamental group of X. It will suffice to describe the maximal tree by means of an accurate sketch. [Hint: The graph can be embedded in the plane with $\triangle d e f$ sitting inside $\triangle a b c$ such that the lines $a b, b c, a c$ are parallel to $d e, e f, d f$ respectively.]

SOLUTION.

We can compute the fundamental group by computing the Euler characteristic χ, which is $v-e=6-9=-3$. The number of generators is then equal to $1-(-3)=4$.

There are many different possibilities for the maximal tree, and they are precisely the subgraphs T satisfying the following three conditions:
(1) T is connected.
(2) T contains all the vertices of X.
(3) T contains exactly five edges of X.

Finding all the subgraphs satisfying these conditions might be an interesting or useful exercise; in fact, one can write a reasonably short computer program to find all the possibilities. There are

$$
\binom{9}{5}=126
$$

subgraphs with exactly five edges, and one can test each one to see if (1) and (2) are satisfied.

