
NAME:

Mathematics 205B, Winter 2012, Final Examination

Work all questions, and unless indicated otherwise give reasons for your answers. The

point values for individual problems are indicated in brackets.

Unless explicitly stated otherwise, all spaces are assumed to be Hausdorff and locally

arcwise connected.

Answer Key
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1. [25 points]
Suppose that X is an arcwise connected space whose fundamental group is finite.

Prove that every continuous mapping f from X to S1 is homotopic to a constant. [Hint:

Show that f lifts to the universal covering space of S1.]

SOLUTION:

The map f lifts to the universal covering space R if and only if the induced map f∗ of
fundamental groups is trivial. This is true in our situation because π1(X) is finite, so that
every homomorphism from π1(X) to the infinite cyclic group π1(S

1) is constant (elements
of finite order go to elements of finite order, and the only such element of π1(S

1) is the
identity). Therefore, if p : R → S1 is the universal covering space projection we have a
lifting g of f to a map X → R such that p og is homotopic to f . Since R is contractible it
follows that g is homotopic to a constant map, and therefore the same is true of f = p oh.
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2. [20 points]
Suppose that we are given a decomposition of a space X as a union of two (nonempty)

arcwise connected subspaces such that their intersection is also nonempty and arcwise
connected. Suppose also that the maps of fundamental groups from π1(U ∩ V ) to π1(U)
and π1(V ) (induced by inclusions) are both onto. Prove that the the map of fundamental
groups from π1(U ∩ V ) to π1(X) (induced by inclusion) is also onto.

SOLUTION:

The Seifert-van Kampen Theorem implies that π1(X) is generated by the images of
π1(U) and π1(V ). By our hypotheses the latter are generated by the images of π1(U ∩V ),
and therefore the set of generators for π1(X) coming from π1(U) and π1(V ) must lie in
the image of π1(U ∩ V ). Therefore the map from π1(U ∩ V ) to π1(X) maps onto a set of
generators, which implies that every element of π1(X) lies in the image of π1(U ∩ V ).
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3. [25 points]
Suppose that X is the graph given by the Star of David figure in the drawing handed

out with this examination, and take the decomposition with 12 vertices suggested by this
drawing. Compute the fundamental group of X and the fundamental group of a connected
3-sheeted covering of X.

SOLUTION:

See star-graph.pcf for a drawing.

The Star of David graph has 18 edges, so its Euler characteristic χ is equal to 12−18 =
−6. Therefore the fundamental group of X is a free group on 1−χ = 7 generators. Now the
Euler characteristic χ′ of the 3-fold covering is 3 ·χ = −18, and therefore the fundamental
group of the covering space is free on 1 − χ′ = 19 generators.
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4. [25 points]
Let (P,K) be a simplicial complex, and let P1 be the graph whose edges and vertices

are the 1-simplices and vertices of K. Prove that P is connected if and only if every pair
of vertices can be joined by an edge path in P1.

SOLUTION:

The first step is to show that every point of P is in the same component as some
vertex; this is true because each point lies in a simplex A, and each simplex is connected
so that A lies in the connected component defined by one of its vertices.

If every pair of vertices can be joined by an edge path in P1, then all vertices lie in
the same component, and by the previous paragraph this means that every point of P
lies in the same component, which means that P must be connected (in fact, it is arcwise
connected).

Conversely, given an arbitrary simplicial complex (P,K) consider the equivalence re-
lation on the set of vertices given by v ∼ v′ if and only if v and v′ can be joined by an
edge path in P1. Given an equivalence class C of vertices, define the hull of C to be the
union of all simplices in K which contain a vertex in C among its vertices. It follows that
if a simplex A has one vertex in C among its vertices, then all the vertices in A lie in C.
The sets Hull(C) form a finite, pairwise disjoint family of closed subspaces whose union
is P . If P is connected then there can only be one such subset and hence C must consist
of all vertices of K. But this means that every pair of vertices can be joined by an edge
path in P1.

5



5. [25 points]
Suppose that the simplicial complex K is the union of two subcomplexes K1 and K2;

choose a linear ordering ω for the vertices of K. Prove that there are isomorphisms of chain
complexes from C∗(K1,K1 ∩ K2) ⊕ C∗(K2,K1 ∩ K2) to C∗(K,K1 ∩ K2) (defined using
ω) and corresponding isomorphisms of simplicial homology groups. [Hint: Look at the
standard free generators for these relative chain complexes. Recall that Cq(L,M) is a free
abelian group on the set of q-simplices in L but not in M.]

SOLUTION:

We shall show that there is a 1–1 correspondence between sets of generators for the
q-chain groups of both chain complexes such that the map induced by inclusion sends
one set of generaors to the other. This will imply that we have an isomorphism on the
level of chain groups and chain complexes, and by functoriality we will get an associated
isomorphism of homology groups.

By definition the groups Cq(K1,K1 ∩ K2) and Cq(K2,K1 ∩ K2) Cq(K2,K1 ∩ K2)
are free abelian on the q-simplices of K1 or K2 which are not in K1 ∩ K2. Each of
these simplices is a q-simplex of K which does not lie in K1 ∩ K2, and the map from free
generators of Cq(K1,K1 ∩ K2) ⊕ Cq(K2,K1 ∩ K2) to free generators of Cq(K,K1 ∩ K2)
is 1–1 because the q-simplices in K1 but not in K1 ∩ K2 are disjoint from the q-simplices
in K2 but not in K1 ∩ K2. But this map is also onto, because a simplex which is in
K = K1 ∩ K2 but not in K1 ∩ K2 either comes from K1 or K2. This shows that the
chain level maps send a canonical set of free generators for the domain to a canonical set
of free generators for the codomain, so that the induced map of chain complexes is an
isomorphism (and hence the induced homology map is also an isomorphism).
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6. [30 points]
Prove that every finitely generated abelian group is isomorphic to the fundamental

group of a compact topological n-manifold for some choice of n. [Hint: If X and Y are
topological manifolds of dimensions p and q, then their product is a topological (p + q)-
manifold.]

SOLUTION:

Write the finitely generated abelian group π as a product of B infinite cyclic groups
and finite cyclic groups of orders k1, · · · , kr. Consider the topological manifold given by
a product of B copies of S1 and the lens spaces M(kj) = S3/Zkj

. Since the fundamental
group of a product is a product of the fundamental groups of the factors, it follows that
the fundamental group of the product space (which is a compact topological manifold) will
be isomorphic to π.
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7. [25 points]
One can use Mayer-Vietoris sequences and homotopy invariance in singular homology

to prove the following formula in which n is a positive integer and X is an arbitrary
nonempty space:

Hq(S
n
× X) ∼= Hq(X) ⊕ Hq−n(X)

Use this formula to compute the homology groups of the compact 6-manifolds S3×S3 and
S2 ×S4, and explain why the computations show that these spaces are not homeomorphic
(or even homotopy equivalent).

SOLUTION:

Use the rule to compute the homology of S2 × S4 and S3 × S3.

We know that

Hq(S
2
× S4) ∼= Hq(S

4) ⊕ Hq−2(S
4) , Hq(S

3
× S3) ∼= Hq(S

3) ⊕ Hq−3(S
3)

and these yield the following computations of homology groups:

H3(S
3
× S3) ∼= H3(S

3) ⊕ H0(S
3) = Z ⊕ Z

H3(S
2
× S4) ∼= H3(S

4) ⊕ H1(S
4) = 0

Since the 3-dimensional homology groups of S3 × S3 and S2 × S4 are not isomorphic, the
spaces cannot be homeomorphic or even homotopy equivalent.
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8. [25 points]
Suppose that Γ ⊂ S2 is a simple closed curve, and let A ⊂ S2 − Γ be a set of k ≥ 2

points. For which values of k is it always possible to find two points in A which can be
joined by a continuous curve in S2 − Γ, and for which valued is this not always possible?
Prove that your answer is correct. [Hint: What can we say when there are p objects
which lie in q < p pairwise disjoint subsets?]

SOLUTION:

It is always possible to find two points in A which can be joined by a continuous curve
in S2 − Γ if k ≥ 3, for there are 2 components in S2 − Γ, and since 3 > 2 there must
be two points which lie in the same component (equivalently, arc component), and these
points can be joined by a continuous curve which lies in the component and hence in the
complement of Γ.

On the other hand, this is not always possible if k = 2, for S2 − Γ has two (arc)
components, and if we take one point from each and join them by a continuous curve in
S2, then this curve cannot be contained in the complement (if it did, both points would
lie in the same arc component of the complement and we know this is not true).
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