Mathematics 205B, Winter 2014, Examination 2

Answer Key

Unless explicitly stated otherwise, all spaces are assumed to be ${\bf Hausdorff}$ and ${\bf locally}$ arcwise connected.

1. [25 points] Suppose that $f: A \to B$ and $g: B \to C$ define an exact sequence and $f': A' \to B'$ and $g': B' \to C'$ define another exact sequence. Prove that the direct sums $f \oplus f': A \oplus A' \to B \oplus B'$ and $g \oplus g': B \oplus B' \to C \oplus C'$ also define an exact sequence.

SOLUTION:

The simplest way to prove this is to observe that if $h: G \to K$ and $h': G' \to K'$ are homomorphisms of abelian groups, then

 $\operatorname{Kernel}(h \oplus h') \cong (\operatorname{Kernel} h) \oplus (\operatorname{Kernel} h'), \qquad \operatorname{Image}(h \oplus h') \cong (\operatorname{Image} h) \oplus (\operatorname{Image} h').$

These follow because $h \oplus h'(u, v) = (h(u), h'(v)).$

With these identities at our disposal, the proof of exactness is a consequence of the following chain of identities, in which the middle equality is just the exactness assumption in the problem:

 $\operatorname{Kernel}(g \oplus g') \cong (\operatorname{Kernel} g) \oplus (\operatorname{Kernel} g') = (\operatorname{Image} f) \oplus (\operatorname{Image} f') = \operatorname{Image}(f \oplus f')$

2. [25 points] As in the take-home assignment, suppose that we are given a simplex in \mathbb{R}^2 with vertices **a**, **b** and **c**, and identify \mathbb{R}^2 with the *xy*-plane in \mathbb{R}^3 . Let $\mathbf{x}_{\pm} \in \mathbb{R}^3$ denote the point $(0, 0, \pm 1)$. Consider the simplicial complex K which is the union of the two 3-simplices $\mathbf{x}_{\pm} \mathbf{a} \mathbf{b} \mathbf{c}$, and assume that the vertices have the linear ordering $\mathbf{x}_{-}, \mathbf{x}_{+}, \mathbf{a}$, **b**, **c**. Find a 3-chain

$$u \mathbf{x}_{+} \mathbf{a} \mathbf{b} \mathbf{c} + v \mathbf{x}_{-} \mathbf{a} \mathbf{b} \mathbf{c} \in C_{3}(\mathbf{K}^{\omega})$$

whose boundary is a linear combination of all 2-simplices except **abc**. [*Hint:* There is such a chain with $|u|, |v| \le 1$.]

SOLUTION:

Let c be the displayed 3-dimensional chain. We want to find u and v such that $d_3(c)$ has no terms involving **abc**. The easiest way to address this is to compute the boundary semi-explicitly; more correctly, it suffices to compute the terms in the boundary involving **abc**.

If we do this, we find that $d_3(c) = (u+v) \mathbf{abc} + T$, where T is a "trash term" which is a linear combination of the other standard free generators for $C_2(\mathbf{K}^{\omega})$ — namely, the symbols corresponding to 2-simplices in **K** which have \mathbf{x}_- or \mathbf{x}_+ as a vertex. Therefore the condition in the problem is equivalent to u = -v, and one specific example is given by

 $\mathbf{x}_{+} \, \mathbf{a} \, \mathbf{b} \, \mathbf{c} \ - \ \mathbf{x}_{-} \, \mathbf{a} \, \mathbf{b} \, \mathbf{c}$

3. [20 points] State the Mayer-Vietoris axiom for singular homology as it applies to a topological space X which is decomposed as the union of two open subsets U and V.

SOLUTION:

This property is stated explicitly in the course notes.

4. [30 points] Let $m \ge 2$ be an integer, let $U \subset \mathbb{R}^m$ (m, not n) be a nonempty open subset, and let n < m be another integer. Prove that there is no 1–1 continuous mapping $f: U \to \mathbb{R}^n$. [Hints: Let j be the usual inclusion of \mathbb{R}^n to \mathbb{R}^m obtained by adjoining m-n zero coordinates. What does Invariance of Domain imply about $j \circ f$? Observe that the image of j has an empty interior.]

SOLUTION:

Follow the hint, and assume that there is a 1–1 continuous mapping $f : U \to \mathbb{R}^n$. Since f and j are both 1–1 the composite $j \circ f : U \to \mathbb{R}^m$ is a continuous 1–1 mapping from an open subset of \mathbb{R}^m into \mathbb{R}^m . Therefore by Invariance of Domain the mapping $j \circ f$ is open.

On the other hand, the image of this map is contained in the image of j, and the latter has empty interior (in fact, its complement is dense, or alternatively given a point $\mathbf{x} \in \text{Image } j$ no point of the form $\mathbf{x} + t \mathbf{e}_m$ $t \neq 0$ lies in this image, and if the image were open such points would like in it for |t| sufficiently small). Therefore the nonempty set Image $j \circ f$ cannot be open in \mathbb{R}^m , which contradicts our earlier conclusion.

The source of this contradiction was the assumption about the existence of a 1–1 continuous mapping $f: U \to \mathbb{R}^n$, and therefore no such mappint can exist.