Mathematics 205B, Winter 2014, Examination 2

Answer Key

Unless explicitly stated otherwise, all spaces are assumed to be Hausdorff and locally arcwise connected.

1. [25 points] Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ define an exact sequence and $f^{\prime}: A^{\prime} \rightarrow B^{\prime}$ and $g^{\prime}: B^{\prime} \rightarrow C^{\prime}$ define another exact sequence. Prove that the direct sums $f \oplus f^{\prime}: A \oplus A^{\prime} \rightarrow B \oplus B^{\prime}$ and $g \oplus g^{\prime}: B \oplus B^{\prime} \rightarrow C \oplus C^{\prime}$ also define an exact sequence.

SOLUTION:

The simplest way to prove this is to observe that if $h: G \rightarrow K$ and $h^{\prime}: G^{\prime} \rightarrow K^{\prime}$ are homomorphisms of abelian groups, then

Kernel $\left(h \oplus h^{\prime}\right) \cong($ Kernel $h) \oplus\left(\right.$ Kernel $\left.h^{\prime}\right), \quad$ Image $\left(h \oplus h^{\prime}\right) \cong($ Image $h) \oplus\left(\right.$ Image $\left.h^{\prime}\right)$.
These follow because $h \oplus h^{\prime}(u, v)=\left(h(u), h^{\prime}(v)\right)$.
With these identities at our disposal, the proof of exactness is a consequence of the following chain of identities, in which the middle equality is just the exactness assumption in the problem:

Kernel $\left(g \oplus g^{\prime}\right) \cong($ Kernel $g) \oplus\left(\right.$ Kernel $\left.g^{\prime}\right)=(\operatorname{Image} f) \oplus\left(\operatorname{Image} f^{\prime}\right)=\operatorname{Image}\left(f \oplus f^{\prime}\right)$
2. [25 points] As in the take-home assignment, suppose that we are given a simplex in \mathbb{R}^{2} with vertices \mathbf{a}, \mathbf{b} and \mathbf{c}, and identify \mathbb{R}^{2} with the $x y$-plane in \mathbb{R}^{3}. Let $\mathbf{x}_{ \pm} \in \mathbb{R}^{3}$ denote the point $(0,0, \pm 1)$. Consider the simplicial complex K which is the union of the two 3 -simplices $\mathbf{x}_{ \pm} \mathbf{a b c}$, and assume that the vertices have the linear ordering $\mathbf{x}_{-}, \mathbf{x}_{+}, \mathbf{a}$, b, c. Find a 3 -chain

$$
u \mathbf{x}_{+} \mathbf{a b} \mathbf{c}+v \mathbf{x}_{-} \mathbf{a b} \mathbf{c} \in C_{3}\left(\mathbf{K}^{\omega}\right)
$$

whose boundary is a linear combination of all 2 -simplices except abc. [Hint: There is such a chain with $|u|,|v| \leq 1$.]

SOLUTION:

Let c be the displayed 3-dimensional chain. We want to find u and v such that $d_{3}(c)$ has no terms involving abc. The easiest way to address this is to compute the boundary semi-explictly; more correctly, it suffices to compute the terms in the boundary involving abc.

If we do this, we find that $d_{3}(c)=(u+v) \mathbf{a b c}+T$, where T is a "trash term" which is a linear combination of the other standard free generators for $C_{2}\left(\mathbf{K}^{\omega}\right)$ - namely, the symbols corresponding to 2 -simplices in \mathbf{K} which have \mathbf{x}_{-}or \mathbf{x}_{+}as a vertex. Therefore the condition in the problem is equivalent to $u=-v$, and one specific example is given by

$$
\mathbf{x}_{+} \mathbf{a b c}-\mathbf{x}_{-} \mathbf{a b c} .
$$

3. [20 points] State the Mayer-Vietoris axiom for singular homology as it applies to a topological space X which is decomposed as the union of two open subsets U and V.

SOLUTION:

This property is stated explicitly in the course notes.
4. [30 points] Let $m \geq 2$ be an integer, let $U \subset \mathbb{R}^{m}$ (m, not n) be a nonempty open subset, and let $n<m$ be another integer. Prove that there is no $1-1$ continuous mapping $f: U \rightarrow \mathbb{R}^{n}$. [Hints: Let j be the usual inclusion of \mathbb{R}^{n} to \mathbb{R}^{m} obtained by adjoining $m-n$ zero coordinates. What does Invariance of Domain imply about $j \circ f$? Observe that the image of j has an empty interior.]

SOLUTION:

Follow the hint, and assume that there is a $1-1$ continuous mapping $f: U \rightarrow \mathbb{R}^{n}$. Since f and j are both $1-1$ the composite $j \circ f: U \rightarrow \mathbb{R}^{m}$ is a continuous 1-1 mapping from an open subset of \mathbb{R}^{m} into \mathbb{R}^{m}. Therefore by Invariance of Domain the mapping $j \circ f$ is open.

On the other hand, the image of this map is contained in the image of j, and the latter has empty interior (in fact, its complement is dense, or alternatively given a point $\mathbf{x} \in$ Image j no point of the form $\mathbf{x}+t \mathbf{e}_{m} t \neq 0$ lies in this image, and if the image were open such points would like in it for $|t|$ sufficiently small). Therefore the nonempty set Image $j \circ f$ cannot be open in \mathbb{R}^{m}, which contradicts our earlier conclusion.

The source of this contradiction was the assumption about the existence of a $1-1$ continuous mapping $f: U \rightarrow \mathbb{R}^{n}$, and therefore no such mappint can exist.

