Alternate solution to Problems 5(c) and 5(d) in Exam 3

The positive examples in exam3s17key.pdf may seem too trivial or artificial, and they do not use the hint included in the exam, so here is an alternate approach which has a less trivial example and does involve the hint.

Example A. Let \mathcal{R} be the equivalence relation on \mathbf{I} whose equivalence classes are the two point set $\{0,1\}$ and the one point sets $\{t\}$ where $0<t<1$, so that \mathbf{I} / \mathcal{R} is homeomorphic to S^{1}. Then we have the following:

A1. This quotient space is metrizable.
A2. This quotient space Y has a quotient of its own $W=Y / \mathcal{E}$ which is homeomorphic to \mathbf{I}.
Statement A1 follows because the quotient space \mathbf{I} / \mathcal{R} is homeomorphic to S^{1}. To prove Statement A2 using the hint, first note that S^{1} is homeomorphic to the circle C with radius $\frac{1}{2}$ and center $\left(\frac{1}{2}, 0\right)$, so it suffices to show that there is an equivalence relation \mathcal{E}^{\prime} on C such that the quotient C / \mathcal{E}^{\prime} is homeomorphic to \mathbf{I}. This in turn reduces to finding a continuous onto mapping from C to I. One easy way of constructing such a mapping is to take the function f which sends (x, y) to x. It is a straightforward exercise to check that f is continuous and its image is equal to \mathbf{I}.

