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1. [25 points] Let (X, E) be a graph, and let E1 · · ·Er be an edge path (not
necessarily reduced!) in X. Prove that the union of the edges Ei is a connected subset of
X.

SOLUTION

One way to do this is to prove by induction that Ak = ∪i≤k Ei is connected for
each k such that 1 ≤ k ≤ r. If k = 1 this follows because E1 is homeomorphic to the
closed interval [0, 1] and the latter is connected. Suppose now that Ak is connected, where
1 ≤ k < r; if we can prove that the latter implies Ak+1 is connected, then the result will
follow by induction.

By construction Ak+1 = Ak ∪Ek+1, so Ak+1 is a union of two connected subsets. The
intersection of these subsets contains the vertex vk and hence is nonempty. Therefore Ak+1

is also connected by a proposition on unions of connected subsets (which have a nonempty
intersection).
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2. [25 points] Let g : S1 → R
2 − {0} be the circle with radius 1 and center 1

2

given in complex numbers by g(z) = z + 1

2
, and let f(z) = z define the usual circle. Prove

that f and g are homotopic as mappings from S1 to R
2 − {0}. [Note and Hints: Since

f(z) 6= g(z) for all z, these maps are not base point preservingly homotopic. What is the
simplest method for trying to define a homotopy between two maps into an open subset
of R

n? It may be very helpful to draw a picture of the images of f and g.]

SOLUTION

See the file exam3s17-fig1.pdf for a drawing. Let H be the straight line homotopy
H(z, t) = (1 − t)f(z) + tg(z) = (1 − t)z + t

(

z + 1

2

)

. If we can show that H(z, t) is never

zero, then H will define a homotopy from f to g as mappings from S1 to R
2 − {0}. Now

the expression for H(z, t) simplifies to z + t 1

2
, so we need to show that this is never zero if

z ∈ S1. This is clear from the drawing, and one can prove it formally as follows: Suppose
that we write z = x+yi, so that H(z, t) =

(

x + t 1

2

)

+yi. This is zero if and only if the real
and imaginary parts are zero, so it is zero if and only if y = 0 and x = −t 1

2
. In particular,

since 0 ≤ t ≤ 1 it follows that |z| = |x| ≤ 1

2
. Therefore if |z| = 1 the value of H(z, t) is

nonzero, and therefore H defines a homotopy of mappings into R
2 − {0}.
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3. [25 points] Suppose that f : X → Y is a homotopy equivalence, and g, h : Y →
X are homotopy inverses to f . Prove that g and h are homotopic, and give an example of
two distinct homotopy inverses for the identity mapping on the closed interval [0, 1]. [Hint:

For the first part, analyze the homotopy class of the composite map h of og : Y → X.]

SOLUTION

For the first part, follow the hint and consider the homotopy class of h of og : Y → X.
Since f og is homotopic to the identity on Y , it follows that h of og ' h o idY = h. On the
other hand, since g of is homotopic to the identity on X, it follows that h of og ' idX

og =
g. Therefore both g and h are homotopic to of h of og, and this implies that h ' g.

For the second part, the identity on [0, 1] is a continuous inverse to itself and is thus
a homotopy inverse, and the constant map sending everything to 0 is another homotopy
inverse.
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4. [25 points] Let (X, d) be a discrete metric space with the standard metric such
that d(u, v) = 1 if u 6= v. Prove that (X, d) is complete. [Hint: Why is every Cauchy
sequence eventually constant?]

SOLUTION

Let {an} be a Cauchy sequence in X. Then by the definition of a Cauchy sequence
there is some positive integer M such that n, m ≥ M implies d(am, an) < 1. However, by
the construction of the metric we know that two points are equal if their distance is less
than 1, so the preceding sentence implies that an = aM if n ≥ M , for then n ≥ M implies
d(aM , an) = 0. In particular, for all ε > 0 we have that n ≥ M implies d(aM , an) < ε. But
this means that aM = limn→∞ an, so that the Cauchy sequence converges to aM .
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5. [25 points] For each of the following, state whether the assertion is always
true, sometimes true and sometimes false, or always false. Correct answers will receive full
credit, and incorrect answers with reasons may receive partial credit. — In each case, let
R be an equivalence relation on the unit interval I := [0, 1]

(a) The quotient space I/R is compact.

(b) The quotient space I/R is connected.

(c) The quotient space I/R is metrizable (the quotient topology comes from a metric).

(d) The space I is not homeomorphic to a quotient space of I/R. [Hint: Draw a
circle in the plane which has I as a diameter.]

SOLUTION

(a) ALWAYS TRUE because the map I → I/R is continuous and onto, and the
continuous image of a compact space is compact.

(b) ALWAYS TRUE because the map I → I/R is continuous and onto, and the
continuous image of a connected space is connected.

(c) SOMETIMES TRUE AND SOMETIMES FALSE because (i) if R is the equiv-
alence relation with x ∼ y ⇔ x = y then I/R is homeomorphic to I, (ii) if R is the
equivalence relation whose equivalence classes are [0, 1

2
), { 1

2
}, and ( 1

2
, 1] then there are one

point subsets of I/R which are not closed (and the latter is true for metrizable spaces).

(d) SOMETIMES TRUE AND SOMETIMES FALSE because (i) if R is the equiv-
alence relation with x ∼ y ⇔ x = y then I/R is homeomorphic to I, (ii) if R is the
equivalence relation whose equivalence classes are [0, 1

2
), { 1

2
}, and ( 1

2
, 1] then I/R is finite

and an infinite space like I cannot be a quotient space of a finite space (in fact, if X has
k elements and R is an equivalence relation on X, then X/R has at most k elements).
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6. [25 points] Let (X, x0) be a simply connected pointed space (arcwise connected
+ trivial fundamental group). Prove that (X, x0) and

(

X × S1, (x0, 1)
)

are not base point
preservingly homotopy equivalent. [Hint: Compare the fundamental groups of the two
spaces.]

SOLUTION

If two arcwise connected spaces are base point preservingly homotopy equivalent,
then the mapping properties of fundamental groups imply that the spaces’ fundamen-
tal groups are algebraically isomorphic. Hence it suffices to prove that π1(X, x0) and
π1

(

X × S1, (x0, 1)
)

are not isomorphic as groups.

Since X is simply connected we know that π1(X, x0) = {1}. By the product formula
for fundamental groups we also know that

π1

(

X × S1, (x0, 1)
)

∼= π1(X, x0) × π1(S
1, 1) ∼= Z

is infinite. Therefore there is not even a 1–1 correspondence of sets between these fun-
damental groups, much less a group isomorphism, and it follows that the pointed spaces
(X, x0) and

(

X × S1, (x0, 1)
)

are not base point preservingly homotopy equivalent.
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