EXERCISES FOR MATHEMATICS 205B
 WINTER 2012

File Number 00

These are mainly review from the previous course in the sequence.

1. (i) Let U be an open subset in \mathbb{R}^{n} for some n. Prove that U has countably many arc components. [Hint: Why is every point in the same arc component as a point with rational coordinates.
(ii) Given two homotopy equivalent spaces X and Y, prove that there is a 1-1 correspondence between their sets of arc components.
(iii) Let X be the Cantor Set constructed as $\cap_{n} X_{n}$, where $X_{0}=[0,1], X_{n}$ is a union of 2^{n} pairwise disjoint closed intervals of length 3^{-n}, and X_{n+1} is obtained from X_{n} by removing the open middle third from each interval. Prove that X cannot have the homotopy type of an open subset in \mathbb{R}^{n} for any n. [Hint: Given two points $u \neq v \in X$, find U and V be disjoint open subsets containing u and v such that $U \cup V=X$. Why does this imply that every arc component of X consists of a single point?]
2. Let Y be a nonempty topological space with the indiscrete topology (i.e., \emptyset and Y are the only open sets), and let X be an arbitrary nonempty topological space. Prove that $[X, Y]$ consists of a single point. [Hint: For all topological spaces W, every map of sets from W to Y is continuous. Using this, show that if $A \subset B$ is a subspace and $g: A \rightarrow Y$ is continuous, then g extends to a continuous map from B to Y.]
3. Let U be an open subset in \mathbb{R}^{n} for some n, and let $u_{0} \in U$ be a point with rational coefficients.
(i) Let K be a compact metric space, and let $f: K \rightarrow \mathbb{R}^{n}$ be continuous. Prove that there is some $\varepsilon>0$ such that if the distance from $x \in \mathbb{R}^{n}$ to $f[K]$ is less than ε, then $x \in U$.

Definition. Let U be an open subset of \mathbf{R}^{n}. A broken line curve is a continuous curve $\gamma:[a, b] \rightarrow U$ such that the following holds: There is a partition of $[a, b]$ given by

$$
a=x_{0}<x_{1}<\cdots<x_{k}=b
$$

such that the restriction of γ to each closed subinterval $\left[x_{i-1}, x_{i}\right]$ is a straight line segment which has a parametrization of the form

$$
\beta(t)=\left(\frac{x_{i-1}-t}{\Delta_{i}}\right) \cdot \gamma\left(x_{i-1}\right)+\left(\frac{t-x_{i}}{\Delta_{i}}\right) \cdot \gamma\left(x_{i}\right)
$$

where $\Delta_{i}=x_{i}-x_{i-1}$. The points $\gamma(a)$ and $\gamma(b)$ are called the initial and final points, and the remaining points of the form $\gamma\left(x_{i}\right)$ are called corner points.
(ii) Let $\gamma:[0,1] \rightarrow U$ be a closed curve such that $\gamma(0)=\gamma(1)=u_{0}$. Prove that the class of γ is also represented by a broken line curve as above such that the initial and final points are $\gamma(0)=\gamma(1)$ and the corner points $\beta_{i} \in U$ have rational coefficients. [Hint: Let $\varepsilon>0$ be as in the first point of the exercise, use uniform continuity to find some $\delta>0$ such that $|t-s|<\delta$ implies $|\gamma(t)-\gamma(s)|<\frac{1}{4} \varepsilon$, and partition [0, 1] into subintervals of length less than δ. Suppose the partition is given by $0=x_{0}<x_{1}<\cdots<x_{k}=1$, and for $i=1, \ldots, k-1$ choose β_{i} such that $\left|\beta_{i}-\gamma\left(x_{i}\right)\right|<\frac{1}{4} \varepsilon$, and show that the corresponding broken line is base point preservingly homotopic in U to the original curve γ. More precisely, show that the line segment joining β_{i} to β_{i+1} lies in the open ε-disk centered at $\gamma\left(x_{i}\right)$; we know that the latter is contained in U.]
(iii) Using the preceding, explain why $\pi_{1}\left(U, u_{0}\right)$ is countable. [Hint: Count the number of finite sequences of points in U with rational coordinates.]
4. Prove the compact support property of the fundamental group: If $\alpha \in \pi_{1}(X, x)$, then there is a compact subset K of X such that $x \in K$ and α lies in the image of the map $\pi_{1}(K, x) \rightarrow \pi_{1}(X, x)$. Furthermore, if α^{\prime} and β^{\prime} in $\pi_{1}(K, x)$ map to the same element of $\pi_{1}(X, x)$, then there is some compact set $L \subset X$ such that L contains K and α^{\prime} and β^{\prime} map to the same element of $\pi_{1}(L, x)$. [Hint: If we choose representative curves or homotopies, their images are compact.]
5. Let $p: E \rightarrow X$ be a covering map, and let $f: Y \rightarrow X$ be continuous. Define the pullback

$$
Y \times_{X} E:=\{(e, y) \in Y \times E \mid f(y)=p(e)\} .
$$

Let $p_{(Y, f)}=\operatorname{proj}_{Y} \mid Y \times_{X} E$.
(i) Prove that $p_{(Y, f)}$ is a covering map. Also prove that f lifts to E if and only if there is a map $s: Y \rightarrow Y \times_{X} E$ such that $p_{(Y, f)} s=1_{Y}$.
(ii) Suppose also that f is the inclusion of a subspace. Prove that there is a homeomorphism $h: Y \times_{X} E \rightarrow p^{-1}(Y)$ such that $p^{\circ} h=p_{(Y, f)}$.

NOTATION. If the condition in (ii) holds we sometimes denote the covering space over Y by $E \mid Y$ (in words, E restricted to Y).
6. (i) Suppose that $A \subset X$ is a retract and X is Hausdorff. Prove that A is a closed subset of X. [Hint: Let $i: A \subset X$ be the inclusion and let $r: X \rightarrow A$ be the retraction. What can we say about the set of all points $y \in X$ such that $i{ }^{\circ} r(y)=y$?]
(ii) Suppose we have $A \subset B \subset X$ such that A is a retract of B and B is a retract of X. Prove that A is a retract of X.
(iii) Suppose that A is a retract of X; let $j: A \rightarrow X$ be the inclusion mapping, and let $x_{0} \in A$. If H is the image of the fundamental group of A under the mapping h_{*}, prove that there is a normal subgroup K of $\pi_{1}\left(X, x_{0}\right)$ such that the latter is generated by H and K, and we have $H \cap K=\{1\}$. [Hint: Let $r: X \rightarrow A$ be the associated retraction, and consider the kernel of r_{*}.]
7. Prove that S^{n} is simply connected for all $n \geq 2$. [Hint: Since S^{n} is a deformation retract of $\mathbb{R}^{n+1}-\{\mathbf{0}\}$, it suffices to prove this for $\mathbb{R}^{n+1}-\{\mathbf{0}\}$. By Exercise 00.3 it suffices to that if γ is a closed broken line curve which is based at e_{1} and has corner points with rational coordinates, then γ is homotopically trivial. As usual, let the corner points be given by $\gamma\left(x_{i}\right)$, and let W_{i} be the proper vector subspace spanned by $\gamma\left(x_{i}\right)$ and γ_{i-1}; this subspace is proper because $n+1 \geq 3$.

Why is there a unit vector \mathbf{u} such that the span of \mathbf{u} and each W_{i} have no nonzero vectors in common? Why does this imply that the image of γ is contained in $\mathbb{R}^{n+1}-\operatorname{Span}(\mathbf{u})$, why is the latter homeomorphic to ($S^{n}-\{\mathbf{u}\}$), and why is the this space homeomorphic to \mathbb{R}^{n+1} ? Show that the preceding observations imply that γ must be homotopically trivial.]

