EXERCISES FOR MATHEMATICS 205B
 WINTER 2014

File Number 01

DEFAULT HYPOTHESES. Unless specifically stated otherwise, all spaces are assumed to be Hausdorff and locally arcwise connected.

1. Let $p:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be a covering space projection with X and Y both (arcwise) connected. Suppose that $h:\left(Y, y_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a homeomorphism. Prove that the composite $h^{\circ} p$ is also a base point preserving covering space projection, and if the original covering space data correspond to the subgroup $H \subset \pi_{1}\left(Y, y_{0}\right)$, then the new covering space data correspond to $h_{*}[H]$.
2. Let $e=(1,1) \in T^{2}$, and let $A \subset \pi_{1}\left(T^{2}, e\right)$ be the subgroup generated by ($a, 0$) and $(0, b)$ where a and b are positive integers, and let $p:\left(X, x_{0}\right) \rightarrow\left(T^{2}, e\right)$ denote the covering space associated to A. Prove that X is homeomorphic to T^{2}.
3. Suppose we are given a covering space projection $p:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ such that X is simply connected (hence Y is connected). Assume further that there are base point preserving mappings $F: X \rightarrow X$ and $f: Y \rightarrow Y$ such that $f^{\circ} p=p^{\circ} F$.
(i) Let $a \in \pi_{1}\left(Y, y_{0}\right)$. Prove that there is a unique $\varphi(a) \in \pi_{1}\left(Y, y_{0}\right)$ such that $F\left(x_{0} a\right)=x_{0} \varphi(a)$.
(ii) Prove that φ is equal to the homomorphism f_{*} from $\pi_{1}\left(Y, y_{0}\right)$ to itself.
(iii) If $f:\left(T^{n}, 1\right) \rightarrow\left(T^{n}, 1\right)$ is continuous, then under the isomorphism $\pi_{1}\left(T^{n}, 1\right) \cong \mathbb{Z}^{n}$ the map f_{*} corresponds to an $n \times n$ matrix A with integral matrices. Prove that, conversely, every such matrix is realized by a suitable mapping f. Furthermore, prove that A can be realized by a homeomorphism if and only if its determinant is equal to ± 1. [Hint: Let $\Phi: \mathbb{R}^{n} \rightarrow T^{n}$ send $\left(t_{1}, \cdots, t_{n}\right)$ to $\left(\exp 2 \pi i t_{1}, \cdots, \exp 2 \pi i t_{n}\right)$, and let F be the linear transformation of \mathbb{R}^{n} defined by the integral matrix A. Why does F send \mathbb{Z}^{n} to itself, and why does this imply that F passes to a basepoint preserving self-map of T^{n} ? Use Exercise 1 to show that f_{*} corresponds to multiplication by A.]
4. Let $n \geq 2$ and let $p:\left(X, x_{0}\right) \rightarrow\left(\mathbb{R P}^{n} \times \mathbb{R P}^{n}, y_{0}\right)$ be a covering space projection such that X is connected.
(i) Prove that either p is a homeomorphism or else the covering has a (finite) even number of sheets.
(ii) Determine the number of equivalence classes of connected covering spaces over $\mathbb{R}^{n} \times \mathbb{R}^{n}$.
5. Let $p:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be a finite covering space projection where X is connected and both X and Y are locally simply connected. Prove that there is a covering space projection $q:\left(W, w_{0}\right) \rightarrow\left(Y, y_{0}\right)$ with the following properties:
(1) The space W is connected.
(2) The map q is a regular covering space projection with finitely many sheets.
(3) The map q has a factorization $q=p^{\circ} q^{\prime}$ for some mapping $q^{\prime}: W \rightarrow X$. [Hint: If \tilde{Y} is the universal covering space of Y, then $X \cong \widetilde{Y} / \pi_{1}\left(X, x_{0}\right)$, and a similar statement holds for W.]
(4) (\star) The map q^{\prime} is also a regular covering space projection with finitely many sheets.
[Hint: This is basically a result about groups G with subgroups H of finite index; using techniques from group theory, one can prove that for each such pair $H \subset G$ there is a normal subgroup $K \subset H \subset G$ of finite index - either prove this or find a reference in some standard graduate algebra text.]
6. The Klein bottle K can be constructed as a quotient of T^{2} modulo the equivalence relation determined by identifying $\left(z_{1}, z_{2}\right)$ with $\left(-z_{1}, \overline{z_{2}}\right)$, where \bar{z} denotes the complex conjugate of z. If we define a free $G=\mathbb{Z}_{2}$ action on T^{2} by $g \cdot(z, w)=(-z, \bar{w})$ where $1 \neq g \in G$, then K is just the quotient space T^{2} / G.
(i) Let Γ_{0} be the set of all homeomorphisms from $\mathbb{R}^{2}=\mathbb{C}$ to itself generated by tranlsations $T(z)=z+c$ for some complex number $c=m+n i$, where m and n are integers (so that $\Gamma \cong \mathbb{Z}^{2}$), and let Γ be the group of homeomorphisms generated by Γ_{0} and the group of homeomorphisms in Γ_{0} together with all maps of the form $T^{\circ} S$, where $S(z)=\frac{1}{2}+\bar{z}$; as usual, \bar{z} denotes complex conjugation. Prove that Γ_{0} is a normal subgroup of Γ with index 2. [Hint: Prove that $S^{2} \in \Gamma_{0}$ and that if T is a translation then $S T S$ and $S T S^{-1}$ are also translations. Why do these imply that every element of Γ can be written uniquely in the form $S^{\varepsilon}{ }^{\circ} T$ where T is a translation and $\varepsilon=0$ or 1?]
(ii) If $p: \mathbb{R}^{2} \rightarrow T^{2}$ is the usual covering space projection and $q: T^{2} \rightarrow K$ is the double covering described above, show that $q^{\circ} p$ is a covering space projection and its group of covering transformations is isomorphic to Γ. Why does this imply that $\pi_{1}(K)$ is nonabelian?
(iii) (\star) Show that Γ has no elements of finite order aside from the identity element.
