EXERCISES FOR MATHEMATICS 205B
 WINTER 2012

File Number 03

DEFAULT HYPOTHESES. Unless specifically stated otherwise, all spaces are assumed to be Hausdorff and locally arcwise connected.

1. Suppose that (P, \mathbf{K}) is an n-dimensional simplical complex. If $0 \leq m \leq n$, define the m-skeleton $\left(P_{m}, \mathbf{K}_{m}\right)$ to be the subcomplex consisting of all simplices in \mathbf{K} of dimension $\leq m$.
(a) Explain why $\left(P_{1}, \mathbf{K}_{1}\right)$ is a graph, show that P is (arcwise) connected if and only if P_{1} is, and explain why P is a finite union of pairwise disjoint connected subcomplexes $\left(P_{\alpha}, \mathbf{K}_{\alpha}\right)$.
(b) Suppose that we are given a finite set of chain complexes $\left\{C_{*}^{\alpha}, d_{*}^{\alpha}\right\}$. If $C_{*}=\oplus_{\alpha} C_{*}^{\alpha}$ and $d=\oplus_{\alpha} d_{*}^{\alpha}$, show that $\left\{C_{*}, d_{*}\right\}$ is a chain complex and that $H_{*}(C)$ is isomorphic to the direct sum $\oplus_{\alpha} H_{*}\left(C^{\alpha}\right)$.
(c) In the setting of (a) and (b), prove that the homology groups of (P, \mathbf{K}) are isomorphic to the direct sum of the homology groups of the subcomplexes $\left(P_{\alpha}, \mathbf{K}_{\alpha}\right)$.
2. (a) Suppose that (P, \mathbf{K}) is the union of two connected subcomplexes $\left(P_{1}, \mathbf{K}_{1}\right)$ and $\left(P_{2}, \mathbf{K}_{2}\right)$ and that the intersection of these subcomplexes is a single vertex. Prove that $H_{q}(\mathbf{K})$ is isomorphic to $H_{q}\left(\mathbf{K}_{1}\right) \oplus H_{q}\left(\mathbf{K}_{2}\right)$ if $q>0$ and $H_{0}(\mathbf{K}) \cong \mathbb{Z}$.
(b) Using (a) and finite induction, for each $n>0$ construct a connected n-dimensional simplicial complex \mathbf{K} such that $H_{q}(\mathbf{K}) \neq 0$ for all q such that $1 \leq q \leq n$.
3. (a) Let \mathbf{K} be the subcomplex of the standard simplex Δ_{3} consisting of all edges and the face opposite the first vertex \mathbf{e}_{0}. Compute the homology groups of \mathbf{K} using any valid method (exact sequences are very useful).
(b) Let \mathbf{K} be the $(n-1)$-skeleton of the standard simplex Δ_{n}. Compute the homology groups of \mathbf{K}.
4. Let $\left(A_{*}, d_{*}^{A}\right)$ and $\left(B_{*}, d_{*}^{B}\right)$ be chain complexes, and let $f, g:\left(A_{*}, d_{*}^{A}\right) \rightarrow\left(B_{*}, d_{*}^{B}\right)$ be chain maps. A chain homotopy from f to g is a sequence of maps $D_{q}: A_{q} \rightarrow B_{q+1}$ such that $d^{B}{ }^{\circ} D+D^{\circ} d^{A}=g-f$. To chain maps f, g are said to be chain homotopic if there is a chain homotopy from f to g.
(a) Prove that "chain homotopic" is an equivalence relation.
(b) Prove that if f and g are chain homotopic, then the induced homology maps f_{*} and g_{*} are equal.
(c) Prove that if f and g are as in (b) and $h: B_{*} \rightarrow C_{*}$ is a map of chain complexes, then $h^{\circ} f$ is chain homotopic to $h^{\circ} g$. Dually, prove that if $\varphi: W_{*} \rightarrow A_{*}$ is a chain map, then $f^{\circ} \varphi$ is chain homotopic to $g \varphi g$.
5. (a) Suppose that $\left(C_{*}, d_{*}\right)$ is a chain complex of R-modules for some $\operatorname{ring} R$, and let $u \in H_{q}(C)$ be a nonzero class. Prove that there is a chain complex C^{\prime} which contains C as a subcomplex and has the property that u maps to zero under the map from $H_{q}(C)$ to $H_{q}\left(C^{\prime}\right)$ induced by inclusion. [Hint: Define $C_{k}^{\prime}=C_{k}$ if $k \neq q+1, C_{q+1}^{\prime}=C_{q+1} \oplus R$, and define d^{\prime} on the latter so that it maps the extra generator of the latter to a representative for u.]
(b) Let $f: A \rightarrow B$ be a module homomorphism, and define a chain complex with $C_{1}=A$, $C_{0}=B, d_{1}=f$, and all other modules and boundary homomorphisms equal to zero. Compute the homology groups of $\left(C_{*}, d_{*}\right)$. In particular, show that at most one homology group is zero if f is either 1-1 or onto.
(c) Let G_{q} be a sequence of finitely generated abelian groups such that $G_{q}=0$ for $q<0$ and at most finitely many groups G_{q} are nonzero. Construct a chain complex (C_{*}, d_{*}) such that (i) $C_{q}=0$ for $q<0$ and for $q>n$ for some $n>0$, (ii) C_{q} is finitely generated free abelian for all q, (iii), we have $H_{q}(C)=G_{q}$. [Hint: First show that it suffices to prove this for a complex with one nonzero G_{q} where the latter is cyclic; for example, use direct sums. Next, find very simply chain complexes whose homologies are given by such sequences G_{q}.]
6. Given a simplicial complex (P, \mathbf{K}) with linearly ordered vertices and $P \subset \mathbb{R}^{N}$, the cone $C(\mathbf{K})$ has a underlying polyhedron $C(P) \subset \mathbb{R}^{N+1}$ consisting of all points $(x, t) \in \mathbb{R}^{N} \times \mathbb{R}$ such that $x=(1-t) y$ for some $y \in P$ and $t \in[0,1]$. If $P \subset \mathbb{R}^{2}$ this is just the usual geometric notion of a cone with base P and vertex point \mathbf{e}_{3}. The simplicial decomposition is given by the first few items below:
(a) Suppose that $A \subset \mathbb{R}^{n}$ is a simplex with vertices v_{i}. Prove that $C(A)$ is a simplex whose vertices are the last unit vector \mathbf{e}_{N+1} and the points ($v_{i}, 0$).
(b) Using (a) verify that if the simplices of \mathbf{K} are given by A_{α}, then the simplices $C\left(A_{\alpha}\right)$ and their faces form a simplicial decomposition of $C(P)$, called the standard cone decomposition $C(\mathbf{K})$.
(c) Define an ordering of the vertices in $C(\mathbf{K})$ such that \mathbf{e}_{N+1} is the first vertex and the remaining vertices, which correspond to the vertices of \mathbf{K}, the follow in the given order. Prove that the homology groups of $(C(P), C(\mathbf{K}))$ are isomorphic to the homology groups of a point. [Hint: Imitate the proof for a simplex.]
7. Given (P, \mathbf{K}) as above, define its suspension $\Sigma(P)$ to be the union of $C(P)$ with the image of $C(P)$ under the reflection map S on \mathbb{R}^{N+1} which sends the unit vector \mathbf{e}_{N+1} to $-\mathbf{e}_{N+1}$ and sends all other standard unit vectors to themselves (hence $\Sigma(P)$ is a union of an upper cone and a lower cone which meet in P).
(a) Explain why $\Sigma(P)$ has a canonical simplicial decomposition $\Sigma(\mathbf{K})$ in which the upper and lower cones are subcomplexes. - We order its vertices so that \mathbf{e}_{N+1} and its negative are the first two in the list, and then we use the given ordering for the remaining vertices.
(b) Using a Mayer-Vietoris sequence for the decomposition of $\Sigma(\mathbf{K})$ into two cones, show that $H_{q}(\Sigma(\mathbf{K}))$ is isomorphic to $H_{q-1}(\mathbf{K})$ if $q \neq 0,1$, it is isomorphic to \mathbb{Z} if $q=0$, and we have $H_{1}(\mathbf{K}) \oplus \mathbb{Z} \cong H_{0}(\mathbf{K})$.
8. Suppose we are given a commutative diagram as below, in which the rows are short exact sequences ($\mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ sends x to ($x, 0$), and $\mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z}$ is projection onto the second coordinate):

Does it follow that $f=0$? Either prove this or give a counterexample. [Hint: Think about a nilpotent 2×2 matrix in Jordan form.]
9. Let $f: M \rightarrow N$ be a homomorphism of R-modules for some ring R, and define a short exact sequence of chain complexes

$$
0 \rightarrow A_{*} \rightarrow B_{*} \rightarrow C_{*} \rightarrow 0
$$

as below, in which the top row corresponds to dimension or degree k and the bottom row corresponds to dimension or degree $k-1$. All other objects and maps are taken to be zero.

Prove that the connecting homomorphism $\partial: H_{k}(C) \rightarrow H_{k-1}(A)$ corresponds to f under the canonical isomorphisms from M to $H_{k}(C)$ and from N to $H_{k-1}(A)$.
10. The boundary of a triangular prism P_{3} has a simplicial decomposition \mathbf{K} with vertices A, B, C, D, E, F along with the 2-simplices $A B C, A D E, A B E, B E F, B C F, A C F, A D F, D E F$ and their edges; geometrically, $A B C$ and $D E F$ are the bottom and top respectively, and the lateral edges are $A D, B E$ and $C F$ (see exercises03a.pdf for a drawing). Find a nontrivial cycle in $C_{2}\left(P_{3}, \mathbf{K}\right)$ of the form $\sum_{\alpha} n_{\alpha} \sigma_{\alpha}$ where σ_{α} runs through all the standard free generators of the chain group and each n_{α} is ± 1.
11. Suppose that we have a short exact sequence of chain complexes

$$
0 \rightarrow A_{*} \rightarrow B_{*} \rightarrow C_{*} \rightarrow 0
$$

and let $i: A_{*} \rightarrow B_{*}$ is the injection given by this sequence. In analogy with other situations, we say that i is a chain complex retract if there is a chain map $\rho: B_{*} \rightarrow A_{*}$ such that $\rho^{\circ} i=$ identity on A_{*}. Prove that if i is a retract then there is an isomorphism

$$
H_{*}(B) \cong H_{*}(A) \oplus H_{*}(B / A)
$$

such that i_{*} maps $H_{*}(A)$ to the first factor of this direct sum decomposition. [Hints: First show that the existence of ρ_{*} implies that i_{*} is $1-1$. Why does this imply that $\partial: H_{q+1}(B / A) \rightarrow H_{q}(A)$ is zero for all q and that $H_{*}(B) \rightarrow H_{*}(B / A)$ is onto? Using this map and ρ_{*} define a homomorphism from $H_{*}(B)$ to $H_{*}(A) \oplus H_{*}(B / A)$ and show that this map must be both 1-1 and onto.]
12. (\star) If G and H are abelian groups, then the set $\operatorname{Hom}(G, H)$ of homomorphisms from G to H is an abelian group with respect to the standard notion of addition (pointwise). If $\alpha: G_{1} \rightarrow G_{2}$
and $\beta: H_{1} \rightarrow H_{2}$ are homomorphisms, then $\alpha^{*}: \operatorname{Hom}\left(G_{2}, H\right) \rightarrow \operatorname{Hom}\left(G_{1}, H\right)$ is defined by $\alpha^{*}(f)=f \circ \alpha$ and $\beta_{*}: \operatorname{Hom}\left(G, H_{1}\right) \rightarrow \operatorname{Hom}\left(G, H_{2}\right)$ is defined by $\beta_{*}(f)=\beta \circ f$. Analogs of the standard distributivity laws for composites of linear transformations imply that α^{*} and β_{*} are abelian group homomorphisms.
(a) Suppose that $0 \rightarrow A \rightarrow B \rightarrow C$ is an exact sequence of abelian groups and G is an abelian group. Prove that

$$
0=\operatorname{Hom}(G, 0) \rightarrow \operatorname{Hom}(G, A) \rightarrow \operatorname{Hom}(G, B) \rightarrow \operatorname{Hom}(G, C)
$$

is exact.
(b) Suppose that $A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of abelian groups and G is an abelian group. Prove that

$$
0=\operatorname{Hom}(0, G) \rightarrow \operatorname{Hom}(C, G) \rightarrow \operatorname{Hom}(B, G) \rightarrow \operatorname{Hom}(A, G)
$$

is exact.
(c) Suppose that $0 \rightarrow A \rightarrow A \oplus C \rightarrow C \rightarrow 0$ is a split short exact sequence of abelian groups (i.e., the map from A is the injection sending x to ($x, 0$), and the map to C is projection onto the second coordinate). Prove that the two sequences

$$
\begin{aligned}
& 0=\operatorname{Hom}(G, 0) \rightarrow \operatorname{Hom}(G, A) \rightarrow \operatorname{Hom}(G, A \oplus C) \approx \operatorname{Hom}(G, A) \oplus \operatorname{Hom}(G, C) \rightarrow \operatorname{Hom}(G, C) \rightarrow 0 \\
& 0=\operatorname{Hom}(0, G) \rightarrow \operatorname{Hom}(C, G) \rightarrow \operatorname{Hom}(A \oplus C, G) \approx \operatorname{Hom}(A, G) \oplus \operatorname{Hom}(C, G) \rightarrow \operatorname{Hom}(A, G) \rightarrow 0
\end{aligned}
$$

are split short exact sequences.
REMARKS. In (a) and (b) it does not follow that either $\operatorname{Hom}(G, \ldots)$ or $\operatorname{Hom}(\ldots, G)$ takes short exact sequences to short exact sequences. Counterexamples are given by the short exact sequence

$$
0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \rightarrow 0
$$

with $G=\mathbb{Z}_{2}$ in either case. In particular, the identity map is not in the image of the homomorphism $\operatorname{Hom}\left(\mathbb{Z}_{4}, \mathbb{Z}_{2}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ induced by the inclusion of \mathbb{Z}_{2} in \mathbb{Z}_{4}, and it is also not in the image of the homomorphism $\operatorname{Hom}\left(\mathbb{Z}_{2}, \mathbb{Z}_{4}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ induced by the onto mapping from \mathbb{Z}_{4} to \mathbb{Z}_{2}.
13. Suppose that (P, \mathbf{K}) is a connected simplicial complex, and let $A, B \in \mathbf{K}$. Prove that there is a sequence of simplices $A=S_{0}, \cdots, S_{p}=B$ such that each intersection is nonempty. [Hint: Define a binary relation on simplices such that A and B are related if a chain of the given type exists. Why is this an equivalence relation, and why is the union of all simplices in a given equivalence class a closed and open subset of P ?]
14. Suppose that (P, \mathbf{K}) is a connected 2-dimensional simplicial complex such that every edge lies on exactly two 2 -simplices. Prove that the number of edges is divisible by 3. [Hint: Count the number of pairs (E, T) where E is an edge and T is a 2 -simplex containing E. There are two ways of doing so - one by grouping the pairs with the same first coordinate and another by grouping the pairs with the same second coordinate.]

