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DEFAULT HYPOTHESES. Unless specifically stated otherwise, all spaces are assumed to be
Hausdorff and locally arcwise connected.

In the first two exercises we shall use the concept of local homology groups to develop criteria
for showing that certain pairs of graphs cannot be homeomorphic. Recall that if x ∈ X, then
the local homology groups of X at x are defined as H∗(X,X − {x}), and by excision these are
isomorphic to the groups obtained if one replaces X by an arbitrary open neighborhood U of x in
X.

1. Let (X, E) be a connected graph, and suppose that v is a vertex of E . The supplement of v —
written Supp(v, E) — is defined to be the subcomplex of all vertices except v and all edges which
do not have v as one of their vertices, and the open star OpSt(v) is defined to be the complement
of this subcomplex. Geometrically this is just a finite union of half open intervals sharing a common
end point.

(a) Prove that if x ∈ X is not a vertex, then the local homology group H1(X,X − {x}) is
isomorphic to Z. [Hint: Let Ex be the unique edge containing x, and let Ox be obtained from Ex

by deleting its enspoints. Then Ox is open because its complement is the finite union of all vertices
and all edges except Ex; also, Ox is homeomorphic to an open interval and x ∈ Ox. By excision
the local homology group given above is isomorphic to H1(Ox,Ox − {x}); note that the deleted
neighborhood Ox − {x} is homeomorphic to a disjoint union of two open intervals.]

(b) If v is a vertex of E , define the branching number B(v, E) to be the number of edges
which have v as one of their vertices. Prove that H1(X,X − {v}) is a free abelian group on
B(v, E)−1 generators. [Hint: As noted above, by excision the local homology group is isomorphic
to H1(OpSt(x),OpSt(x)−{x}); note that OpSt(x)−{x} is homeomorphic to a disjoint union of
B(v, E) open intervals.]

Notational convention. If x ∈ X is not a vertex, then we shall say that the branching number
B(x, E) is equal to 2. With this convention, the conclusion of (b) extends to all points in X.

(c) If k 6= 2 is a positive integer, explain why the number nk(E) of points x ∈ X with
B(x, E) = k is finite, and that if (Y, E ′) is another such that X and Y are homeomorphic then
nk(E) = nk(E ′). [Hint: If f : X → Y is a homeomorphism such that f(x) = y, then we have
H∗(X,X − {x}) ∼= H∗(Y, Y − {y}).]
Another Notational convention. If (X, E) is a graph then by (c) we can define nk(X) = nk(E)
because this number does not depend upon the particular graph structure E ; this number is finite
if k 6= 2 and infinite if k = 2. Similarly, if k > 0 define Vk(X) to be the set of all points with

1



branching number k. Finally, we may also define B(x,X) = B(x, E) because the latter does not
depend upon the choice of E .

2. (a) Suppose that (X0, E0) and (X1, E1) are graphs, and let f : X0 → X1 be a homeomorphism.
Prove that for all positive integers n the map h sends Vn(X0) to Vn(X1). In particular, show that
V2(X0) and V2(X1) have the same (finite) numbers of components.

(b) Using the notion of n-fold branch points, show that there are at least 7 homeomorphism
types represented by the standard hexadecimal digits as written below (in sans-serif type):

0 1 2 3 4 5 6 7 8 9 A B C D E F

Are new homeomorphism types added if we consider the remaining letters of the alphabet? Ex-
plain. — Obviously, one can formulate similar questions for a more or less arbitrary set of printed
characters.

(c) The Figure 8 and Figure Theta spaces, corresponding to 8 and θ respectively, turn out to
have the same homotopy type (see the comments below), but neither is a deformation retract of
the other, and in fact neither is homeomorphic to a subspace of the other. Prove the last assertion
in the preceding sentence. [Hint: Suppose more generally that we have 1-dimensional graphs A

and X such that A is homeomorphic to a subset of X, and let x ∈ A. Modify arguments from the
previous exercises to show that B(x,A) ≤ B(x,X), and explain why this shows that the Figure
Eight cannot be a subset of the Figure Theta and vice versa by describing the sets Vn(Figure Eight)
and Vn(Figure Theta) for n > 2.]

Note. In fact, each of these spaces is a deformation retract of R
2 −{two points}. A proof of this

for the Figure Eight is described on page 462 of Munkres, and as noted in Example 3 on that page
one can give a similar argument for the theta space. See also the discussion and drawings on pages
132–133 of Lee, Introduction to Topological Manifolds.

3. Suppose that a space X is the union of two open arcwise connected subsets U and V and
the intersection U ∩ V is nonempty but not arcwise connected. Choose a base point p ∈ U ∩ V .
Prove that both H1(X) ∼= H1(X, {p}) and π1(X, p) have infinite order, and hence the conclusion of
the Seifert-van Kampen Theorem fails very badly and systematically if one drops the assumption
that the intersection be arcwise connected.

4. (?) Suppose that X ⊂ S2 is a union of two simple closed curves C1 and C2 (homeomorphic
to S1) such that their intersection is a single point (hence X is homeomorphic to a Figure Eight).
Prove that S2 −X has three components U, V,W such that the boundary of U is C1, the boundary
of V is C2, and the boundary of W is X.

5. (a) If X ⊂ S2 is homeomorphic to a tree, prove that the reduced homology groups of

H̃∗(S
2 − X) are trivial. [Hint: We know this if X has a single edge. Proceed by induction and

use the fact that X = X0 ∪ E∗, where E∗ is an edge such that exactly one vertex lies in X0.]

(b) Suppose that X is a connected graph whose fundamental group is a free group on m

generators, and suppose that A ⊂ S2 is homeomorphic to X. Prove that S2 − A has m + 1
connected components.

6. Suppose that U ⊂ R
m is a nonempty open subset and m > n. Prove that there is no

continuous 1–1 mapping from U into R
n. [Hint: Explain why it suffices to consider the case where

U = V × V ′ where V and V ′ are open in R
n and R

m−n respectively and each contains 0. Let v be
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a unit vector in R
m−n, and show that there is some δ > 0 such that if t ∈ (−δ, δ) − {0} then every

point of the form tv also lies in the image of V × {0}. What do we know about the image of the
latter subset?]

7. The Phragmén-Brouwer Property is the following statement.

Let X be a locally arcwise connected space, and let A and B be two nonempty proper

closed subsets such that A ∩B = ∅. If p, q ∈ X − (A ∪B) are such that p and q lie in the

same arc components of X − A and X − B, then p and q lie in the same arc component

of X − (A ∪ B).

(a) Prove that if X is arcwise connected and H1(X) = 0, then X satisfies the Phragmén-
Brouwer Property. [Hint: Why do we have X = (X − A) ∪ (X − B)? Note that X − (A ∪ B) =
(X − A) ∩ (X − B).]

(b) Prove that T 2 does not have the Phragmén-Brouwer Property. [Hint: Let A and B be
the circles {± 1} × S1 and try to find candidates for p and q.]

8. (a) Suppose that X and X ′ have regular cell complex structures E and E ′ respectively.
Explain why the product X × X ′ has a regular cell complex structure whose k-cells have the form
A × B, where A is a p-cell in E and B is a (k − p)-cell in E ′.

(b) In the setting of (a), prove that the Euler characteristic of X ×X ′ is given by χ(X) ·χ(X ′).
[Hint: Use (a) to derive a formula for the number of k-cells in the product, expressed in terms of
the numbers of p-cells in E and q-cells in E ′, where k = p + q.]

(c) Let X be a connected graph such that H1(X) is free abelian on more than one generator.
Using Euler characteristics, prove that H2(X ×X) must be nontrivial. [Hint: Since X is a retract
of X × X, it follows that H1(X × X) contains a free abelian group on at least two generators.
We also know that X × X has a 2-dimensional cell complex structure, so it has no homology in
dimensions greater than 2. Why is the Euler characteristic of X × X positive?]

9. If f : Sn → Sn is a continuous map where n ≥ 1, then the isomorphism Hn(Sn) ∼= Z implies
that the homology map f∗ : Hn(Sn) → Hn(Sn) is multiplication by some uniquely determined
integer d, and this integer is called the degree of f .

(a) Given f as above, prove that if d 6= 0 then f is onto. [Hint: If p ∈ Sn is not in the image
of f , what can we say about Sn − {p})?]

(b) If n = 1 and f(z) = zd (algebraic exponentiation), explain why the degree of f is equal to
d. [Hint: Use the natural map relating π1 to H1.]

(c) If f and g are both continuous maps from Sn to itself and their respective degrees are a

and b, show that the degree of f og is equal to ab.

(d) Let σ be the homomorphism from the suspension Σ(Sn) to Sn+1 which maps the equivalence
class [x, t] to the point

(√
1 − t2 x, t

)
∈ Sn+1 ⊂ R

n+1 × R, so that σ takes the upper and lower
cones in the suspension to the upper and lower hemispheres of the sphere. Given a continuous map
f : Sn → Sn, define S(f) to be the composite σ oΣ(f) oσ−1. Using the suspension isomorphism
from Hn+1 ( Σ(Sn) ) to Hn(Sn), profe that S(f) and f have the same degree. Why does this imply
that for every integer d and n ≥ 1, there is a continuous map from Sn to itself with degree d? [Hint:

Use the suspension isomorphism to prove that Σ(f) induces multiplication by d on Hn+1 (Σ(Sn) ).]

(d) If f is a continuous map from Sn to itself and h is a homeomorphism from Sn to itself,
prove that the degrees of f and h o oh−1 are equal.
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(e) Given an (n + 1)× (n +1) orthogonal matrix A, let fA be the induced self-map of Sn, and
let A ⊕ 1 be the (n + 2) × (n + 2) matrix given in block form by

(
A 0
0 1

)
.

Prove that fA⊕1 = S(fA) and hence that the degrees of fA and fA⊕1 are equal.

(g) In the preceding part of this problem, assume that A is a diagonal matrix (whose diagonal
entries are necessarily equal to ± 1). Prove that the degree of fA is the number of negative diagonal
entries, and that if A = −I then the degree of fA is equal to (−1)n+1.

(h) It is known that if A is an orthogonal matrix with determinant equal to +1, then there
is a continuous curve A(t) such that A(0) = I, A(1) = A, and each A(t) is an orthogonal matrix.
One proof of this is described in the next paragraph. Using this fact, prove that (1) if detA = +1
then the degree of fA is also +1, and also (2) if A is an arbitrary orthogonal matrix, then det A is
equal to the degree of fA.

FOOTNOTE. Here is one way to prove the assertion about orthogonal matrices of determinant +1
in (h) based on a standard normal form for orthogonal matrices. As noted in Appendix D of the
online document

http://math.ucr.edu/'res/math205A/gentopnotes2008.pdf
one can always find an orthogonal matrix P such that P −1AP is a block sum of 2 × 2 rotation
matrices and 1 × 1 matrices whose unique entries are ± 1. Since the negative of the 2 × 2 identity
matrix is also rotation through π radians, we may as well assume that the block sum has at most
one 1 × 1 matrix with an entry of −1, so if detA = 1 then we can assume that the block sum
consists of 2 × 2 rotation matrices and possibly 1 × 1 identity matrices. If D(θi) is a block sum
given by rotation through θi, then clearly one has a continuous curve in the space of orthogonal
matrices joining the 2×2 identity matrix to D(θi) — namely, γi(t) = D(tθi). The block sum of the
curves γi(t) defines a curve C(t) in the space of orthogonal matrices joining the identity to P −1AP ,
and PC(t)P−1 will then be a curve in the space of orthogonal matrices joining the identity matrix
to A.

10. (a) Suppose we are given a product of spheres

Sn1 × · · · × Snk

where we arrange the factors for the sake of convenience so that 1 ≤ n1 ≤ · · · ≤ nk. Explain why

∞⊕

q=0

Hq(S
n1 × · · · × Snk)

is a free abelian group of rank 2k. [Hint: Use Exercises 04.4 and induction on the number of
factors.]

(b) Suppose we have homeomorphic products of spheres

Sn1 × · · · × Snp and Sm1 × · · · × Smq

where 1 ≤ n1 ≤ · · · ≤ np and 1 ≤ m1 ≤ · · · ≤ mq. Prove that p = q and mi = ni for all i. [Hint:

It is useful to prove a generalization to products of spheres with isomorphic homology groups in
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all dimensions. Use (a) to prove that p = q, and note that if the first nonzero positive dimensional
homology arises in dimension r then n1 = r = m1. Why does this imply that Sn2 × · · · × Snp and
Sm2 × · · · × Smq have isomorphic homology groups? Use this to construct an inductive argument
on the number of factors.]

11. Suppose that X and Y are connected spaces with p ∈ X and q ∈ Y . Prove that
H1(X × Y ) ∼= H1(X) ⊕ H1(Y ). [Hint: What do we know about the fundamental group of(
X × Y, (x, y)

)
and what does this imply about H1(X × Y )?]

12. Suppose that (X, E) is a connected regular cell complex, and suppose that Y → X is an
n-sheeted covering space projection (where n is finite).

(a) Prove that there is a regular cell complex structure E ′ on Y such that each cell in E ′

projects homeomorphically to a cell in X. [Hint: Look at the restriction of the covering to a cell
in X. Why is the cell evenly covered?]

(b) Using this cell structure, show that the Euler characteristics of X and Y are related by
χ(Y ) = n · χ(X).

(c) It is known that RP
2 is homeomorphic to a 2-dimensional polyhedron. Using this fact,

prove that its Euler characteristic is equal to 1 and that H2(RP
2) has no infinite cyclic summands.

[Hint: Explain why the identity π1(RP
2) ∼= Z2 implies that H1(RP

2) ∼= Z2.]

(d) (?) Using the methods on pages 6–7 of cell-euler.pdf, show that if X has an n-
dimensional cell complex structure, then Hn(X) is torsion free; in other words, it has no nonzero
elements of finite order. [Hint: Work inductively. The conclusion is true if X is (n − 1) di-
mensional, or equivalently an n-dimensional complex with no n-cells. Assume it is true for com-
plexes with at most k cells of dimension n, let X be a complex with k + 1 cells of dimension
n, and let X0 be obtained by deleting one of the n-dimensional cells in X. Use the fact that
H∗(X,X0) ∼= H∗(D

n, Sn−1).]

NOTE. This is relevant to (c) for it implies that H2(RP
2) is torsion free, and since it has no

infinite cyclic summands it must be equal to zero.
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