
II . Construction and uniqueness of singular homology

This unit proves the existence of a homology theory which satisfies nearly all the conditions
formulated in Unit VI of algtopnotes2012.tex. The following summarizing table provides more
precise references:

Axiom Type Axiom Numbers Pages

Primitive Data (T.1)–(T.5) 74–75
Functoriality and naturality (A.1)–(A.6) 75–77

Exactness (B.1)–(B.3) 77–78
Homotopy Invariance (C.1) 79

Compact/Polyhedral Generation (C.2)–(C.3) 79–80
Normalization (D.1)–(D.5) 80–81
Excision (E.1)–(E.2) 82

Mayer-Vietoris Sequences (E.3)–(E.4) 82–83

The basic idea of the existence proof is very simple: We modify the construction of simplicial
chain complexes to obtain a new functor from the category of topological spaces to the category
of chain complexes, and we take the homology groups of these chain complexes. By functoriality,
such groups will automatically be topologically invariant. Many steps in verifying the axioms will
be fairly straightforward, but there are two crucial pieces of input from Unit I of these notes that
will be needed:

(1) In Section I.5 we constructed a chain Pq+1 ∈ Cq+1(∆q× [0, 1]) which was an integral linear
combination of all the simplices in ∆q× [0, 1] with coefficients ± 1. This chain will be used
to show that homotopic maps of spaces define chain homotopic maps of chain complexes,
which will imply that the homotopic maps induce the same mappings in homology.

(2) Given an open covering U of a space X, it is sometimes necessary to know that we can
somehow replace an algebraic chain for X by another chain whose pieces are so small that
each one lies inside a set in the open covering. If we are dealing with simplicial chains over
a simplicial complex, this can be done using iterated barycentric subdivisions. Historically
speaking, one of the most important steps in the development of singular homology theory
was to “leverage” barycentric subdivision into a construction for singular homology.

In the final section of this unit we shall prove uniqueness theorems for constructions satisfying
all the axioms for singular homology described in Unit VI of algtopnotes2012.tex except for
(D.5), which relates the fundamental group of an arcwise connected space to its 1-dimensional
homology; the statement of this axiom assumes the existence of certain natural transformations
relating fundamental groups and homology, and the uniqueness results do not require any of this
structure. In Unit III we shall construct these natural transformations from the fundamental group
functor to the singular homology theory constructed here, and we shall verify the axiom relating
the fundamental group to 1-dimensional homology.

It took about a half century for mathematicians to come up with the formulation that is now
standard, starting with Poincaré’s initial papers on topology (which he called analysis situs) at the
end of the 19th century and culminating with the definition of singular homology by S. Eilenberg
and N. Steenrod in the nineteen forties (with many important contributions by others along the
way).
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Some books start directly with singular homology and do not bother to develop simplicial
homology. The reason for considering the latter here is that it is in some sense a “toy model” of
singular homology for which many basic ideas appear in a more simplified framework.

II.1 : Basic definitions and properties

(Hatcher, §§ 2.1, 2.3)

As before, let ∆q be the standard q-simplex in R
q+1 whose vertices are the standard unit

vectors e0, · · · , eq . If (P,K) is a simplicial complex, then for each free generator v0 · · · vq

of Cq(P,K) there is a unique affine (hence continuous) map T : ∆q → P which sends a point
(t0, · · · , tq) ∈ ∆q+1 to

∑

j tj vj ∈ P . One can think of these as linear simplices in P . The idea of
singular homology is to consider more general continuous mappings from ∆q to a space X, viewing
them as simplices with possible singularities or singular simplices in the space.

Definition. Let X be a topological space. A singular q-simplex in X is a continuous mapping
T : ∆q → X, and the abelian group of singular q-chains Sq(X) is defined to be the free abelian
group on the set of singular q-simplices.

If we let ∂j : ∆q−1 → ∆q be the affine map which sends ∆q−1 to the face opposite the vertex
ej and is order preserving on the vertices, then as in the case of simplicial chains we have boundary
homomorphisms dq : Sq(X)→ Sq−1(X) given on generators by the standard formula:

dq(T ) =
n

∑

j=0

(−1)i∂i(T ) =
n

∑

j=0

(−1)iT o∂i

Likewise, there are augmentation maps ε : S0(X)→ Z which send each free generator T : ∆0 → X
to 1 ∈ Z.

We then have the following results:

PROPOSITION 1. The homomorphisms dq make S∗(X) into a chain complex, and if (P,K)
is a simplicial complex, then the affine map construction makes C∗(P,K) into a chain subcomplex
of Sq(P ), and the inclusion is augmentation preserving. Furthermore, if A is a subset of X, then
S∗(A) is canonically identified with a subcomplex of S∗(X) by the map taking T : ∆q → X into
i oT : ∆q → X, where i : A→ X is the inclusion mapping.

PROPOSITION 2. Let X and Y be topological spaces, and let f : X → Y be a continuous map.
Then there is a chain map f# from S∗(X) to S∗(Y ) such that for each singular q-simplex T the
value f#(T ) is given by f oT . This construction transforms the singular chain complex construction
into a covariant functor from topological spaces and continuous maps to chain complexes (and chain
maps). Furthermore, passage to quotients yields a covariant functor from pairs of topological spaces
and continuous maps of pairs to chain complexes and chain maps.

This is essentially an elementary verification, and probably the most noteworthy part is the
need to verify that f# is a chain map. Details are left to the reader.

Predictably, the homology groups we want are the homology groups of the singular chain
complexes.
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Definition. If X is a topological space, then the singular homology groups H∗(X) are the
corresponding homology groups of the chain complex defined by S∗(X). More generally, if A
is a subset of X, then the relative chain complex S∗(X,A) is defined to be S∗(X)/S∗(A), and
the relative singular homology groups H∗(X,A) are the corresponding homology groups of that
quotient complex. Note that if (K,L) is a pair consisting of a simplicial complex and a subcomplex
with underlying space pair (P,Q), then Proposition 1 generalizes to yield a chain map from θ# :
C∗(K,L) to S∗(P,Q). — Note that the relative groups (both singular and simplicial) do not have
augmentation homomorphisms if A or L is nonempty.

It is not difficult to show that the singular homology groups of homeomorphic spaces are
isomorphic, and in fact it is an immediate consequence of the following results:

PROPOSITION 3. The homology groups H∗(X,A) and homomorphisms f∗;H∗(X,A) →
H∗(Y,B) define a covariant functor from the category of pairs of topological spaces to the category
of abelian groups and homomorphisms. Furthermore, if (K,L) is a pair consisting of a simplicial
complex and a subcomplex with underlying space pair (P,Q), then the chain map θ# induces a
natural transformation of functors θ∗ : H∗(K,L)→ H∗(P,Q).

This proposition shows that we have data types (T.3) and (T.5) in our axiomatic description
of singular homology, and it also verifies axioms (A.1) and (A.2), which involve functoriality and
naturality with respect to simplicial homology.

Since functors send isomorphisms in source category to isomorphisms in the target, the topo-
logical invariance of singular homology groups is a trivial consequence of Proposition 3.

COROLLARY 4. If X and Y are topological spaces and f : X → Y is a homeomorphism, then
the associated homomorphism of graded homology groups f∗ : H∗(X)→ H∗(Y ) is an isomorphism.

By Corollary 3, the simplicial homology groups of homeomorphic polyhedra will be isomorphic
if we can give an affirmative answer to the following question for all simplicial complexes (P,K):

PROBLEM. If (P,K) is a simplicial complex and λ : C∗(K)→ S∗(P ) is the associated chain map,
does θ∗ : H∗(K)→ H∗(P ) define an isomorphism of homology groups?

We shall prove this later. For the time being we note that the map λ is a chain level isomorphism
if K is given by a single vertex (in this case each of the groups Sq(X) is cyclic, and it is generated
by the constant map from ∆q to X).

The simplest normalization properties of homology groups

It will be convenient to go through the verifications roughly in order of increasing complexity
rather than to follow the ordering given in algtopnotes2012.pdf. From this viewpoint, the next
axioms to consider are the normalization axioms (D.2)–(D.4); it is mildly ironic that (D.1) will be
one of the last axioms to be verified.

The verification of (D.4), which states that negative-dimensional homology groups are zero, is
particularly tirival; the simplicial chain groups Sq(X,A) vanish by construction if q < 0, and since
the homology groups are subquotients of the chain groups they must also vanish.

If X is a topological space and T : ∆q → X is a singular simplex, then the image of T lies
entirely in a single path component of X. Therefore the next result, whose conclusion includes the
statement of (D.2), follows immediately.

PROPOSITION 5. If X is a topological space and its path components are the subspaces Xα,
then the maps S∗(Xα) to S∗(X) induced by inclusion define an isomorphism of chain complexes
⊕

S∗(Xα)→ S∗(X) and hence also a homology isomorphism from
⊕

H∗(Xα) to H∗(X).
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The preceding results lead directly to a verification of (D.3).

COROLLARY 6. In the setting above, H0(X) is isomorphic to the free abelian group on the
set of path components of X.

A proof of this result is given on pages 109 – 110 of Hatcher.

One immediate consequence of the preceding observations is that the map from C∗(K) to S∗(P )
is an isomorphism if (P,K) is 0-dimensional, and similarly for the map from H∗(K) to H∗(P ).

Although we are far from ready to verify (D.1) in complete generality, we can do so for the
very simplest examples.

PROPOSITION 7. (The Eilenberg-Steenrod Dimension Axiom) If X = {x} consists of a single
point, then Hq(X) = 0 if q 6= 0, and H0(X) ∼= Z with the isomorphism given by the augmentation
map.

Proof. Suppose first that x ∈ R
n for some n, so that {x} is naturally a 0-dimensional polyhedron.

We have already noted that the simplicial and singular chains on X are isomorphic. Since the
conclusion of the proposition holds for (unordered) simplicial chains by the results of the preceding
unit, it follows that the same holds for singular chains. To prove the general case, note that if {x}
is an arbitrary space consisting of a single point and 0 ∈ R

n, then {0} is homeomorphic to {x}
and in this case the conclusion follows from the special case because homeomorphic spaces have
isomorphic homology groups.

The compact supports property

Our next result verifies (C.2) and is often summarized with the phrase, singular homology
is compactly supported. This was not one of the original Eilenberg-Steenrod axioms, but its
importance for using singular homology was already clear when Eilenberg and Steenrod developed
singular homology.

THEOREM 8. Let X be a topological space, and let u ∈ Hq(X). Then there is a compact
subspace A ⊂ X such that u lies in the image of the associated map from Hq(A) to Hq(X).
Furthermore, if A is a compact subset of X and u, v ∈ Hq(A) are two classes with the same image
in Hq(X), then there is a compact subset B satisfying A ⊂ B ⊂ X such that the images of u and
v are equal in Hq(B).

Proof. If c is a singular q-chain and

c =
∑

j

nj Tj

define the support of c, written Supp (c), to be the compact set ∪j Tj(∆q). Note that this subset
is compact.

If u ∈ Hq(X) is represented by the chain z and if A = Supp (z), then since S∗(A)→ S∗(X) is
1–1 it follows that z represents a cycle in A and hence u lies in the image of Hq(A)→ Hq(X).

Suppose now that A is a compact subset of X and u, v ∈ Hq(A) are two classes with the
same image in Hq(X). Let z and w be chains in Sq(A) representing u and v respectively, and let
b ∈ Sq+1(X) be such that d(b) = i#(z) − i#(w). If we set B = A ∪ Supp (b), then it follows that
the images of z−w bounds in Sq(B), and therefore it follows that u and v have the same image in
Hq(B).
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II.2 : Exactness and homotopy invariance

(Hatcher, §§ 2.1, 2.3)

We have seen that long exact sequences and homotopy invariance yield a great deal of in-
formation about homology groups. The next step is to verify some of the properties for singular
homology and their compatibility with the analogous properties for simplicial homology.

The exact sequence of a pair

In 205B the long exact sequence of a pair in simplicial homology turned out to be a direct
consequence of the corresponding long exact homology sequence for a short exact sequence of chain
complexes. In view of our definitions, it is not surprising that the same considerations yield long
exact sequences of pairs in singular homology.

THEOREM 1. (Long Exact Homology Sequence Theorem — Singular Homology Version). Let
(X,A) be a pair of topological spaces where A is a subspace of X. Then there is a long exact
sequence of homology groups as follows:

· · · Hk+1(X,A)
∂
−→ Hk(A)

i∗−→ Hk(X)
j∗
−→ Hk(X,A)

∂
−→ Hk−1(A) · · ·

This sequence extends indefinitely to the left and right. Furthermore, if we are given another pair of
spaces (Y,B) and a continuous map of pairs f : (X,A)→ (Y,B) such that f : X → Y is continuous
and f [A] ⊂ B, then we have the following commutative diagram in which the two rows are exact:

· · · Hk+1(X,A)
∂
−→ Hk(A)

i∗−→ Hk(X)
j∗
−→ Hk(X,A)

∂
−→ Hk−1(A) · · ·

· · ·




y
f∗





y
f∗





y
f∗





y
f∗





y
f∗

· · · Hk+1(Y,B)
∂′

−→ Hk(B)
i′
∗−→ Hk(Y )

j′

∗−→ Hk(Y,B)
∂′

−→ Hk−1(B) · · ·

This follows immediately from the algebraic theorem on long exact homology sequences and the
definitions of the various homology groups in terms of a short exact sequence of chain complexes.

There is also a map of long exact sequences relating simplicial and singular homology for
simplicial complexes. This is not one of the Eilenberg-Steenrod properties, but logically it fits
naturally into the discussion here.

THEOREM 2. Let (X,K) be a simplicial complex, and let (A,L) determine a subcomplex.
Then there is a commutative ladder as below in which the horizontal lines represent the long exact
homology sequences of pairs and the vertical maps are the natural transformations from simplicial
to singular homology.

· · · Hk+1(K,L)
∂
−→ Hk(L)

i∗−→ Hk(K)
j∗
−→ Hk(K,L)

∂
−→ Hk−1(L) · · ·

· · ·




yλ∗





yλ∗





yλ∗





yλ∗





yλ∗

· · · Hk+1(X,A)
∂
−→ Hk(A)

i∗−→ Hk(X)
j∗
−→ Hk(X,A)

∂
−→ Hk−1(A) · · ·

The results follow directly from the Five Lemma and the fact that the previously defined chain
maps λ pass to morphisms of quotient complexes of relative chains from C∗(K,L) to S∗(X,A).

43



Theorems 1 and 2 combine to show that our construction has several of the necessary properties
for an abstract singular homology theory; namely, it yields data types (T.2) and (T.5) and axioms
(A.2)–(A.3), (A.5) and (B-1)–(B.3). The remainder of this section is devoted to verifying axiom
(C.1), and thus the results of this section reduce the verification of singular homology axioms to
the following:

(1) Construction of data type (T.2).

(2) Verification of axioms (A.4), (D.1) and (E.1)–(E.4).

(3) Construction of data type (T.4), and verification of axioms (A.6), (C.3) and (D.5).

We shall take care of the first two points in Sections II.3 and II.4. This will prove that one
has a theory with all the properties needed to derive the applications in Unit VII in algtop-

notes2012.pdf. Axiom (C.3) will be needed to prove the uniqueness results for axiomatic singular
homology in Section II.5, and a reader who wishes to skip this may do so without loss of continuity.
Finally, data type (T.4), and axioms (A.6) and (D.5) are not needed to prove uniqueness, and we
are postponing the discussion of these features until the next unit.

Homotopy invariance

By definition, two maps of topological space pairs f, g : (X,A) → (Y,B) are homotopic as
maps of pairs if there is a homotopy H : (X × [0, 1], A × [0, 1]) → (Y,B) such that the restriction
of H to (X × {0}, A × {0}) and (X × {1}, A × {1}) are given by f and g respectively

The discussion of chain homotopies in Section I.5 suggests the following question: If f and
g are homotopic maps from (X,A) to (Y,B), will the associated chain maps from Sq(X,A) to
Sq(Y,B) be chain homotopic?

An affirmative answer to this question implies axiom (C.1), which states that homotopic maps
of pairs induce the same homomorphisms in singular homology. The next result confirms that the
answer to the preceding question is yes.

THEOREM 3. (Homotopy invariance of singular homology) Suppose that f, g : (X,A)→ (Y,B)
are homotopic as maps of pairs. Then the associated chain maps f#, g# : S∗(X,A)→ s∗(Y,B) are
chain homotopic, and the associated homology homomorphisms f∗, g∗ : H∗(X,A) → H∗(Y,B) are
equal.

Before proving this result, we shall state three important consequences.

COROLLARY 4. If f : X → Y is a homotopy equivalence, then the associated homology maps
f∗ : H∗(X)→ H∗(Y ) are isomorphisms.

Proof. Let g : Y → X be a homotopy inverse to f . Since g of is homotopic to the identity on X
and g og is homotopic to the identity on Y , it follows that the composites of the homology maps
g∗ of∗ and f∗ og∗ are equal to the identity maps on H∗(X) and H∗(Y ) respectively, and therefore
f∗ and g∗ are isomorphisms.

COROLLARY 5. If X is a contractible space and there is a contracting homotopy from the
identity to the constant map whose value is given by y ∈ X, then the inclusion of {y} in X defines
an isomorphism of singular homology groups.

Proof. Let i : {y} → X be the inclusion map, and let r : X → {y} be the constant map, so
that r oi is the identity. The contracting homotopy is in fact a homotopy from the identity to the
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reverse composite i or, and therefore {y} is a deformation retract of X. By the preceding corollary,
it follows that i∗ defines an isomorphism of singular homology groups.

COROLLARY 6. If f : (X,A) → (Y,B) is a continuous map of pairs such that the associated
maps X → Y and A → B are homotopy equivalences, then the homology maps f∗ from H∗(X,A)
to H∗(Y,B) all isomorphisms.

Proof. In this case we have a commutative ladder as in Theorem 1, in which the horizontal lines
represent the exact homology sequences of (X,A) and (Y,B), while the vertical arrows represent
the homology maps defined by the mapping f . Since the mappings from X to Y and from A to
B are homotopy equivalences, it follows that all the vertical maps except possibly those involving
H∗(X,A) → H∗(Y,B) are isomorphisms; one can now use the Five Lemma to prove that these
remaining vertical maps are also isomorphisms.

The following simple observation will be useful in the proof of Theorem 3:

LEMMA 7. For each t ∈ [0, 1] let it : X → X × [0, 1] denote the slice inclusion it(x) = (x, t),
Then i0 and i1 are homotopic.

Proof. The identity map on X × [0, 1] defines a homotopy from i0 to i1.

Proof of Theorem 3. We shall first show that it suffices to prove the theorem for the mappings
i0 and i1 described in Lemma 7. For suppose we have continuous mappings f, g : X → Y and a
homotopy H : X × [0, 1]→ Y such that H oi0 = f and H o i1 = g. Then we also have

f∗ = (H oi0)∗ = H∗ o(i0)∗ = H∗ o(i1)∗ = (H oi1)∗ = g∗

showing that f and g define the same maps in homology.

To prove the result for the mappings in Lemma 7 we shall in fact prove that the chain maps
(i0)# and (i1)# from S∗(X) to S∗(X × [0, 1]) are chain homotopic. — The results of Section I.5
will then imply that the homology maps (i0)∗ and (i1)∗ are equal.

In Section I.5 we noted the existence of simplicial chains Pq+1 ∈ Cq+1(∆q× [0, 1]) such that
P0 = 0, P1 = y0x0 and more generally

dPq+1 = (i1)#1q − (i0)#1q −
∑

j

(−1)j(∂j × 1)#Pq

where 1q = e0 · · · eq ∈ Cq(∆q), the map ∂j = ∂
[q]
j : ∆q−1 → ∆q is affine linear onto the face

opposite ej , and (−)# generically denotes an associated chain map. Recall that the existence of
the chains Pq+1 was proved inductively, the key point being that since ∆q × I is acyclic, such a
chain exists if the boundary of

(i1)#1q − (i0)#1q −
∑

j

(−1)j(∂j × 1)#Pq

is equal to zero.

To construct the chain homotopy K : Sq(X) → Sq+1(X × [0, 1], let T : ∆q → X be a free
generator of Sq(X) and set K(T ) = (T × id[0,1])#Pq+1. We then have

dK(T ) = d o(T × id[0,1])#Pq+1 = (T × id[0,1])# od(Pq+1) =
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(T × 1)# o(i1)#1q − (T × 1)# o(i0)#1q −
∑

j

(−1)jd o(T o∂j × 1)#Pq =

(i1)# oT#(1q) − (i0)# oT#(1q) −
∑

j

(−1)j(T o∂j × 1)#d(Pq) =

(i1)#(T ) − (i0)#(T ) − K od(T ) .

Therefore K defines a chain homotopy between (i1)# and (i0)# as required.

II.3 : Excision and Mayer-Vietoris sequences

(Hatcher, §§ 2.1 – 2.3)

The final Eilenberg-Steenrod axiom, called excision, is the most complicated to state and to
prove, and the crucial steps in the argument trace back to the proofs of the following two results
in simplicial homology theory:

(1) If the polyhedron P is obtained from the polyhedron Q by adjoining a single simplex
S (whose boundary must lie in Q), then the inclusion from (S, ∂S) to (P,Q) defines an
isomorphism in simplicial homology. More generally, if P1 and P2 correspond to subcom-
plexes of P in some simplicial decomposition and P = P1 ∪ P2, then the inclusion map
from (P1, P1 ∩ P2) to (P = P1 ∪ P2, P2) defines isomorphisms in homology.

(2) For every simplicial complex (P,K), the homology groups of (P,K) and its barycentric
subdivision

(

P,B(K)
)

are naturally isomorphic (with respect to subcomplex inclusions).

In particular, the excision axioms are essentially abstract, highly generalized versions of statement
(1), both in terms of their formulations and their proofs. Usually the following restatement of (E.2)
is taken to be the main version of excision.

THEOREM 1. Suppose that (X,A) is a topological space and that U is a subset of X such
that U ⊂ U ⊂ Interior(A). Then the inclusion map from (X − U,A − U) to (X,A) determines
isomorphisms in homology.

Here is the analogous restatement of (E.1).

THEOREM 2. Suppose that the space X can be written as a union of subsets A∪B such that
the interiors of A and B form an open covering of X. Then the inclusion of pairs from (B,A ∩B)
to (X = A ∪B,A) induces isomorphisms in homology.

In particular, the conclusion of Theorem 2 is valid if both A and B are open subsets of X.

One can derive Theorem 1 as a consequence of Theorem 2 by taking B = X − U (note that
the open set X − U is contained in X − U).

There is an obvious formal similarity involving the most general statement in (1), the statement
of (E.1) in Theorem 2, and the standard module isomorphism

M/M ∩N ∼= M +N/N x (where M and N are submodules of some module L)

and we shall see that the similarities are more than just a coincidence.
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Barycentric subdivision and small singular chains

Using the acyclicity of C∗(∆q) we may inductively construct chains βq ∈ Cq

(

B(∆q)
)

(simpli-
cial chains on the barycentric subdivision) such that β0 = 10 and

d(βq) =
∑

j

(−1)j (∂j)#βq−1

for q ≥ 0. If X is a topological space, then we may define a graded homomorphism β : S∗(X) →
S∗(X) such that for each singular simplex T : ∆q → X we have β(T ) = T#(βq).

LEMMA 3. The graded homomorphism β is a map of chain complexes. Furthermore, if A is a
subspace of X then β maps S∗(A) into itself.

Proof. We have d oβ(T ) = d oT#(βq) = T#
od(βq), and the last term is equal to

T#





∑

j

(−1)j (∂j)#βq−1



 =
∑

j

(−1)j (T o∂j)#βq−1

which in turn is equal to β
(

d(T )
)

.

The significance of the barycentric subdivision chain map is that it takes a chain in a given
homology class and replaces it by a chain which is in the same homology class but is composed of
smaller pieces; in fact, if one applies barycentric subdivision sufficiently many times, it is possible
to find a chain representing the same homology class such that its chain are arbitrarily small.
Justifications of these assertions will require several steps.

The first objective is to prove that the barycentric subdivision map is chain homotopic to the
identity. As in previous constructions, this begins with the description of some universal examples.

PROPOSITION 4. There are singular chains Lq+1 ∈ Sq+1(∆n) such that L1 = 0 and d(Lq+1) =
βq − 1q −

∑

j (−1)
j(∂j)#(Lq).

By convention we take L0 = 0.

Sketch of proof. Once again, the idea is to construct the chains recursively. Since ∆q is acyclic,
we can find a chain with the desired properties provided the difference

βq − 1q −
∑

j

(−1)j(∂j)#(Lq)

is a cycle. One can prove this chain lies in the kernel of dq by using the recursive formulas for
dq(βq), dq(1q), and dq(Lq).

PROPOSITION 5. If X is a topological space and A ⊂ X is a subspace, then the identity and
the barycentric subdivision maps on S∗(X,A) are chain homotopic.

Proof. It will suffice to construct a chain homotopy on S∗(X) that sends the subcomplex S∗(A)
to itself, for one can then obtain the relative statement by passage to quotients.

Define homomorphisms W : Sq(X) → Sq+1(X) on the standard free generators T : ∆q → X
by the formula

W (T ) = T#Lq+1 .
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By construction, if T ∈ Sq(A) then W (T ) ∈ Sq+1(A). The proof that W is a chain homotopy uses
the recursive formula for Lq+1 and is entirely analogous to the proof that the map K in the proof
of Theorem ????? is a chain homotopy.

Small singular chains

We have noted that barycentric subdivision takes a cycle and replaces it by a homologous cycle
composed of smaller pieces and that if one iterates this procedure then one obtains a chain whose
pieces are arbitrarily small. Not surprisingly, we need to formulate this more precisely.

Definition. Let X be a topological space, and let F be a family of subsets whose interiors form
an open covering of X. A singular chain

∑

i ni Ti ∈ Sq(X) is said to be F-small if for each i the
image Ti(∆q) lies in a member of F . Denote the subgroup of F-small singular chains by SF∗ (X).
It follows immediately that the latter is a chain subcomplex of SF∗ (X); furthermore, if A ⊂ X and
we define SF∗ (A) to be the intersection of SF∗ (X) and SF∗ (A), then we may define relative F-small
chain groups of the form

SF∗ (X,A) = SF∗ (X)/SF∗ (A) .

Note further that the barycentric subdivision maps send F-small chains into F-small chains.

THEOREM 6. For all (X,A) and F , the inclusion mappings SF∗ (X,A) → S∗(X,A) define
isomorphisms in homology.

Proof. It is a straightforward algebraic exercise to prove that if L is a chain homotopy from the
barycentric subdivision map β to the identity, then for each r ≥ 1 the map (1 + · · · + β r−1) oL
defines a chain homotopy from βr to the identity.

Let U be the open covering of X obtained by taking the interiors of the sets in F .

Suppose first that we have u ∈ H∗(X,A) and u is represented by the cycle z ∈ S∗(X,A).
Write z =

∑

i niTi and construct open coverings Wi of ∆q by Wi = T−1
i (∆q). Then by the

Lebesgue Covering Lemma there is a positive integer r such that for each i, every simplex in the
rth barycentric subdivision of ∆q lies in a member of Wi. It follows immediately that βr(z) is
F-small. Since βr is a chain map, it follows that βr(z) is also a cycle in both S∗(X,A) and the
subcomplex SF∗ (X,A), and since β is chain homotopic to the identity it follows that

u = β∗(u) = · · · = (β∗)
r(u) = (βr)∗(u)

and hence u lies in the image of the homology of the small singular chain group.

To complete the proof we must show that if two cycles in SF∗ (X,A) are homologous in S∗(X,A)
then they are also homologous in SF∗ (X,A). Let z1 and z2 be the cycles, and let dw = z2 − z1 in
S∗(X,A). As in the preceding paragraph there is some t such that β t(w) ∈ SF∗ (X,A). Since βt is
a chain map and is chain homotopic to the identity, it follows that we have

[z2] = (βt)∗[z2] = [βt(z2)] = [βt(z1)] = (βt)∗[z1] = [z1]

in the F-small homology HF
∗ (X,A). Therefore we have shown that the map from HF

∗ (X,A) to
H∗(X,A) is also injective, and hence it must be an isomorphism.
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Application to Excision

We recall the hypotheses of the Excision Property: A pair of topological spaces (X,A) is given,
and we have an open subset U ⊂ X such that U ⊂ Int(A). Excision then states that the inclusion
map of pairs from (X − U,A− U) to (X,A) defines isomorphisms of singular homology groups.

Predictably, we shall use the previous results on small chains. Let F be the family of subsets
given by A and X − U . Then by the hypotheses we know that the interiors of the sets in F form
an open covering of X, and by definition the subcomplex SF∗ (X) is equal to S∗(A) + S∗(X − U).
Therefore the chain level inclusion map from S∗(X − U,A − U) to S∗(X,A) may be factored as
follows:

S∗(X − U,A− U) = S∗(X − U)/S∗(A− U) = S∗(X − U)/ (S∗(A) ∩ S∗(X − U) ) −→

(S∗(A) + S∗(X − U) ) /S∗(A) = SF∗ (X,A) ⊂ S∗(X,A)

Standard results in group theory imply that the last morphism on the top line is an isomorphism,
and the preceding theorem shows that the last morphism on the second line is an isomorphism.
Therefore if we pass to homology we obtain an isomorphism from H∗(X − U,A−U) to H∗(X,A),
which is precisely the statement of the Excision Property.

The same methods also yield the following result:

PROPOSITION 7. If U and V are open subsets of a topological space, then the maps in
singular homology induced by the inclusions (U,U ∩ V ) ⊂ (U ∪ V, V ) are isomorphisms.

Axioms (E.1) and (E.2) follow immediately from the preceding discussion.

Mayer-Vietoris sequences

One of the most useful results for computing fundamental groups is the Seifert-van Kampen
Theorem. There is a similar principle that can be applied to find the homology groups of a space
X presented as the union of two open subsets U and V ; in fact, the result in homology does not
require any connectedness hypotheses on the intersection.

THEOREM 8. (Mayer-Vietoris Sequence for open sets in singular homology.) Let X be a
topological space, and let U and V be open subsets such that X = U ∪ V . Denote the inclusions
of U and V in X by iU and iv respectively, and denote the inclusions of U ∩ V in U and V by gU

and gV respectively. Then there is a long exact sequence

· · · → Hq+1(X)→ Hq(U ∩ V )→ Hq(U)⊕Hq(V )→ Hq(X)→ · · ·

in which the map from H∗(U) ⊕ H∗(V ) to H∗(X) is given on the summands by (iU )∗ and (iV )∗
respectively, and the map from H∗(U ∩ V ) to H∗(U) ⊕ H∗(V ) is given on the factors by −(gU )∗
and (gV )∗ respectively (note the signs!!).

Theorem 8 yields data type (T.2) and axiom (E.3) for singular homology.

Proof. Let U be the open covering of X whose sets are U and V , and let SU∗ (X) be the chain
complex of all U-small chains in S∗(X). Then we have

SU∗ (X) = S∗(U) + S∗(V ) ⊂ S∗(X)
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(note that the sum is not direct) and hence we also have the following short exact sequence of chain
complexes, in which the injection is given by the chain map whose coordinates are −(gU )# and
(gV )# and the surjection is given on the respective summands by (iU )# and (iV )#:

0 −→ S∗(U ∩ V ) −→ S∗(U)⊕ S∗(V ) −→ SU∗ (X) −→ 0

The Mayer-Vietoris sequence is the long exact homology sequence associated to this short exact
sequence of chain complexes combined with the isomorphism HU

∗ (X) ∼= H∗(X).

We have noted that one also has a Mayer-Vietoris sequences in simplicial homology, but for
much different types of subspaces (in particular, the assumption is that a polyhedron is the union
of two subcomplexes, and every subcomplex is closed and usually not open in P ). Specifically, if K1

and K2 are subcomplexes of some K, where (P,K) is a simplicial complex, then the corresponding
Mayer-Vietoris sequence has the following form:

· · · → Hq+1(K)→ Hq(K1 ∩K2)→ Hq(K1)⊕Hq(K2)→ Hq(K)→ · · ·

It is possible to construct a unified framework that will include both of these exact sequences, but
we shall not do so here because it involves numerous further results about simplicial complexes.
However, it is important to note that in general one does NOT have a Mayer-Vietoris sequence in
singular homology for presentations of a space X as a union of two closed subsets, and this even
fails for compact subsets of the 2-sphere.

Example. Let P ⊂ R
2 be the Polish circle constructed in polishcircle.pdf and polish-

circleA.pdf, which is the union of the graph of sin(1/x) for 0 < |x|1 and the three closed line
segments joining (0, 1) to (0,−2), (0,−2) to (1,−2), and (1,−2) to (1, sin 1); there is a sketch of P
in polishcircleA.pdf. By the discussion in the two references, P is a compact arcwise connected
subset of the plane, and one can use the same argument as in Proposition 2 and Corollary 3 of
polishcircle.pdf to prove that if K is compact and locally connected and h : K → P is contin-
uous, then h[K] lies in a contractible open subset of P and hence Hq(P ) = 0 if q 6= 0 (by arcwise
connectedness we have H0(Γ) ∼= Z). Now let B be the set of points (x, y) in R

2 satisfying

0 ≤ x ≤ 1 and either

−2 ≤ y ≤ sin(1/x) if x 6= 0 or − 2 ≤ y ≤ 1 if x = 0 .

In the drawing on the first page of polishcircleA.pdf, B corresponds to the “closed bounded
region whose boundary is P ,” and it follows immediately that B = Interior(B) ∪ P , where the
two subsets on the right hand side are disjoint, and that B is the closure of Interior(B). It is
straightforward to show that the closed line segment [0, 1] × {− 3

2
} is a strong deformation retract

of B; specifically, the retraction r sends (x, y) to (x,− 3
2
) and the homotopy is given by t · r(x, y) +

(1− t) · (x, y). Therefore we know that the singular homology groups of both P and B are zero in
all positive dimensions.

Viewing R
2 ⊂ S2 in the usual way, let A = S2 − Interior(B); then the observations in the

preceding paragraph imply that A ∩B = P .

If there was an exact Mayer-Vietoris sequence in singular homology of the form

· · · → Hq(P )→ Hq(A)⊕Hq(B)→ Hq(S
2)→ Hq−1(P ) · · ·

then the results of the preceding paragraph would imply that Hq(A) ∼= Hq(S
2) for all q ≥ 2, and

in particular that the map H2(A) → H2(S
2) is nontrivial. Now A is a proper subset of S2, and it

is elementary to prove the following result:
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LEMMA 9. If n > 0 and A is a proper subset of Sn, then the inclusion map induces the trivial
homomorphism from Hn(A) to Hn(S

n) ∼= Z.

Proof of Lemma 9. If p is a point of Sn that does not lie in A, then the homology map defined
by inclusion factors as a composite

Hn(A)→ Hn(S
n − {p})→ Hn(S

n)

and this map is trivial because the complement of p is homeomorphic to R
n and the n-dimensional

homology of the latter is trivial.

This result and the discussion in the paragraphs preceding the lemma yield a contradiction;
the source of this contradiction is our assumption that there is an exact Mayer-Vietoris sequence
for S2 = A ∪B, and therefore no such sequence can exist.

WHAT GOES WRONG IN THE EXAMPLE? In order to obtain an exact Mayer-Vietoris
sequence for closed subsets, one generally needs an extra condition on the regularity of the inclusion
maps. One standard type of condition on the closed subsets is that one can find arbitrarily small
open neighborhoods such that the subsets are deformation retracts of these neighborhoods. This
definitely fails for P ⊂ R

2. In fact, one can use the methods of polishcircle.pdf and polishcir-

cleA.pdf to show that P has a cofinal system of decreasing open neighborhoods {Wm} such that
Wm+1 ⊂ Wm is a homotopy equivalence for all m and each neighborhood is homotopy equivalent
to S1. Since H1(P ) = 0, there cannot be arbitrarily small open neighborhoods V ⊃ P such that
P is a deformation retract of V (if, say, V ⊂ W1 and we choose n such that Wn ⊂ V , then the
nontriviality of H1(Wn) → H1(W1) implies the nontriviality of H1(Wn) → H1(V ) and hence V
cannot be contractible).

A more refined analysis yields axiom (E.4).

THEOREM 10. (Naturality of Mayer-Vietoris sequences) In the setting of Theorem 5, assume
we are given a map of triads f from (X1;U1, V1) to (X2;U2, v2). Then there for all integers q there is
a commutative ladder as below in which the horizontal lines represent the long exact Mayer-Vietoris
sequences of Theorem 5 and the vertical maps are all induced by f :

· · · → Hq+1(X1) → Hq(U1 ∩ V1) → Hq(U1)⊕Hq(V1) → Hq(X1) → · · ·
↓ ↓ ↓ ↓

· · · → Hq+1(X2) → Hq(U2 ∩ V2) → Hq(U2)⊕Hq(V2) → Hq(X2) → · · ·

Proof. For i = 1, 2 let F(i) denote the open covering of Xi by Ui and Vi. Then we have the
following commutative diagram of chain complexes whose rows are short exact sequences:

0 → S∗(U1) ∩ S∗(V1) → S∗(U1)⊕ S∗(V1) → S
F(1)
∗ (X1) → 0

↓ ↓ ↓

0 → S∗(U2) ∩ S∗(V2) → S∗(U2)⊕ S∗(V2) → S
F(2)
∗ (X2) → 0

The theorem follows by taking the long exact commutative ladder associated to this diagram.

For the sake of completeness, we note that our work thus far yields the following conclusion,
which corresponds to one of the axioms for a simplicial homology theory.

THEOREM 11. Suppose that the pair (X,A) is obtained by regularly attaching a k-cell to
A, and let D ⊂ X denote the image f [Dk], and let S ⊂ X denote the image f [Sk−1]. Then the
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inclusion of (D,S) in (X,A) induces isomorphisms of singular homology groups from H∗(D,S) to
H∗(X,A).

Proof. In algtopnotes2012.tex this statement appeared as Theorem VII.6.1 and was derived
as a consequence of axioms (A.1)–(A.5), (B.1)–(B.3), (C.1), (D.1)–(D.4) and (E.1)–(E.4). Since
we have shown all of these hold for our construction of singular homology, the proof in the cited
reference applies directly to yield the stated result.

II.4 : Equivalence of simplicial and singular homology

(Hatcher, §§ 2.1 – 2.3)

We now have all the tools we need for verifying axiom (D.1), and as noted before this completes
the justification of the applications in Unit VII of algtopnotes2012.pdf.

THEOREM 1. Let (X,K) be a simplicial complex, let (A,L) determine a subcomplex, and
let θ∗ : H∗(K,L)→ H∗(X,A) be the natural transformation from simplicial to singular homology
that was described previously. Then θ∗ is an isomorphism.

Proof. The idea is to apply Theorem I.1.8 on natural transformations of homology theories on
simplicial complex pairs. In order to do this, we must check that singular homology for simplicial
complexes satisfies the five properties (a)−(e) listed shortly before the statement of I.1.8. Property
(c), which gives the homology of a finite set, is verified in Proposition IV.1.4, and Properties (a),
(b), (d) and (e) — which involve long exact sequences, the homology of a contractible space (more
precisely, a simplex), excision for adjoining a single simplex, and the homology of a point — are
respectively established in Theorem II.2.2, Corollary II.2.5, Theorem II.3.8, and the discussion
following the problem stated after Corollary 1.1.4. Since all these properties hold, Theorem I.1.8
implies that the map θ∗ must be an isomorphism for all simplicial complex pairs.

II.5 : Polyhedral generation, direct limits and uniqueness

(Hatcher: 2.1–2.3, 3.F)

None of the material in this section will be used subsequently in these notes, so the reader
may proceed directly to the next unit without loss of continuity. Since the material is optional,
there will be less motivation, fewer details, and more reliance on references for topics not covered
elsewhere in the course.

Here is one particularly important example to illustrate the preceding sentence: Theorem
VI.8.1 in Eilenberg and Steenrod shows that the restrictions of two singular homology theories are
naturally isomorphic on the full subcategory of the underlying space pairs (P,P ′) for simplicial
complex pairs (P ′,K′) ⊂ (P,K) (i.e., the mappings are arbitrary continuous maps of pairs and
not just subcomplex inclusions of one pair in another), and we shall use this fact without further
discussion.
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As indicated earlier, the key idea in extending simplicial to singular homology is approximating
a space X by continuous maps of polyhedra into X, and axiom (C.3) is basically a formalization
of this idea.

Polyhedral generation

This property, which is (C.3) on our list, is definitely less elementary than the ones we have
discussed thus far, but for a number of reasons this seems to be the best place to verify it. One
reason is that it only figures in proving the uniqueness of singular homology up to isomorphism
(something that was never used in Unit VII of algtopnotes2012.pdf), and the reader may skip
the rest of this section without loss of continuity.

In fact, we shall prove a modified version of (C.3); the reasons for making changes are given
below.

THEOREM 1. (Polyhderal generation, slightly weakened) If (X,A) is a pair of topological
spaces, and let u ∈ Hq(X,A), then there is a simplicial complex pair (K,K′) with (P ′,K′) ⊂ (P,K)
and a continuous map of pairs

f : (P,P ′) −→ (X,A)

such that u is in the image of the map f∗ from Hq(P,P ′) to Hq(X,A). Furthermore, if (K,K′) is
a simplicial complex pair with underlying space pair (P,P ′) and v ∈ Hq(P,P ′) maps trivially to
Hq(X,A) under the map f∗, then there is another simplicial complex pair (Q′,L′) ⊂ (Q,L) and
continuous functions h : (P,P ′)→ (Q,Q′) and g : (Q,Q′)→ (X,A) such that the following hold:

(i) The composite g oh is homotopic to f .

(ii) We have 0 = h∗(v) ∈ Hq(Q,Q′).

This property has been well known to most (and perhaps nearly all) mathematicians who have
worked extensively with algebraic topology (in particular, it is an immediate consequence of results
on geometric realizations of semisimplicial sets; one reference suitable for a course at this level is J.
P. May, Simplicial Objects in Algebraic Topology , University of Chicago Press, Chicago IL, 1982).

Note. This version of (C.3) is slightly weaker than the one stated in algtopnotes2012.pdf,
in which the maps (P,P ′)→ (Q,Q′) were required to come from subcomplex inclusions. We have
made this adjustment because the weaker statement is much easier to verify (for the original version,
considerably more information involving simplicial complexes is needed) and the weakened version
of (C.3) suffices for proving the uniqueness theorem that we want.

We shall use Hatcher’s concept of ∆-complex explicitly in the course of the proof, and we shall
also need a few properties of such objects.

LEMMA 2. A finite ∆-complex in the sense of Hatcher is (compact and) Hausdorff.

Although this property is dismissed as “obvious” on page 104 of Hatcher, some care seems
appropriate because quotient spaces of compact Hausdorff spaces are not necessarily Hausdorff
(of course they must be compact), so we shall outline the argument here. Hatcher’s complex is
constructed by taking a finite disjoint union of simplices and identifying selected subsets of faces
with the same dimension. In abstract terms, this construction starts with a compact Hausdorff
space X (which is the disjoint union of the simplices) and factors out an equivalence relation R
whose graph in X×X is a closed subset of the latter (verify this explicitly!). One can then use point
set topology to prove that the quotient space is Hausdorff. There is a particularly clear account
of the proof in Theorem A.5.4 on page 252 of the following text (note that there are several texts
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on algebraic topology by the same author in the same series, so the precise title is particularly
important here):

W. S. Massey. Algebraic Topology: An Introduction, Graduate Texts in Mathematics
Vol. 56, Springer -Verlag, New York NY , 1977.

Another important fact about ∆-complexes is that they are always homeomorphic to simplicial
complexes. In fact, the second barycentric subdivision of the ∆-complex decomposition is always
a simplicial decomposition, so one can actually say slightly more:

If (K,K′) is a ∆-complex pair with underlying space pair (P,P ′), then the second barycen-
tric subdivision induces a simplicial complex structure such that P ′ corresponds to a
simplicial complex.

This follows from Exercise 2.1.23 on page 133 of Hatcher, and a full proof is given in Theorem 16.41
on pages 148–149 of the following text:

B. Gray. Homotopy Theory: An Introduction to Algebraic Topology, Pure and Applied
Mathematics Vol. 64. Academic Press, New York , 1975.

It will be useful to introduce some notation for iterated faces of a simplex; specifically, if we are
given a sequence i = (i1, · · · , ir) such that 0 ≤ it ≤ q − t + 1 for all t, the iterated face map
∂i : ∆q−r → ∆q will denote the composite of the ordinary face operators ∂ir

o · · · o∂i1 .

We now have enough machinery to prove the polyhderal generation property.

Proof of Theorem 1. By construction u is represented on the chain level by a singular chain
y =

∑

j nj Tj such that the coefficients nj are integers and the maps Tj : ∆q → X are continuous
such that dy ∈ Sq−1(A) (which is equivalent to saying that the image of y in Sq(X,A) is a relative
cycle). Form a ∆-complex P and a continuous map g : P → X by starting whose q-simplices σj are
in 1–1 correspondence with the maps Tj , and identify two (q − r)-dimensional faces ∂iσ ⊂ σk and
∂jβ ⊂ σm if Tk|∂i∆q = Tm|∂j∆q. Define g so that its restriction to σj is Tj for all j, and let P ′ ⊂ P
be the ∆-subcomplex of all (q − 1)-simplices that have nontrivial coefficients in the absolute chain
dy, which by our choice automatically lifts back to Sq−1(A). It follows immediately that g passes
to a map of pairs, and by the preceding discussion there is a simplicial complex structure on P for
which P ′ is a subcomplex (namely, the second barycentric subdivision). This completes the proof
of the first part of the result.

Suppose now that (K,K′) is a simplicial complex pair with underlying space pair (P,P ′)
and v ∈ Hq(P,P ′) maps trivially to Hq(X,A) under the map f∗. If ω is a linear ordering of
the vertices of K, then Theorems I.1.7 and II.4.1 imply that v is represented by a relative cycle
z =

∑

j nj Tj in Cq(K
ω), where the sum ranges over certain q-simplices of K that are not in K′

such that dz ∈ Cq

(

(K′)
)

. If this cycle goes to zero in Hq(X,A), then there is a singular chain
c =

∑

j m` V` ∈ Sq+1(X) such that dc = z + b for some b ∈ Sq(A); the latter condition implies
that b is a linear combination

∑

j pn Wn for singular simplices Wn : ∆q → A. One can now
construct a ∆-complex structure M as in the preceding discussion, and the condition dc = z + b
implies that K is a subcomplex of M; if Q is the underlying space of M, then P ⊂ Q and the
data defining c yield a continuous extension g of f . Let M′ be the union of K′ and the q-simplices
in M corresponding to the singular simplices Wn, let Q′ ⊂ Q be the underlying space of M′, and
let h : (P,P ′) → (Q,Q′) be the inclusion map. By construction g[Q′] ⊂ A and the map of pairs
f : (P,P ′)→ (X,A) determines an extension to g : (Q,Q′)→ (X,A) such that h∗(v) = 0, and the
final statement in the conclusion of the theorem follows immediately from this.
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Directed systems and direct limits

We shall merely state what we need and use Chapter VIII of Eilenberg and Steenrod for proofs
and other details whenever possible. We shall be working with quasi-ordered sets (D,≤) which
satisfy the reflexive and transitive conditions for partial orderings (the symmetric condition a ≤ b
and b ≤ a ⇒ a = b is dropped); as in the partially ordered case, a quasi-ordered set defines
a category whose objects are the elements of the set, and if d1, d2 ∈ D there is one morphism
d1 → d2 if d1 ≤ d2 and there are no morphisms otherwise. A quasi-ordered sets (D,≤) is said to
be directed if it satisfies the following condition:

(?) If x, y ∈ D then there is some z ∈ P such that x, y ≤ z.

Linearly ordered sets and lattices are obvious examples for which this condition holds. We are
particularly interested in the following special case and certain constructions involving it:

Example. Let R
∞ be the set of all infinite sequences of real numbers (x1, x2, · · · ) such that

all but finitely many xk are zero, and consider the set of P all simplicial complexes (P,K) in R
∞

such that the vertices of each simplex are unit vectors (a single nonzero coordinate, which is equal
to 1); by finiteness each subspace P of this type lies in some R

N ⊂ R
∞ given by all sequences such

that xk = 0 for k > N . Condition (?) holds because the union of two such complexes contains both
of them. Note that every simplicial complex is isomorphic to a complex in P.

Definition. A directed system {Bx : x ∈ D} in a category A is a covariant functor B from the
category defined by (D,≤) to A, and a morphism of directed systems in A, from {Bx : x ∈ D} to
{B′x : x ∈ D′}, is a natural transformation of functors.

The simplest way to motivate the concept of direct limit is to look a simple class of examples.
Suppose that we have an increasing sequence {Gn} of groups (i.e., Gn is a subgroup of Gn+1 for
all positive integers n). Then it is fairly easy to form a limiting object G∞ which is essentially
a monotone union of the groups Gn. More generally, if may view an object L in A as a directed
system {•}(L) defined on the category {•} with a single morphism (and a single object), then we
may define direct limits as follows:

Definition. Given a directed system B : D → A, a natural transformation ϕ : B → {•}(L)
is a direct limit if it has the universal mapping property: If ω : B → {•}(M) is another natural
transformation, then there is a unique morphism h : L→ M such that {•}(h) oϕ = ω.

The usual sort of argument yields the following standard uniqueness and functoriality results:

THEOREM 3. (i) If ϕ : B → {•}(L) and ω : B → {•}(M) are direct limits, then there is a
unique isomorphism h : L→M such that {•}(h) oϕ = ω.

(ii) If ϕ : B → {•}(L) and ω : C → {•}(M) are direct limits with values in the same category
and F : B → C is a map of directed systems, then there is a unique map of direct limit objects
f∞ : L → M such that {•}(f∞) oϕ = ω oF . Furthermore, the construction sending F to f∞ is
(covariantly) functorial.

The usefulness of the direct limit concept obviously depends upon a reasonable existence
statement for such objects. The following can be found in Eilenberg and Steenrod:

THEOREM 4. If A is a category of groups with operators (for example, modules over a ring or
the category of groups), then every directed system in A has a direct limit ϕ : B → {•}(L), and it
has the following properties:

(i) Every element of L has the form ϕx(u) for some x ∈ D and some u ∈ Bx.
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(ii) if v ∈ Bx is such that ϕx(v) is the trivial element, then there is some y ≥ x such that v
maps to the trivial element of Dy.

A (the) direct limit of ϕ is often denoted by dir lim (B) or similar notation, and the universal
map is often denoted by something like dir lim (ω).

There are some clear analogies between the conclusions in Theorems 1 and 4; needless to say,
we are going to exploit these similarities.

An isomorphism theorem for singular homology theories

Following Eilenberg and Steenrod, we shall say that a pair of compact Hausdorff spaces (P,P ′)
is P−triangulable (it can be triangulated) if it is the underlying space pair for a simplicial complex
pair (K,K′) in P. The restriction to P is added to obtain a family of bounded cardinality which is
large enough to include all isomorphism types of simplicial complex pairs.

Let (X,A) be a pair of topological spaces, and define a directed system P(X,A) whose elements
are given by a P−triangulable pair (P,P ′) and a continuous map of pairs f : (P,P ′) → (X,A).
The quasi-ordering on such objects

f : (P,P ′)→ (X,A) ≤ g : (Q,Q′)→ (X,A)

(often shortened to f ≤ g) is given by the existence of a continuous mapping of pairs h : (P,P ′)→
(Q,Q′) such that f ' g oh. The following result shows that P(X,A) satisfies the required condition
(?) for a directed system:

LEMMA 5. The quasi-ordered set P(X,A) is directed.

Proof. We begin with a general observation about P(X,A). Suppose that (P1, P
′
1) is a pair of

subcomplexes in P which is simplicially isomorphic to (P,P ′), and let J : (P1, P
′
1) → (P,P ′) be a

simplicial isomorphism. Then we have f ≤ f oJ ≤ f in P(X,A).

Suppose now that we are given f : (P,P ′) → (X,A) and g : (Q,Q′) → (X,A). Clearly we
can construct a subcomplex pair (P1, P

′
1) which is isomorphic to (P,P ′) and disjoint from Q (take

the vertices of P1 to be vertices which are not in Q). Let J be a simplicial isomorphism as in the
preceding paragraph, and take the map α of pairs from the disjoint union (P1, P

′
1) q (Q,Q′) =

(P1 qQ, P ′1 qQ′) to (X,A) whose restriction to (P1, P
′
1) is f oJ and whose restriction to (Q,Q′) is

g. By construction we have α ≥ f oJ, g, and since f oJ ≥ f we also have α ≥ f, g, which is exactly
what we needed to prove.

THEOREM 6. There is a canonical isomorphism Γ from the direct limit of {H∗(Pα, P ′α) : α ∈ P}
to H∗(X,A), and it is natural with respect to continuous maps of pairs.

Proof. For each nonnegative integer q there is a natural transformation

γq : {Hq(Pα, P ′α) : α ∈ P} −→ {•}
(

Hq(X,A)
)

defined by the homology homomorphisms associated to the continuous mappings gα : (Pα, P ′α) →
(X,A), and by the universal mapping property these yield homomorphisms

dir lim (ω) : dir lim {Hq(Pα, P ′α) : α ∈ P} −→ Hq(X,A) .

Theorems 1 and 4 combine to imply that these homomorphisms are isomorphisms.
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Suppose now that we are given a continuous map of pairs ϕ : (X,A) → (Y,B). Composition
with ϕ defines a map of directed sets P(ϕ) : P(X,A)→ P(Y,B), and this construction is functorial
with respect to continuous maps of pairs. If we apply the homology functor H∗, we obtain a map
of the corresponding direct systems of abelian groups, and by Theorem 3 we obtain a natural
transformation from dir lim {Hq(Pα, P ′α) : α ∈ P}toHq(X,A); in this setting naturality is with
respect to continuous maps of pairs. By Theorems 1 and 4 this natural mapping is an isomorphism.

We now have the machinery we need to prove the following uniqueness theorem:

THEOREM 7. Suppose that (h∗, ∂) and (h′∗, ∂
′) satisfy the following weak versions of the

axioms for a singular homology theory:

(a) All the data types except possibly (T.2) and (T.4), and all the axioms except possibly
(A.6), (D.5), (E.3)–(E.4) and (C.3).

(b) The weaker version of (C.3) corresponding to Theorem 1.

Then there is a unique natural isomorphism λ : h∗ → h′∗ such that for each point p the isomorphism
λ{p} commutes with the normalization isomorphisms h0({p}) ∼= Z and h′0({p})

∼= Z.

Proof. The proof of Theorem 6 is valid for an arbitrary axiomatic singular homology satisfying
the conditions in the conclusion of Theorem 1, so the conclusion of Theorem 6 remains valid for an
abstract singular homology theory satisfying the hypotheses in the present theorem. In other words,
if k = h or h′ then k(X,A) is naturally isomorphic to the direct limit of the system {k∗(Pα, P ′α),
where α ∈ P(X,A).

For each pair of spaces (X,A) the previously cited uniqueness theorem in Eilenberg and Steen-
rod yields a natural isomorphism λ of directed systems

h∗(Pα, P ′α)α∈P(X,A) −→ h′∗(Pα, P ′α)t∈P(X,A) .

The direct limits of these systems are h∗(X,A) and h′∗(X,A) respectively, and therefore one obtains
a direct limit isomorphism λ∞ from h∗(X,A) to h′∗(X,A).

The naturality of this isomorphism follows from Theorem 3.
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