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VII . Topological deformations and approximations

VII.0 : Categories and functors

Additional exercises

1. (a) Follow the hint and prove the contrapositives.
Not a monomorphism ⇒ not 1 − 1. If f is not a monomorphism, then there exist mappings

g, h : C → A such that g 6= h but f og = f oh. Now g 6= h means that there is some x ∈ C such
that g(x) 6= h(x), and by hypothesis we have f(g(x)) = f og(x) = f oh(x) = f(h(x)), so that f
sends both g(x) and h(x) to the same element of B. But this means that f is not 1–1.

Not an epimorphism ⇒ not onto. If f is not an epimorphism, then there exist mappings
u, v : B → D such that u 6= v but u of = v of . The functional identity translates to the identity
u(f(a)) = v(f(a)) for all a ∈ A, and therefore we have u|f [A] = v|f [A]. On the other hand, u 6= v
implies that u(b) 6= v(b) for some b ∈ B, and by the previous sentence we know that b cannot
belong to f [A]. Therefore f [A] is a proper subset of B, which means that f is not onto.

(b) Suppose that f [A] is dense in B and u of = u og, where u, v : B → D. Then u and v are
equal on the dense subset f [A]. Since D is Hausdorff, the set E of all points b such that u(b) = v(b)
is closed. We know that E contains the dense subset f [A], so we must have E = B.

Note. The Wikipedia article http://en.wikipedia.org/wiki/Epimorphism gives ex-
tensive information on the relationship between epimorphisms and surjective mappings
for many standard examples of categories. Frequently, but not always, these notions are
equivalent.

(c) Suppose we are given f1 : A → B and f2 : B → C.
Assume both maps are monomorphisms. Let g and h be morphisms into A such that

(f2
of1) og = (f2

of1) oh. By associativity of composition and the monomorphism hypothesis on f2,
we have f1

og = f1
oh; but now the monomorphism hypothesis on f1 implies that g = h.

Assume both maps are epimorphisms. Let u and v be morphisms from C such that
u o(f2

of1) = v o(f2
of1). By associativity of composition and the epimorphism hypothesis on f1,

we have u of2 = v of2; but now the epimorphism hypothesis on f2 implies that u = v.

(d) Suppose that f and g are morphisms W → X such that r of = f og, and let q be such that
q or = idX . Then we have

f = idX
of = q or of = q or og = idX

og = g

which means that r is a monomorphism.

(e) Suppose that u and v are morphisms B → D such that u op = v op. Then we have

u = u o idB = u op os = v op os = v o idB = v
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which means that p is a epimorphism.

Note. In the category of sets, the Axiom of Choice implies that every monomorphism
is a retract and every epimorphism is a retraction, but for other categories this fails. For
example, in the category of abelian groups the monomorphism Z2 → Z4 is not a retract
and the epimorphism Z4 → Z2 is not a retraction. [PROOF: In the first case, if there was
a homomorphism q : Z4 → Z2 such that q|Z2 was the identity, then the fact that the image
of Z2 is 2Z4 implies that q|2Z4 is nonzero, and this cannot happen since 2Z2 = 0. In the
second case, if one could find a suitable homomorphism s then the image of s would be
contained in 2Z4 and once again this would yield the contradictory conclusion p os = 0.]

2. We shall first dispose of the converse. Assume f is an isomorphism, and let g : B → A
be its inverse. Then by associativity of composition we know that Mor(f, · · ·) oMor(g, · · ·) sends a
morphism h : A → X to h og of = h o idA = h, so that Mor(f, · · ·) oMor(g, · · ·) is the identity on
Mor(A,X). Similarly, by associativity of composition we know that Mor(g, · · ·) oMor(f, · · ·) sends
a morphism k : B → X to h of og = k o idB = k, so that Mor(g, · · ·) oMor(f, · · ·) is the identity on
Mor(B,X).

We shall now prove the exercise itself. Assume that Mor(f, · · ·) is an isomorphism from
Mor(B,X) to Mor(A,X) for all X. If we let X = A this means that there is a unique p : B → A
such that p of = idA. To prove the result we want, it suffices to show that f op = idB . Since
Mor(f, · · ·) is 1–1, it will suffice to prove that (f op) of = idB

of = f ; but this follows immediately
from p of = idA.

3. (a) For the empty set, the unique map is the one whose graph is the empty subset of
∅ × A = ∅ (this function is often called the empty map). For the one point set, the unique map is
the one whose graph is the entire set A × {point} (in other words, the only possible constant map
into the set).

(b) Since a linear transformation always sends a zero vector to a zero vector, there is only one
possibility for the map if the vector space consists only of the zero vector, so a zero space is an
initial object. On the other hand, for a linear transformation into a zero space there is only possible
value for the transformaton at a point; namely, the zero vector. Therefore a zero space is also a
terminal object.

(c) We shall first consider initial objects. Since there is an identity map from an initial object
O to itself and by hypothesis there is only one self-map of O, it follows that a map from O to itself
must be the identity. Suppose now that O and O ′ are initial objects. Then there are unique maps
a : O → O′ and b : O′ → O. By the uniqueness of self-maps for initial objects, it follows that b oa
is the identity for O and a ob is the identity for O′. Therefore a and b are both isomorphisms.

We next consider terminal objects. Since there is an identity map from a terminal object T to
itself and by hypothesis there is only one self-map of T , it follows that a map from T to itself must
be the identity. Suppose now that T and T ′ are terminal objects. Then there are unique maps
a : T → T ′ and b : T ′ → T . By the uniqueness of self-maps for terminal objects, it follows that
b oa is the identity for T and a ob is the identity for T ′. Therefore a and b are both isomorphisms.

4. If Z is a null object and A is an arbitrary object, then there are unique maps A → Z and
Z → A, so for each null object we obtain a unique composite morphism A → A. We need to show
that if W is any other null object, then the composites A → Z → A and A → W → A are equal.
For the sake of definiteness, let tZ : A → Z and jZ : Z → A be the unique maps from and to the
null object Z, and similarly for W . Now let a : W → Z and b : Z → W be the unique maps between
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the two null objects; then a ob and b oa must be identity maps by uniqueness, and consequently a
and b are isomorphisms which are inverse to each other. Therefore we have

jW
otW = jW

o idW
otW = jW

ob oa otW

and since a otW = tZ and jW
ob = jZ by uniqueness, it follows that jW

otW = jZ
otZ , and hence

the composite does not depend upon a the choice of a specific null object.

4. Suppose that r : X → Y is a retract and s : Y → X is a map such that q or = idX . If F is a
covariant functor defined on the category under consideration then we have

idF (X) = F (idX) = F (q or) = F (q) oF (r)

and consequently F (r) is also a retract. Similarly, if p : A → B is a retraction and p os = idB , then
we have

idF (B) = F (idB) = F (p os) = F (p) oF (s)

and consequently F (p) is also a retraction.

If G is a contravariant functor the conclusions are more complicated; namely, if r is a retract
then G(r) is a retraction, and if p is a retraction then G(p) is a retract. The derivations are nearly
the same as the preceding ones, but at the last step one must reverse the orders of composition.

5. In fact, f is a retract, for there is a unique morphism c : X → E because E is terminal, and
as noted before the morphism c of : E → E must be the identity if E is terminal.

6. This is basically a translation of fundamental statements about matrix multiplication into
the language of category theory. A morphism A : n → m is merely an m × n matrix over the inte-
gers, the identity matrix is the identity morphism, and composition is matrix multiplication. The
composition rules for identities and associativity are then merely restatements of the corresponding
properties of matrix multiplication.

7. Let f : X → Y be a morphism, and suppose that f has a quasi-inverse g : Y → X; we
claim there is some h : Y → X such that f is a quasi-inverse to h. The natural first candidate is
h = g, but this does not lead anywhere so we need to find another choice for h. The correct choice
is g of og, and the string of equations

(gfg)f(gfg) = (gfg)(fgf)g = (gfg)fg = g(fgf)g = gfg

shows that f is a quasi-inverse to g of og (the composition operators were omitted in the display to
make the equations easier to follow).

Note. Usually morphisms in a category do not have quasi-inverses, but in the category
of sets the Axiom of Choice is essentially equivalent to the existence of quasi-inverses.

VII.1 : Homotopic mappings

Problems from Munkres, § 51, p. 330

2. On the unit interval I = [0, 1] the identity map is homotopic to a constant map by convexity.
Therefore we have the following:
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(a) If f : X → I is continuous, then f = idI
of is homotopic to C0

of , where C0 is the constant
function whose value everywhere is zero. Since C0

of = C0, it follows that f is homotopic to the
map which sends everything to zero.

(b) If f : I → Y is continuous, then f = f o idI is homotopic to f oC0, which is the constant
map with value f(0) everywhere. Since Y is arcwise connected, one can use a curve joining f(0) to
an arbitrary point y0 ∈ Y , and hence all constant maps are homotopic to each other. Combining
these, we see that every continuous mapping I → Y is homotopic to the constant map with value
y0.

3. (a) More generally, if K ⊂ Rn, then the straight line homotopy H(x, t) = (1 − t)x + tx0 is a
homotopy from the identity on K to the constant map whose value everywhere is x0.

(b) If H : X × [0, 1] → X is the homotopy from the identity to the constant map with value
x0, then H|{x} × [0, 1] is a curve joining x to x0, and therefore every point in X lies in the arc
component of x0.

(c) This is essentially the same argument as in 2(a) with I replaced by an arbitrary contractible
space.

(d) This is essentially the same argument as in 2(b) with I replaced by an arbitrary contractible
space.

Problem from Munkres, § 52, p. 334

1. (a) If A ⊂ R2 is the union of the x− and y−axes, then A is star convex with a0 taken to be
the origin because x ∈ A and 0 < t < 1 implies t x ∈ A. However, A is not convex because (1, 0)
and (0, 1) are in A but

(

1
2 , 1

2

)

= 1
2 (1, 0) + 1

2 (0, 1) does not lie in A.

(b) [Not included because the concept of simple connectedness has not yet been introduced.

However, another exercise has a stronger result; namely, a star convex set is contractible.]

Additional exercises

1. The set of continuous maps P → X is in 1–1 correspondence with the points of X such that
f : P → X corresponds to f(p0) ∈ X. Two such continuous mappings are homotopic if and only
if their values f0(p0) and f1(p0) can be joined by a continuous curve in X. Therefore one obtains
a 1–1 correspondence between [I,X] and the set of arc components of X by sending f to the arc
component of f(p0).

2. The idea is to follow the hint and prove that two of maps from X to Y are always homotopic.
As noted in the hint, if Y has the indiscrete topology and W is an arbitrary topological space, then
every map of sets from W to Y is continuous. In particular, if V ⊂ W and g : V → Y is continuous,
then there is an extension of g to a map of sets from W to Y , and this extension is automoatically
continuous. In particular, this is true if W = X × [0, 1] and V = X × {0, 1}, proving that if f0

and f1 are continuous mappings from X to the indiscrete space Y , then one can always construct
a homotopy from f0 to f1.

3. Since a continuous map takes connected sets to connected sets and the connected components
of a discrete space are the one point subsets, it follows that every continuous map X → Y is a
constant map and, in addition, every homotopy between two continuous maps is also constant.
Therefore, if we take the 1–1 correspondence between points of Y and constant maps from X to
Y , we obtain a map Y → [X,Y ] which is both 1–1 and onto.
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4. (i) Star convexity implies that the image of the straight line homotopy H(x, t) = (1−t) a0+t x
is contained in A, so it follows that the identity on A is homotopic to the constant map whose value
is a0.

(ii) Follow the hint. First of all, if K and L are convex and p ∈ K ∩ L, then K ∪ L is star
convex with respect to p because x ∈ K ∪ L implies x ∈ K or x ∈ L, and in either case the line
segment defined by (1 − t) p + t x will be contained in K ∪L. In the example, K and L are convex
subsets of R2, and one can check that (7/4, 3/4) and (3/4, 7/4) are in A = K ∪ L. However, their
midpoint is (5/4, 5/4), and this point is not in A.

VII.2 : Some examples

Additional exercises

1. Let x ∈ U , and choose δ > 0 such that Nδ(x) is contained in U . Since Qn is dense in Rn,
it follows that there is some point y ∈ Nδ(x) ∩ Qn. Now Nδ(x) is arcwise connected and hence is
contained in the arc component of x, so we have shown that this arc component contains a point in
Qn. It follows that we can define a 1–1 map from the arc components of U to Qn by choosing some
point in Q

n for each arc component. Since Q
n is countable, this means the set of arc components

must also be countable.

2. Let H : X × [0, 1] → Y be the homotopy from f0 to f1, and consider the image B of A× [0, 1]
where A is an arcwise connected subset of X. Since A × [0, 1] is arcwise connected, it follows that
B is arcwise connected and hence is contained in an arc component of Y . The conclusion of the
exercise now follows because both f0[A] and f1[A] are contained in B.

VII.3 : Homotopy classes of mappings

Problem from Munkres, § 58, pp. 366 − 367

6. The first thing to notice is that the arcwise connectedness of X implies that all constant
maps into X are homotopic, and consequently if the identity on X is homotopic to a constant map,
it is also homotopic to a constant map whose value lies in the subspace A. Now let i : A → X be a
retract, with r : X → A such that r oi = idA, and let H : X × [0, 1] → X be a homotopy from the
identity to a constant map whose value lies in A. Then the composite

h′(a, t) = r oH(a, t)

is a homotopy from the identity on A to a constant map.

Problems from Hatcher, pp. 18 − 20

4. Let j : A → X be the inclusion map, and let g : X → A be the map g(x) = f1(x), which
exists because the image of f1 is contained in A. By construction we then know that j og = f1 is
homotopic to f0, which is the identity on X. To prove that g oj is homotopic to the identity on
A, proceed as follows: Since each map ft maps A into itself, it follows that ft induces a homotopy
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H : A × [0, 1] → A such that H(a, t) = ft(a) for all a and t. It then follows that H defines a
homotopy from the identity on A to f1|A = j og.

10. We shall first prove the statement in the first sentence. If X is contractible, then the
identity map on X is homotopic to a constant, so if f : X → Y is arbitrary then f = f o idX is
homotopic to f oC0 for some constant map C0; since the latter composite is also a constant map,
this shows that f must be nullhomotopic. Conversely, the hypothesis [X,Y ] = {point} for all Y
specializes to the case Y = X and the statement that the homotopy class of the identity map in
[X,X] must be equal to the homotopy class of the constant map.

12. If f : X → Y is a homotopy equivalence and P is a one point set, then f∗ : [P,X] → [P, Y ]
must be an isomorphism; since [P,Z] is the set of arc components of Z by a previous exercise,
it follows that f induces a 1–1 correspondence between the arc components of X and the arc
components of Y .

The proof of the corresponding statement for connected components is also elementary but
slightly different. We can express things formally as follows: If g : A → B is a continuous map, then
for each connected component C of A we know that the connected set g[A] must lie in a connected
component of B, and therefore if ConnComp(E) denotes the set of connected components of a
space E, then the continuous mapping g induces a map of sets

ConnComp(g) : ConnComp(A) −→ ConnComp(B)

and it is an elementary exercise to verify that this defines a covariant functor on the category of
topological spaces and continuous maps. Furthermore, since arcwise connected sets are connected,
a variant on Additional Exercise VII.2.2 implies that if g0 and g1 are homotopic maps from A to
B, then the induced maps of connected components satisfy the homotopy invariance property

ConnComp(g0) = ConnComp(g1) .

Combining these observations, we see that if f is a homotopy equivalence from X to Y then the
map ConnComp(f) will be an isomorphism.

To prove the statement in the final sentence, observe that we have the following commutative
diagram, in which we identify [P,Z] with the arc components of a space Z and the horizontal maps
send an arc component of a space Z to the connected component which contains it.

[P,X]
f∗

−−−−−→ [P, Y ]




y

αX





y

αY

ConnComp(X)
ConnComp(f)
−−−−−−−−−→ ConnComp(Y )

If f is a homotopy equivalence, then the results in the first two paragraphs imply that f∗ and
ConnComp(f) are isomorphisms. Therefore if either of the maps αX or αY is an isomorphism,
then so is the other.

Additional exercises

1. The key point to observe is that f and g are homotopy inverses to f−1 and g−1 respectively.
Therefore it follows that idX = f−1 of ' f−1 og, yielding a relationship chain

g−1 = idX
og−1 = f−1 og og−1 = f−1 o idX = f−1
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which shows that f−1 ' g−1.

2. (i) Follow the hints. For the first part, suppose that i is a retract. If r : X → A is such
that r oi = idA, then by functoriality r∗ oi∗ = (i = idA)

∗
, and since the latter is the identity

on [A, Y ] it follows that r∗ is a retract, and consequently r∗ is 1–1. For the second part, let
Y = A = {0, 1} ⊂ [0, 1] = X as in the hints. Since A is a discrete space, every self-map of A is
continuous, and no two self-maps are homotopic (use a previous exercise), so the set [A,A] contains
exactly four elements. On the other hand, since X is contractible the set [A,X] contains exactly
one element by a previous exercise. Therefore the map [A,A] → [X,A] cannot be 1–1.

(ii) In this case we have i∗ or∗ = (i = idA)
∗
, and since the latter is the identity on [Z,A] it

follows that i∗ is a retraction, and consequently i∗ is onto. To show that i∗ need not be onto, take
Z = A and X as in the first part of the exercise. Then [A,X] consists of one point and [A,A]
consists of four points, and therefore i∗ : [A,X] → [A,A] is not onto for this example.

3. (i) In the setting of this exercise, a map f : Z → X ×Y is totally determined by p of and q of ;
two maps are equal if and only if their coordinate projections are equal, and if we are given Z → X
and Z → Y then this pair arises as the coordinate projections of a continuous map Z → X × Y .
Similarly, if H is a homotopy from f to f ′, then p oH and q oH define homotopies of their respective
coordinate projections, and if we have homotopies of the coordinate projections then they arise as
the coordinate projections of some homotopy Z × [0, 1] → Y . These observations combine to prove
that coordinate projections define an isomorphism θZ .

To prove the naturality property of θZ (i.e., the commuative diagram), note that if g : W → Z
is continuous, then the coordiante projections of f og are merely p of og and q of og respectively.

(ii) Given homotopy classes u, v, w ∈ [Y,X], choose representative continuous functions r, s, t
respectively, and let C1 denote the constant map Y → X whose value is always 1. The associative
law on homotopy classes u · (v · w) = (u · v) · W follows directly from the associativity identity

[r · (s · t)](y) = r(y) s(y) t(y) = [(r · s) · t](y)

which comes from the associativity of m and holds for all y ∈ Y . Similarly, u · [C1] = u = [C1] · u
follows from r(y) · 1 = r(y) = 1 · r(y). Finally, an inverse to the homotopy class of u is given by the
function q(y) = r(y)−1, for we have q · r = C1 = r · q by the same reasoning as above.

If h : Y → Z is continuous, then h∗ sends u, v, w to classes represented by r oh, s oh and t oh.
Therefore h∗(u · v) is represented by (r · s) oh, which is equal to (r oh) · (s oh). Since the latter
represents h∗(u) ·h∗(v), it follows that h∗ defines a group homomorphism with respect to the group
structure on [Y,X].

Note. If X = S1, then this group structure is abelian because S1 is abelian, and
the resulting abelian group — often called the Bruschlinsky group — is used in the file
polishcircle.pdf.

4. (a) The straight line homotopy Ht from idA to the constant map with value a0 is a basepoint
preserving homotopy. Therefore if f : (A, a0) → (X,x0) is a basepoint preserving map, then f oHt

is a basepoint preserving homotopy from f to the basepoint preserving constant map.

(b) Let Ht be as in part (a), and suppose we are given a basepoint preserving map g : (X,x0) →
(A, a0). Then Ht

og is a basepoint preserving homotopy from f to the basepoint preserving constant
map.
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Note. In contrast to some previous exercises, there was no need to assume X was
arcwise connected in (a) because a basepoint preserving map will always send the arcwise
connected space A into the arc component of the basepoint in X.

5. (i) As suggested in the hint, let g be a homotopy inverse to f . Then the associated maps of
homotopy classes (f og)∗ = f∗ og∗, (g of)∗ = g∗ of∗, (f og)∗ = g∗ of∗, and (g of)∗ = f∗ og∗ are all
identity maps because f og and g of are homotopic to identity maps. It follows that g∗ is an inverse
to f∗ and g∗ is an inverse to f ∗.

(ii) This was already done in Exercise 12 on page 19 of Hatcher, for which the solution was
given above.

6. The Cantor set X is given as the intersection of closed subsets Xn, where each Xn is a finite
union of pairwise disjoint intervals, each of which has length 3−n. If u, v ∈ X lie in the same arc
component, then for each n they must lie on one of these intervals and hence the distance between
them is at most 3−n, so that |u − v| < 3−n for all n. But this can happen only if u = v. Therefore
the arc components of X are one point sets, and there are countably many of them. If X were
homotopy equivalent to an open subset of some Rn, then by an earlier exercise the open set and
X would have to contain only countably many components. Consequently, there is no homotopy
equivalence from X to an open subset of some Rn.

VII.4 : Homotopy types

Problem from Munkres, § 58, pp. 366 − 367

1. Note that “deformation retract” in Munkres means “strong deformation retract” in the sense
of this course. We now proceed to the proof of the exercise.

Let i : A → B and j : B → X be the inclusions, and let p : B → A and q : X → B be the
maps given by the deformation retract data. Then (p oq) o(j oi) = p o(q oj) o i = p o idB

oi = idA,
so it only remains to show that (j oi) o(p oq) is homotopic to the identity relative to A. We know
that i op is homotopic to the identity relative to A, and since pq|A is the identity it follows that
(j oi) o (p oq) (j o(i op) oq) is homotopic to (j o idA

oq) = j oq relative to A. Since the right hand side
is homotopic to the idX relative to B and A ⊂ B, it follows that (j oi) o(p oq) is homotopic to the
identity relative to A. This means that A is a strong deformation retract of X.

Problems from Hatcher, pp. 18 − 20

5. Let H : X × [0, 1] → X be a homotopy from the identity to the constant map Cx, and let
W be the open set H−1[W ]. This open subset contains {x}× [0, 1], so by Wallace’s Theorem there
is an open neighborhood V of x such that V × [0, 1] ⊂ W . It follows that H|V × [0, 1] defines a
homotopy into U from the inclusion V ⊂ U to the constant map Cx on V .

13. To simplify the notation, we shall denote the deformation retract data by H : X×[0, 1] → X
and K : X×[0, 1] → X respectively. It will also be convenient to denote the boundary of [0, 1]×[0, 1]
in R

2 (the four edge segments) by Γ.

By the definition of deformation retract data, the homotopies H and K satisfy the following
conditions:
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(1) If a ∈ A, then H(a, t) = K(a, t) = a for all t ∈ [0, 1].

(2) We have H(x, 0) = K(x, 0) = x for all x ∈ X.

(3) We have H(x, 1) ∈ A and K(x, 1) ∈ A for all x ∈ X.

The goal of the exercise is to construct a homotopy from H to K; in other words, we want a map
L : X × [0, 1] × [0, 1] → X with the following additional properties:

(4) We have L(X, 0, t) = H(x, t) and L(X, 1, t) = K(x, t) for all x ∈ X and t ∈ [0, 1].

(5) If a ∈ A, then L(a, s, t) = a for all s, t ∈ [0, 1].

(6) We have L(x, s, 1) ∈ A for all x ∈ X and s ∈ [0, 1].

(7) We have L(x, s, 0) = x for all x ∈ X and s ∈ [0, 1].

If L exists, then we can view the maps Ls = L|X×{s}×[0, 1] as a 1-parameter family of deformation
retract data starting with H and ending with K.

The first step in constructing L is to define D : X × [0, 1] × [0, 1] → X by the formula

D(x, s, t) = H (K(x, s), t ) .

The hypotheses on H and K imply that D has the following properties:

(8) We have D(X, s, 0) = K(x, s) and D(X, 0, t) = H(x, t) for all x ∈ X and s, t ∈ [0, 1].

(9) If a ∈ A, then L(a, t, s) = K(a, t, s) = a for all s, t ∈ [0, 1].

(A) We have L(x, s, t) ∈ A and for all x ∈ X if either s = 1 or t = 1.

(B) We have D(x, 0, 0) = x for all x ∈ X.

Evidently the behavior of D|X ×Γ does not fit the requirements for L that we have listed, but the
properties of this restriction suggest that we can realize the requirements for L if we compose D
with idX × θ, where θ : [0, 1]× [0, 1] → [0, 1]× [0, 1] is a continuous map with the following behavior
on Γ:

(C) The bottom edge [0, 1] × {0} is collapsed to (0, 0).

(D) The left edge {0} × [0, 1] is mapped to itself by the identity.

(E) The top edge [0, 1]×{1} maps to the union of the top and right edges [0, 1]×{1}∪{1}×[0, 1]
such that [0, 1

2 ]×{1} maps to the top edge such that (t, 1) is sent to (2t, 1) and [ 1
2 , 1]×{1}

maps to the right edge such that (t, 1) is sent to (1, 2 − 2t).

(F) The right edge {1} × [0, 1] maps to the bottom edge [0, 1] × {0} such that (1, t) is sent to
(t, 0).

The drawing in math205Aexercises7a.pdf illustrates the behavior we want on Γ, and a suitable
function θ is constructed in that document. One can then use the definitions to verify that the
function L(x; s, t) = D(x; θ(s, t)) has all the desired properties.

Additional exercises

1. In words, the subset A consists of the bottom edge and the side edges of the rectangle
X. As usual, we shall follow the approach in the hint; there is a drawing for this exercise in
math205Aexercises7a.pdf.
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The retraction r : [−1, 1] × [0, 1] → [−1, 1] × {0} ∪ {−1, 1} × [0, 1] is defined by a radial
projection with center (0, 2) ∈ [−1, 1]×R. As indicated by the drawing, the formula for r depends
upon whether 2|x| + t ≥ 2 or 2|x| + t ≤ 2. Specifically, if 2|x| + t ≥ 2 then

r(x, t) =
1

|x|

(

x, 2|x| + t − 2
)

while if 2|x| + t ≤ 2 then we have

r(x, t) =
1

2

(

(2 − t)x, 0
)

and these are consistent when 2|x|+t = 2 then both formulas yield the value |x|−1(x, 0). Elementary
but slightly tedious calculation then implies that r(x, t) always lies in [−1, 1] × [0, 1], and likewise
that r is the identity on [−1, 1] × {0} ∪ {−1, 1} × [0, 1]. The homotopy from inclusion or to the
identity is then the straight line homotopy

H(x, t; s) = (1 − s) · r(x, t) + s · (x, t)

and this completes the proof of the exercise.

2. Follow the hint: Let X ′ ⊂ X × [0, 1] be the subset X ×{0} ∪A× [0, 1], and let A′ = A×{1}.

If h : X → X ′ is the composite X ∼= X × {0} ⊂ X ′, let ρ : X ′ → X maps X × {0} to X by
projection onto the first coordinate and maps A × [0, 1] to A similarly. Then Exercise 4 implies
that X × {0} is a deformation retract of X ′ and hence h is a homotopy equivalence. Take the
mapping h0 to be the slice embedding A ∼= A × {1}. A homotopy from h|A to j oh0 is given by
K(a, t) = (a, t). Finally, we need to find an open neighborhood U of A′ in X ′ such that A′ is a
strong deformation retract of U , and this can be done by taking U = A× (0, 1]. Since A′ = A×{1}
it follows that A′ is a strong deformation retract of U , so the only thing remaining is to prove that
U is open in X ′. We can see this most easily by viewing everything as a subspace of X × [0, 1]; in
particular, since V = X × (0, 1] is open in X × [0, 1] and X ′ ∩ V = A × (0, 1] = U , it follows that
U is open in X ′.

3. For each α we have mappings gα : Yα → Xα such that gα
ofα is homotopic to the identity

on Xα and fα
ogα is homotopic to the identity on Yα; denote these homotopies by Hα and Kα

respectively.

We claim that
∏

α gα is a homotopy inverse to
∏

α fα, and this requires the construction of
homotopies

Φ :

(

∏

α∈A

Xα

)

× [0, 1] −→
∏

α∈A

Xα , Ψ :

(

∏

α∈A

Yα

)

× [0, 1] −→
∏

α∈A

Yα

such that the composites

∏

α∈A

gα
ofα =

(

∏

α∈A

gα

)

o

(

∏

α∈A

fα

)

∏

α∈A

fα
ogα =

(

∏

α∈A

fα

)

o

(

∏

α∈A

gα

)
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are respectively homoptopic to the identity maps on
∏

α∈A Xα and
∏

α∈A Yα.

As usual, it suffices to define the coordinate projections of Φ and Ψ for each γ ∈ A, and we do
so by the formulas

πγ
oΦ = Hγ

o

(

πγ × if [0,1]

)

, πγ
oΨ = Kγ

o

(

πγ × if [0,1]

)

.

It follows immediately that these maps define homotopies from

(

∏

α∈A

gα

)

o

(

∏

α∈A

fα

)

and

(

∏

α∈A

fα

)

o

(

∏

α∈A

gα

)

to the identity mappings.

4. (i) Let r : F → B and h : F × [0, 1] → F be the deformation retraction data which exist
because B is a strong deformation retract of F . Extend r to r ′ : X → A by letting r′|A be the
identity, and extend h to H : X × [0, 1] → X by letting H|A × [0, 1] be projection onto the first
factor. If these maps are continuous, then they for deformation retract data for A ⊂ X. But the
continuity of these extensions follows because F ∩ A = B, and the restriction of r to B is the
identity, and the restrictions of h to B × [0, 1] is projection onto the first factor.

(ii) For i = 1, 2 let ri and H(i) be deformation retract data for C ⊂ Fi. Then the restrictions
of these data to X and X × [0, 1] are the identity and projection onto the first factor respectively,
so we can assemble r1 and r2 into a continuous mapping r : X → C, and likewise we can assemble
H(1) and H(2) into a continuous mapping H : X × [0, 1] → X. The properties of the deformation
retract data for C ⊂ Fi imply that r and H are deformation retract data for C ⊂ X.

11



Drawing for Hatcher, Exercise 13, page 19 
 

This drawing is meant to motivate and clarify a crucial step in our solution for the cited exercise.  

We need to find a continuous mapping from the solid square  [[[[0, 1]]]] × [[[[0, 1]]]]  to itself with the 

following behavior on the edges: 
 

((((1))))  The bottom edge (in gold) is collapsed to the corner point  ((((0, 0))))    . 
 

((((2))))  The left edge (in blue) is mapped to itself. 
 

((((3))))  The top edge (in red) maps to the union of the top and right edges. 
 

((((4))))  The right edge (in green) maps to the bottom edge. 
 

The drawing and discussion below suggest one way of constructing such a function.   
 

 
 

It is convenient to break the mapping into a twofold composite, where the first step is to stretch 

the square  [[[[0, 1]]]] × [[[[0, 1]]]]  to the rectangle  [[[[0, 2]]]] × [[[[0, 1]]]]  in the obvious fashion.  The second 

step is to collapse the rectangle back into the square, such that the (pink) triangle with vertices  

((((0, 0)))),  ((((0, 1)))),  and ((((1, 1))))  is mapped to itself by the identity, the (yellow) triangle with vertices  

((((1, 1)))),  ((((2, 1)))),  and ((((2, 0))))  is mapped to the congruent triangle with vertices  ((((1, 1)))),  ((((1, 0)))),  and 

((((0, 0))))     such that  ((((1, 1))))  corresponds to itself,  ((((2, 1))))     corresponds to  ((((1, 0)))),  and  ((((2, 0))))   

corresponds to  ((((0, 0))));  also, the (striped gray) triangle with vertices ((((0, 0)))),  ((((1, 1)))),  and  ((((2, 0))))   
is collapsed along horizontal lines onto the closed segment joining the first two vertices.   
Explicit formulas defining this mapping are given as follows; to simplify the notation we shall 

refer to the triangles by their colors (we have already defined them formally):  
 

((((1))))  On the pink triangle, which consists of the points  ((((u, v))))  in the rectangle such that  

u  ≤  v,  the map sends ((((u, v))))  to itself. 
 

((((2))))  On the striped gray triangle, which consists of the points  ((((u, v))))  in the rectangle 

such that   v  ≤  u ≤  2 – v,  the map sends ((((u, v))))  to  ((((v, v)))). 
 

((((3))))  On the yellow triangle, which consists of the points  ((((u, v))))  in the rectangle such that  

2 – v  ≤  u,  the map sends ((((u, v))))  to  ((((v,  2 – u)))). 
 

The first two formulas are easy to derive, and the third can be done using linear algebra in 

various ways.  For example, this can be done by finding the unique affine transformation of the 

coordinate plane which takes the points  ((((1, 1)))),  ((((2, 1)))),  and ((((2, 0))))   to the points  ((((1, 1)))),  ((((1, 0)))),  

and  ((((0, 0))))    respectively, or one can derive the formula by observing that the map on the yellow 

triangle is a clockwise rotation through 90 degrees which is centered at  ((((1, 1))))    .  Either way, the 

formula for the mapping turns out to be the one which is given in the third case.  One can check 

directly that these definitions yield the same values for points on more than one triangle, so the 

formulas yield a well defined function. 



Drawing to accompany Additional Exercise V I I .4.1  
 

 
 
 

Here is a picture of the retraction described in the hint: 
 

 
 

In this illustration, the retraction from  [– 1,1] × [0,1]  to  [– 1,1] × { 0 }  ∪∪∪∪   { – 1,1}
 
× [0,1]  

(the blue line segments) sends the points marked in black into the points marked in red on the 
corresponding lines.  The explicit definition of the retraction has two cases, depending upon 
whether or not the original point lie in the pink colored region or the green colored region(s). 
  

A similar argument shows that   D 

n
 × [0,1]  ∪∪∪∪   S 

n – 1 
× [0,1]  is a retract of  D 

n
× [0,1]  for all 

positive integers  n.  For example, one can obtain the case  n  =  2  from the  1 – dimensional 

case by taking solids and surfaces of revolution about the  t – axis,  and likewise in higher 

dimensions one can view the drawing as a planar cross section of the general construction. 

 



SOLUTIONS TO EXERCISES FOR

MATHEMATICS 205A — Part 8

Fall 2014

VIII . The fundamental group

VIII.1 : Definitions and basic properties

Problems from Munkres, § 52, pp. 334 − 335

2. We shall start by translating the conclusion into the notation in the course notes. Given a
curve θ, Munkres’ notation θ̂ refers to the curve we call −θ; for a curve defined on [0, 1] we have
−θ(t) = θ(1 − t). So in our terminology the identity to be verified is

−(α + β) = (−β) + (−α) .

Recall that {α+β}(t) = α(2t) if t ≤ 1
2 and {α+β}(t) = β(2t−1) if t ≤ 1

2 . Therefore −{α+β}(t) =
{α + β}(1 − t) is given by

(a) α(2(1 − t)) = α(2 − 2t) if (1 − t) ≤ 1
2 or equivalently if t ≥ 1

2 ,

(b) β(2(1 − t) − 1) = β(1 − 2t) if (1 − t) ≥ 1
2 or equivalently if t ≤ 1

2 .

Similarly, we see that {(−β) + (−α)}(t) is given by

(c) −β(2t) = β(1 − 2t) if t ≤ 1
2
,

(d) −α(2t − 1) = α
(
1 − (2t − 1)

)
= α(2 − 2t) if t ≥ 1

2
.

Therefore we have shown that for each t ∈ [0, 1] the values of −(α + β) and (−β) + (−α) at t are
the same, and hence the two curves are equal.

4. Let i : A → X denote the inclusion map. Since the fundamental group construction defines
a covariant functor, we have r∗ oi∗ = idπ1(A). Therefore if u ∈ π1(A, a0) we have u = r∗(i∗(u)) and
therefore u lies in the image of r∗, which means that r∗ is surjective.

7. (a) In order to prove functional identities, one needs to show that the values of both sides of
the equation at every point s in the domain are the same. We apply this to verify the associativity,
neutral element and inverse identities in Ω(G, 1):

Associativity. For all s we have

{(f ⊗ g) ⊗ h}(s) =
(
f(s) · g(s)

)
· h(s) = f(s) ·

(
g(s) · h(s)

)
= {f ⊗ (g ⊗ h)}(s) .

Neutral element. If C1(t) = 1 for all t, then for all s we have

{f ⊗ C1}(s) = f(s) · 1 = f(s) , {C1 ⊗ f}(s) = 1 · f(s) = f(s) .

1



Inverses. If g(t) = f(t)−1 for all t, then for all s we have

{f ⊗ g}(s) = f(s) · g(s) = 1 = C1(s) , {g ⊗ f}(s) = g(s) · f(s) = 1 = C1(s) .

(b) The crucial point to verify is that if f0 and g0 are endpoint preserving homotopic to f1 and
g1 respectively, then f0 ⊗ g0 is endpoint preserving homotopic to f1 ⊗ g1. If we know this, then we
can define a binary operation on π1(G, 1) by noting that there is a well defined binary operation
on the latter with [f ] ⊗ [g] = [f ⊗ g]. The associativity, neutral element and inverse identities will
then follow from the corresponding identities derived in (a).

To prove the statement in the preceding paragraph, note that if H and K are endpoint pre-
serving homotopies from f0 and g0 to f1 and g1 respectively, then H ⊗ K is endpoint preserving
homotopy from f0 ⊗ g0 to f1 ⊗ g1.

(c) Follow the hint. Direct computation yields the identity

f + g = (f + C1) ⊗ (C1 + g)

from which we find that [f ] · [g] = [f + C1] ⊗ [C1 + g] = [f ] ⊗ [g].

(d) For each value of s either {f + C1}(s) or {C1 + g}(s) is equal to 1, so these two curves
commute with respect to the “⊗” operation. Once again applying the reasoning in (c), we find
that [f ] ⊗ [g] = [g] ⊗ [f ] for all [f ] and [g]. The main conclusion of (c) now implies that [f [·[g] =
[f ] ⊗ [g] = [g] ⊗ [f ] = [g] · [f ].

Problems from Hatcher, pp. 38 − 40

10. This is very similar to parts of the preceding exercise. Let iX : (X,x0) → (X×Y, (x0, y0)) be
the slice inclusion sending x to (x, y0), and let iY : (Y, y0) → (X ×Y, (x0, y0)) be the slice inclusion
sending y to (x0, y). The goal is to construct a homotopy from (iX

of)+(iY og) to (iY og)+(iX of).
As is always the case with mappings into products, it is enough to construct the homotopies for
the coordinate projections of these maps onto (X,x0) and (Y, y0). In other words, we only need to
construct homotopies

pX
o

(
(iX of) + (iY og)

)
to pX

o

(
(iY og) + (iX of)

)

pY
o

(
(iX of) + (iY og)

)
to pY

o

(
(iY og) + (iX of)

)

(where pX and pY are coordinate projections), and we shall explain how these may be found using
homotopies we have already constructed (for our puposes, this is “explicit” enough).

Since pX
oiX = idX , pY

oiY = idY , pX
oiY = constant(x0) and pY

oiX = constant(y0), we can
translate the display to conclude that we only need to construct homotopies from f +constant(x0)
to constant(x0) + f and from g + constant(y0) to constant(y0) + g. This can be done by splicing
together the standard homotopies from h + constant to h and from h to constant + h for h = f or
g.

13. As stated, the problem has an almost trivial solution which require NO HYPOTHESES on
the map of fundamental groups or the arcwise connectedness of A. Here is the solution: Given any
curve γ : [0, 1] → X with endpoints in A, the homotopy hs(t) = γ(st) defines a homotopy from
the constant curve with value γ(0) ∈ A to the original curve γ. Presumably the author intended
the following, which we shall prove below: ... iff every path in X with endpoints in A is endpoint

preserving homotopic to a curve in A.
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(=⇒) Suppose that i∗ : π1(A, x0) → π1(X,x0) is onto, and let a0, a1inA. Since A is arcwise
connected, there are continuous curves α0 and α1 joining x0 to a0 and a1 respectively.

We claim that every curve γ : [0, 1] → X such that γ(i) = ai for i = 0, 1 is endpoint preserving
homotopic to a curve of the form (−α0 + β) + α1, where β is a basepoint preserving closed curve
in X. In fact, if we set β equal to (α0 + γ) + (−α1), then we have the identities

[γ] = [C(a0) + γ + C(a1)] = [(−α0) + α0 + γ + (−α1) + α1] = [(−α0 + β) + α1]

when we adopt the convention in the course notes that endpoint preserving homotopy classes of
iterated concatenations do not depend upon where parentheses are inserted. The hypothesis in this
part of the problem is that β is endpoint preserving homotopic to a curve θ whose image lies in A,
and therefore [γ] = [(−α0) + β + α1] is equal to

(−α0 + θ) + α1

, where the image of the representative curve (−α0 + θ) + α1 is contained in A.

(=⇒) This follows immediately, for if γ is a closed curve in X which is endpoint (hence
basepoint) preserving homotopic to a curve θ whose image is in A, then [γ] = i∗([θ]).

Additional exercises

1. Parts of this exercise are similar to parts of Exercise 52.7 in Munkres, for which a solution is
given above.

(i) The first statement to prove is that the map sending (α, β) to α +β is continuous. We can
do this by showing that d(α′+β′, α+β) < ε if d(α′, α) < ε and d(β′, β) < ε. In fact, the maximum
distance between the points {α′ +β′}(s) and {α+β}(s) is the greater of (a) the maximum distance
between the points {α′}(s) and {α}(s), (b) the maximum distance between the points {β ′}(s) and
{β}(s).

We now turn to the homotopy assertions, and we shall use the notation of Proposition VIII.1.3.
Let HR : [0, 1] × [0, 1] → [0, 1] be the straight line homotopy from the identity to hR, and let HL :
[0, 1] × [0, 1] → [0, 1] be the straight line homotopy from the identity to hL. Define corresponding
maps KR,KL : Ω(X,x) × [0, 1] → Ω(X,x) by {KR(γ, t)}(s) = γ oHR(s, t) and {KL(γ, t)}(s) =
γ oHL(s, t). The definitions then imply that KL(γ, 0) = γ ohL = Cx + γ and KL(γ, 1) = γ, and
similarly we know that KR(γ, 0) = γ ohR = γ + Cx and KR(γ, 1) = γ. If γ′ is another element of
Ω(X,x0), then by construction the distance between KR(γ, t) and KR(γ′, t) is equal to the distance
between γ and γ′, and likewise for KR(γ, t) and KR(γ′, t). These imply that KL and KR are
continuous and hence yield homotopies of the types described in the statement of the exercise.

(ii) Follow the hint and imitate the reasoning in Munkres, Exercise 52.7. The results of (i) show
that (Y, e) = (Ω(X,x), Cx) is an H-space as defined following the statement of this exercise. We
shall prove more generally that π1((Y, e) is abelian using the approach for the exercise in Munkres.
Let m : Y × Y → Y denote the continuous binary operation, and define a binary operation “⊗”
on π1(Y, e) sending ([f ], [g]) to the class of the composite f ⊗ g(s) = m

(
f(s), g(s)

)
. We shall

often denote the right hand side by f(s) · g(s) for the sake of simplicity, but when we do so we have
to remember that this construction does not necessarily satisfy associativity or neutral element
identities; all we know is that f is basepoint preservingly homotopic to both f ·Ce and Ce · f . The
latter suffice to yield two weaker identities

[f + g] = [f + C1] ⊗ [C1 + g] , [f + g] = [C1 + g] ⊗ [f + C1]

3



and since the right hand sides are equal to [f ]⊗ [g] and [g]⊗ [f ] respectively, it follows that the “⊗”
operation agrees with the usual group operation on the fundamental group, and both operations
are abelian.

(iii) If ε > 0, then there is some δ > 0 such that d(x, x′) < δ implies d( f(x), f(x′) ) < ε. It
follows that if α and β are curves such that d(α, β) < δ, then d(f oα, f oβ) < ε (because the distance
between two curves is the maximum distance between their values at points of the domain).

(iv) The second part follows from the first because continuous mappings from one compact
metric space to another are always uniformly continuous, so everything reduces to proving the
first assertion in the conclusion. For n ≥ 2, define πn(X) = π1(Ω

n−1(X,x),basepoint) as in the
statement of the exercise. By (ii) we know this is an abelian group. By (iii) and induction we
know that a basepoint preserving uniformly continuous mapping f induces a map with the same
properties, say Ωn−1(f), from Ωn−1(X,x) to Ωn−1(Y, y), and this construction is functorial because
it is given by composition of functions. Define f∗ : πn(X,x) → πn(Y, y) to be the homomorphism
of fundamental groups induced by Ωn−1(f).

Note. Hatcher and most other books covering homotopy theory define πn differently, but eventually
one almost always finds a proof that their construction(s) is/are equivalent to the one given here.

2. We claim that basepoint preserving maps from (S0, 1) to (X,x) are the same as maps from
{−1} to X and basepoint preserving homotopies are the same as homotopies of such mappings
{−1} → X. The first part is true because the basepoint of S0 must go to the basepoint of X, but
there are no constraints on where the second point can go. To see the statement on homotopies,
note that the restriction of a homotopy to {1} × [0, 1] must be constant but the restriction to
{−1} × [0, 1] can be an arbitrary continuous mapping from [0, 1] into X.

VIII.2 : An important special case

Problems from Munkres, § 58, pp. 366 − 367

2. (a) Infinite cyclic.

(c) Infinite cyclic.

(d) Infinite cyclic.

(f) Infinite cyclic.

(g) Infinite cyclic.

(h) Trivial.

(i) Infinite cyclic.

(j) Infinite cyclic.

9. (a) This was not included because our definition does not involve any choices of an initial

point on the circle.

(b) As in the statement of the exercise, let ω(t) = exp 2π i t, and let t0 ∈ R be such that
p(t0) = h oω(0), where p : R → S1 is the usual map p(t) = exp 2π i t. Let α be the unique path
lifting of h oω starting at t0. Then deg (h) is the unique integer d(h) such that α(1) = t0 + d(h) .
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Now let H : S1× [0, 1] → S1 be a homotopy from h to k, and let L : [0, 1]× [0, 1] → R be the unique
lifting of H such that L(0, 0) = t0 and p oL(s, t) = H(p(s), t). By the uniqueness of path lifings we
know that α(s) = L(s, 0) and the curve L(s, 1) is a lifting β of k. Furthermore, since L(1, t) and
L(0, t) are both liftings of the curve H|{1}× [0, 1]. it follows that there is some integer ∆ such that
L(1, t) = L(0, t)+∆ for all t. In particular, we have L(1, 1) = L(0, 1)+∆ and L(1, 0) = L(0, 0)+∆.
Now L(s, 0) = α(s) by the uniqueness of path liftings, and therefore ∆ = deg (h). On the other
hand, L(s, 1) is a lifting of k(s) = H(s, 1), and therefore it also follows that ∆ = deg (k). In words,
we have shown that (freely) homotopic maps from S1 to itself have the same degree.

(c) This one is probably easier to prove using the functoriality properties of the fundamental
group. The proof of the main theorem in this section immediately yields the following result:

CLAIM. If f is a basepoint preserving continuous mappings from S1 to itself (with say
f(1) = 1), then the self-homomorphism f∗ on π1(S

1, 1) ∼= Z is multiplication by deg (f).

Proof of the claim. Since the class [ω] generates π1(S
1, 1), it is enough to prove that

f∗([ω]) = deg (f) · [ω], and we can do this using the Path Lifting Property because the
image ∂(f) of f∗([ω]) = [f oω] in Z is given by taking a lifting θ of f oω starting at 0 ∈ R

and setting ∂(f) equal to θ(1). This coincides with the definition of degree for the mapping
f .

Before proceeding, we note that the claim yields the conclusion of the exercise if h and k are
basepoint preserving, for in that case we have

deg(h ok) · [ω]) = (h ok)∗([ω]) = (h∗
ok∗)([ω]) = h∗

(
deg(k) · [ω]

)
=

deg(k) · h∗([ω]) = deg(k) · deg(h) · [ω]

and since [ω] ∈ π1(S1, 1) ∼= Z has infinite order it follows that deg(h ok) = deg(h) · deg(k).

In order to apply the preceding discussion to h and k, we have to replace them with (freely)
homotopic mappings which ARE basepoint preserving. The easiest way to do this is to choose a
and b such that p(a) = h(1) and p(b) = k(1) and define homotopies by H(z, t) = h(z) · p(ta)−1 and
K(z, t) = k(z) · p(tb)−1; it then follows that H0 = h and H1 is basepoint preserving, and similarly
K0 = k and K1 is basepoint preserving. Applying (ii) and recalling that H1

oK1 is homotopic to
h ok , we find that

deg(h ok) = deg(H1
oK1) = deg(H1) · deg(H1) = deg(h) · deg(k)

which is what we wanted to prove.

Note. The tools developed in 205B yield a simpler proof which generalizes to a notion of degree
for continuous self maps of Sn when n ≥ 2.

(d) The unique lifting α of a constant map f is a constant map, so α(1) = α(0) implies that
the degree is zero. — For the identity, we know that ω is a unique lift, and here the degree is
ω(1) − ω(0) = 1. — For zn where n is an integer, we know that a unique lifting is given by
ωn(t) = nt, and in this case ωn(1) − ωn(0) = n is the degree; this applies to each of the final two
cases in the exercise.

(e) Suppose that h and k have the same degree, and let H1 and K1 be basepoint preserving
maps which are freely homotopic to h and k respectively. Since h ' H1 and k ' K1, it suffices to
show that if h and k have the same degree (so by (i) the same is true for H1 and K1), then H1

and K1 are homotopic. But the latter follows directly from the proof of the main result, for if the
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degrees are equal then ∂(H1) = ∂(K1), and hence the unique liftings of H1 and K1 starting at 0 are
endpoint preserving homotopic. We can then compose this homotopy with p to obtain a homotopy
from H1 to K1, and since homotopy of maps is an equivalence relation it will follow that h ' k.

Problems from Hatcher, pp. 38 − 40

3. (=⇒) Suppose that X is arcwise connected and π1(X,x0) is abelian. If α and β are two
continuous curves joining x0 to x1 ∈ X, we want to prove that α∗ = β∗. — The desired conclusion
is equivalent to proving that (α+(−β))∗ induces the identity on π1(X,x0) for all α and β, and if we
make the substitution γ = α +(−β) this translates into proving that for each closed curve γ which
starts and ends at x0 the automorphism γ∗ — which we have shown is given by γ∗(u) = [γ]−1 u [γ]
— is the identity. This identity holds if and only if π1(X,x0) is abelian, so α∗ = β∗ in this case.

(=⇒) Suppose now that we have α∗ = β∗ for all paths α and β from x0 to x1. By the same
reasoning as in the first part, it follows that γ∗(u) = [γ]−1 u [γ] is the identity for all closed curves
γ and u ∈ π1(X,x0). In other words, we have u = v−1uv for all u and v in the fundamental group.
But this is true if and only if π1(X,x0) is abelian.

16. If A ⊂ X and a retraction r : X → A exists, then the induced map in fundamental groups
π1(A) → π1(X) is 1–1 and the induced map r∗ in fundamental groups is onto, so it suffices to
prove that either π1(A) → π1(X) is not 1–1 or π1(A) is not isomorphic to a homomorphic image
of π1(X).

(a) If X = R
3 and A ∼= S1 then π1(X) is trivial but π1(A) ∼= Z. Since a nontrivial group

cannot be isomorphic to a homeomorphic image of a trivial group, there cannot be a retraction.

(b) This is a little informal, in part because the inclusion A → X is only described by means of an
unannotated drawing, but it can be justified if one describes the inclusion A ⊂ X explicitly; this turns
out to be possible, but at this stage it would take several paragraphs to explain everything in full detail.
In this case both π1(A) and π1(X) are infinite cyclic, and if B ⊂ X = S1×D2 is equal to S1×{0},
then the inclusion of A ∼= S1 in X is homotopic to the map S1 → B ∼= S1 given by something
like p of(t), where f : [0, 1] → R is the closed curve given by f(t) = (1 + h) sin t for some small
h > 0. By convexity f is homotopic to a constant curve in R, so p of is homotopic to a constant
curve in B, and hence the mapping A → B is null homotopic. But this means that the composite
π1(A) → π1(B) ∼= π1(X) is trivial. Since π1(A) and π1(X) are infinite cyclic, this means that the
map π1(A) → π1(X) is not 1–1, and we have noted that in such cases a retraction cannot exist.

17. The assignment modifies the question to ask for infinitely many homotopy classes of retrac-
tions for the slice inclusion j1 : S1 → S1 × S1 sending z to (z, 1). At the end of the exercise we
shall explain how one can extract a solution to the exercise as it is stated in Hatcher.

Given an integer n, let rn : S1 × S1 → S1 be the map sending (z, w) to z wn. It follows
that for each n we have rn

oj1 = id. To prove that rn and rm are not homotopic if m 6= n, let
j2 : S1 → S1 × S1 be the other slice inclusion j2(z) = (1, z). Then the degree of rn

oj2 is equal to
n, and therefore the homotopy classes of the mappings rn and rm are distinct if m 6= n.

Solution for the problem as stated in Hatcher. In this case S1∨S1 is identified with the subspace

S1 × {1} ∪ {1} × S1 ⊂ S1 × S1

and the slice inclusions j1, j2 factor through maps i1, i2 from S1 to S1 ∨ S1. Therefore if r′n =
rn|S

1 ∨ S1 we have r′n
oi1 = id and deg (r′n

oi2) = n.
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Additional exercises

0. This was done already as a step in the solution to Munkres, Exercise 58.9 (q.v.).

1. Follow the hint. Given continuous mappings f, g : S1 → S1, with product h(z), let α, β :
[0, 1] → R be liftings and let γ be their algebraic sum (if we write this symbolically, it will conflict
with the use of “+” for concatenation); as suggested by the hint, the curve γ is a lifting of h. By
definition the degree of h is equal to γ(1) − γ(0), and the latter is equal to

α(1) + β(1) − α(0) − β(0) =
(
α(1) − α(0)

)
+

(
β(1) − β(0)

)
= deg (f) + deg (g)

which is what we wanted to prove.

2. (i) It is probably best to start by describing Π(X) more explicitly. Its objects are the points
of X, and a morphism from x0 to x1 is an endpoint preserving homotopy class of curves from x0

to x1. The identity morphism for x is just the homotopy class of the constant curve at x, and if
α and β are curves joining x0 to x1 and x1 to x2 respectively, then the formal composite [β] o [α]
is merely [α + β] (note the order reversal!). The morphisms from x to itself then correspond to
elements of π1(X,x) (with reversed multiplication!), and [α]−1 = [−α] by the results of Sections
VIII1 and VIII.2.

Functoriality can now be seen fairly easily. On objects, each point x ∈ X goes to f(x) ∈ Y ,
and the homotopy class of a curve α joining x0 to x1 goes to the homotopy class f∗([α]) of f oα.
The results of this and the previous section imply that this does not depend on which α we choose
to represent an endpoint preserving homotopy class. Since f oα is constant if α is constant, it
follows that the identity morphism for x is sent to the identity morphism for f(x), and the chain
of identities

[f oβ] [f oα] = [f o(α + β)] = f∗([α + β]) = f∗([β][α])

shows that the construction preserves composition of morphisms.

3. Before starting, we recall the construction of Jk : π1(T
k,1) → Z

k: Let pk : R
k → T k be the

Cartesian kth power map p × · · · × p (k factors) from R
k to T k. Let 1 ∈ T k be the point whose

coordinates are all equal to the unit element of S1.

If γ is a basepoint preserving closed curve in T k which starts and ends at 1, the we can apply
the Path Lifting and Covering Homotopy Properties to each coordinatefunction of γ; this yields a
unique lifting of γ to a curve Γ : [0, 1] → R

k such that Γ(0) = 0, and Γ(1) ∈ Z
n because p oΓ(1) = 1.

As in the proof of the main result, Γ(1) only depends upon the basepoint preserving homotopy class
of γ, and hence the map γ → Γ(1) defines a map Jk : π1(T

k,1) → Z
k; the argument proving the

main result of this section also shows that Jk is a group isomorphism. The inverse map is given by
sending (d1, · · · , dk) to the homotopy class of the curve (p(d1t), · · · , p(dkt)), where p : R → S1 is
the usual map.

(i) If (a, b) ∈ Z
2, then m∗

oJ−1
2 sends (a, b) to the curve p(at) · p(bt) = p((a + b)t), and J−1

1

takes the latter curve to a + b ∈ Z
2.

(ii) Suppose that f is given as in the exercise. For each j between 1 and k let sj : S1 → T k

denote the slice inclusion onto the jth slice (all coordinates are 1 except possibly the j th one). Then
the images of the homomorphisms sj∗ generate pi1(T

k,1), so it is enough to compute the degree
of each map f osj . The latter is the map sending z to zcj , and therefore the degree is equal to cj .
This immediately yields the conclusion of part (ii).

4. (i) Since we are mapping into a product, it is enough to prove this for projection onto the
factors, and we have already done this in the second part of the preceding exercise.

7



(ii) If ΦA is a homeomorphism, or even homotopic to a homeomorphism, then the induced
homomorphism ΦA∗ of π1(T

k,1) ∼= Z
k, which corresponds to left multiplication by A on Z

k,
must be an automorphism, and therefore detA must be equal to ± 1. Conversely, if detA = ± 1
and B = A−1, then by Cramer’s Rule B has integral entries and hence we can construct ΦB.
The definitions of the maps imply that ΦAB = ΦA

oΦB and similarly if B and A are reversed;
furthermore, if A is the identity matrix I then it follows that ΦI is the identity mapping. These
observations combine to imply that ΦB is inverse to ΦA.

(iii) The first part follows because an arbitrary self-homomorphism (endomorphism) of the
group π1(T

k,1) ∼= Z
k is given by some k × k matrix A with integral entries, and we have shown

that ΦA∗ corresponds to left multiplication by A. The second part follows because if this matrix
A is 1–1 and onto then ΦA is a basepoint preserving homeomorphism from T k to itself.

VIII.3 : Covering spaces

Problems from Munkres, § 53, p. 341

For these exercises, we do NOT assume the Default Hypothesis.

1. If p is given as in the exercise, then for each x ∈ X the whole space X is an evenly covered
open neighborhood of x in X.

2. We know that p ∗ −1[U ] is homeomorphic to U × F for some discrete space F . Since U is
connected, this means that the sheets U ×{y} are the connected components of U × F , and under
the homeomorphism they correspond to the connected components of p ∗ −1[U ].

4. Let z ∈ Z, and let U be an open neighborhood of z ∈ Z which is evenly covered; specifically,
let r−1[U ] be the union of the pairwise disjoint open subsets U1, · · · , Un such that r maps each
Uj homeomorphically onto U , and let yj ∈ Uj be the unique point such that r(yj) = z. Since q
is a covering space projection, for each j there is an open neighborhood Vj of yj in Y which is
evenly covered. Intersecting Vj with Uj if necessary, we might as well assume that Vj ⊂ U (an
open subset of an openly covered open set is also evenly covered!). Let W = ∩j r[Vj ]. Then
by construction z = r(yj) (for each j) lies in W , and this set is open in Z because r is an open
mapping. Furthermore, W is evenly covered by the union of the pairwise disjoint subsets Wj . Now
let Wj = r−1[W ] ∩ Vj , so that yj ∈ Wj and Wj is also evenly covered. Therefore, for all j the
inverse image q−1[Wj ] is homeomorphic to Wj × Fj , where Fj is discrete, such that the restriction
of q to q−1[Wj ] corresponds to projection onto Wj .

For each j let rj : Wj → W denote the homeomorphism determined by r. Since p = r oq, it
follows that

p−1[W ] = q−1
[
r−1[W ]

]
= q−1




⋃

j

Wj


 ∼=

∐

j

Wj × Fj
∼= W ×


∐

j

Fj




where we use the homeomorphisms Wj
∼= W at the last step. This implies that the open neigh-

borhood W of z is evenly covered with respect to p, and the latter means that p is also a covering
space projection.

8



6. (a) Let p : X → Y be a covering space projection. This part of the exercise involves proving
that if Y has a stated topological property, then so does X. There are several distinct properties,
and we shall verify the assertions about them separately. Note that the priorities on the parts of
this exercise vary depending upon the specific property.

Hausdorff. Let x1 6= x2 in X. There are two cases depending upon whether or not p(x1) =
p(x2). If p(x1) 6= p(x2), then since Y is Hausdorff there are disjoint open neighborhoods U1

and U2 of p(x1) and p(x2) in Y , and their inverse images p−1[U1] and p−1[U2] are disjoint open
neighborhoods of x1 and x2 in X. On the other hand, if p(x1) = p(x2), let W be an evenly covered
open neighborhood of this point. Then p−1[W ] is an open set homeomorphic to a disjoint union
of copies of W . Since x1 6= x2, one of these copies contains x1 and another contains x2, and these
two copies of W in X are disjoint open neighborhoods of the two points.

Regular. Let x ∈ X. It suffices to prove the regularity condition for a set of open neighborhoods
V of x such that every open neighborhood of X contains a subneighborhood in V, for if x ∈ W
open and x ∈ V ⊂ W with V ∈ V, then x ∈ U ⊂ U ⊂ V implies the same inclusions with W
replacing V .

In view of the preceding discussion, let x ∈ V , where V is an open neighborhood of x such
that p[V ] = W is evenly covered and V is one of the sheets. Since Y is regular, there is an open
neighborhood U of p(x) such that p(x) ∈ U ⊂ U ⊂ W . Let U1 = p−1[U ] ∩ V be the sheet over U
which is contained in V . If we can prove that the closure U1 of U1 in X is contained in V , then the
defining condition for regularity will hold at the point x, and since x was chosen arbitrarily this
will imply that X is regular.

It will suffice to prove that p−1
[
U

]
∩ V , which contains U1, is closed in X because we would

then have U1 ⊂ p−1
[
U

]
∩ V ⊂ V . By construction and continuity we know that p−1

[
U

]
is closed

in X and it is contained in the evenly covered open subset p−1[W ]. If V ∗ denotes the union of all
sheets in p−1[W ] except X, then V ∗ is open and hence X − V ∗ is closed in X; with this notation
we can rewrite the inclusion in the preceding sentence in the form p−1

[
U

]
⊂ V ∪V ∗, and it follows

that

p−1
[
U

]
∩ V = p−1

[
U

]
∩ (X − V ∗)

and since the right hand side is an intersection of two closed subsets of X, it follows that the left
hand side is also a closed subset of X, which is what we needed to complete the proof.

Completely regular. By the preceding discussion we know that X is regular, and as in the
preceding discussion it suffices to prove that if V is an open neighborhood of x such that p[V ] = W
is evenly covered and V is one of the sheets. Let U be an open subneighborhood such that
x ∈ U ⊂ U ⊂ V , so that U ′ = p[U ] and V ′ = p[V ] are open neighborhoods of p(x) such that
p(x) ∈ U ′ ⊂ U ′ ⊂ V ′. Since a subspace of a completely regular space is regular, there is a
continuous function g : V ′ → [0, 1] such that g(p(x)) = 0 and g = 1 on V ′ − U ′; the composite g op
satisfies similar properties: The value of g op at x is zero and g op = 1 on V −U . If we define a new
function f : Xto[0, 1] such that f |U = g op|U and f |X − U = 0, then these functions agree on the
overlapping closed subset U −U , and therefore f defines a continuous function on X which is 1 at
x and 0 off U .

Locally compact Hausdorff. We already know that X is Hausdorff, so it is only necessary to
show that every x ∈ X has some open neighborhood whose closure is compact. As before, let V
be an open neighborhood of x such that p[V ] = W is evenly covered and V is one of the sheets.
Since Y is locally compact, it follows that there is some open neighborhood U of p(x) such that
U ⊂ V and U is compact. Let U1 = p−1[U ] ∩ V be the sheet over U which is contained in V ,
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and let F = p−1
[
U

]
∩ V . Since p|V is a homeomorphism onto an open subset, it follows that F

is homeomorphic to U and hence is compact. Therefore we have found an open neighborhood U1

of x and a compact subset F ⊂ X such that x ∈ U1 ⊂ F ⊂ V . Since X is compact we know that
F is closed in X, and therefore it follows that U1 is also compact. As before, we started with an
arbitrary x ∈ X, so the argument implies that X is locally compact near every point and hence is
a locally compact (Hausdorff) space.

(b) We shall first prove this when Y is Hausdorff (in which case X is also Hausdorff by part (a).
Let p : X → Y be a covering space projection such that Y is compact and there are only

finitely many sheets at each point of Y . We shall prove that X is a union of finitely many compact
subsets. Let y ∈ Y , and let Vy be an open neighborhood of y which is evenly covered. Since
a locally compact Hausdorff space is regular, there is some subneighborhood Wy of Vy such that
Wy ⊂ Vy (and Wy is compact). The family W of all sets Wy is an open covering of Y , so there is
a finite subcovering {Wy1

, · · · ,Wyk
}. Since the covering has finitely many sheets, each of the sets

p−1
[
Wyj

]
is also compact, and since these form a finite closed covering of X it follows that X is

also compact.

Here is a proof when Y is not necessarily Hausdorff.
Let U be an open covering of X. For each y ∈ Y , let Vy be an evenly covered open subset,

and let Vy,1, · · · Vy,k(y) denote the sheets over Vy (we know there are only finitely many). If
xj ∈ Vy,j is the unique point such that p(xj) = y, then there is an open subneighborhood Ωy,j of
xj which is contained in some open set Uα in the open covering U . Since p is an open mapping,
the set Wy = ∩j p [Ωy,j ] is an evenly covered open neighborhood of y which is contained in Vy. If
Wy,j = p−1[Wy] ∩ Vy,j , then p maps this set homeomorphically onto the open neighborhood Wy.

Since Y is compact, the open covering W of Y by the open subsets Wy has a finite subcovering
consisting of sets Wz, where z lies in some finite subset Z ⊂ Y . The sheets of the inverse images
p−1[Wz] then form an open covering of X such that each set in this open covering is contained
in some Uα which belongs to U . Therefore if for each Wz,j we choose some Uα(z,j) such that
Wz,j ⊂ Uα(z,j), then the open sets Uα(z,j) form a finite subcovering of U .

Problem from Hatcher, pp. 79 − 82

2. Assume that we are given covering space projections p1 : E1 → B1 and p2 : E2 → B2; we
need to prove that p1 × p2 is also a covering space projection.

Let (x1, x2) ∈ B1 ×B2. Then the hypotheses imply that for i = 1, 2 there is an evenly covered
open neighborhood Ui of Xi; i.e., there are discrete spaces Ai and Bi together with homeomorphisms
hi : p−1

i [Ui] → Ui×Ai such that proj(Ui) ohi is the restriction of pi to p−1
i [Ui]. We claim that U1×U2

is an evenly covered neighborhood of (x1, x2) in B1×B2. This is true because the homeomorphism

H : (p1×p2)
−1[U1 ×U2] = p−1

1 [U1]×p−1
2 [U2] −→ U1×A1 ×U2×A2

∼= (U1×U2)× (A1 ×A2)

(where the last map switches the second and third factors) is such that proj(U1 × U2) oH is the
restriction of p1 × p2 to (p1 × p2)

−1[U1 × U2].
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Additional exercises

1. (i) Let U be an open subset of B, and consider the following commutative diagram, which is
derived from the exercise by considering various restriction mappings:

p−1[U ]
ΦU−−−−−→ f−1 [ϕ[U ] ]

yp
yfϕ[U ]

U
ϕU

−−−−−→ ϕ[U ]

Let y ∈ Y , set x equal to ϕ−1(y), and let U be an evenly covered open neighborhood of x, so that
there is a homeomorphism h : p−1[U ] → U ×A satisfying the defining identity. Then the composite

h′ = (ϕU × id) oh oΦ1

U

is a homeomorphism from f−1 [ϕ[U ] ] to ϕ[U ] × A such that fϕ[U ] is h′ followed by coordinate
projection onto ϕ[U ]. Therefore ϕ[U ] is an evenly covered open neighborhood of y.

(ii) Let x ∈ X, and choose Uα in U such that x ∈ Uα. Since qα is a covering space projection,
we know that there is some open neighborhood V ⊂ Uα of x such that V is evenly covered by qα,
and since qα has the same values as p at all points (but a different domain and codomain) it follows
that V is also evenly covered by p.

2. Given x ∈ X we can find open neighborhoods U1 and U2 of x which are evenly covered by p1

and p2, and by local connectedness there is a connected subneighborhood U ⊂ U1 ∩ U2; it follows
that U is evenly covered with respect to both p1 and p2. If U = {Uγ | γ ∈ Γ} is an open covering
of E2 by open subsets which are connected and evenly covered by p1 and p2, then by part (ii) of
Exercise 1 it will suffice to show that the restricted maps

p−1
1 [Uγ ] = p−1

[
p−1
2 [Uγ ]

]
−→ p−1

2 [Uγ ]

determined by p are all covering space projections.

If U is connected and evenly covered by p1 and p2, let Let h1 : p−1
1 [U ] → U × A and h2 :

p−1
2 [U ] → U × B be homeomorphisms (where A and B are discrete spaces) such that proj(U) ohi

is the restriction of pi, and let q : U × A → U × B be the map unique continuous mapping from
p−1
1 [U ] = p−1

[
p−1
2 [U ]

]
to p−1

2 [U ] such that p
(
h−1

1 (u, a)
)

= h−1
2 ( q(u, a) ). By continuity, for each

a ∈ A the map q sends the connected subset U × {a} ⊂ U × A into some connected component
U × {b(a)} ⊂ U × B, and q is onto because p is onto. Since the composites

U × {a} −→ p−1
1 [U ] −→ U, U × {b} −→ p−1

2 [U ] −→ U

are homeomorphisms, it follows that q must map U × {a} homeomorphically onto U × {b(a)};
denote the corresponding homeomorphism from U to itself by qa. If we compose h with the union
of the homeomorphisms ϕ = ∪a qa : U × A → U × A and replace h with the composite ϕ oh,
then we obtain a new map q′ analogous to q but satisfying the condition that q maps U × {a} to
U × {b(a)} to the identity; note that q′ is onto because q is onto. It follows that q′ is a covering
space projection, and by part (i) of Exercise 1 it also follows that the map

p−1
1 [U ] = p−1

[
p−1
2 [U ]

]
−→ p−1

2 [U ]
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determined by p is also a covering space projection.

If we apply the reasoning of the preceding paragraph to the open covering of E2 by the sets
p−1
2 [Uγ ], where Uγ belongs to the previously described open covering U , we see that each of the

maps

p−1
1 [Uγ ] = p−1

[
p−1
2 [Uγ ]

]
−→ p−1

2 [Uγ ]

is a covering space projection, and as noted above this suffices to prove that p itself is a covering
space projection.

Note. Here is an example where p is not onto: Let X be an arbitrary nonempty space. Take
p : X → X q X to be inclusion into the first summand, and take p2 : X q X → X to be the
map which is the identity on each summand. There is a variation of this exercise in which one
replaces the surjectivity hypothesis on p by an assumption that E2 is connected; the relationship
with Exercise 2 is that if E2 is connected then one can prove that p is onto.

3. (i) Let y ∈ Y , let U be an evenly covered open neighborhood of f(x), and let V be an open
neighborhood of x such that f [V ] ⊂ U . We claim that V is evenly covered in Y ×X E. The
definitions imply that the inverse image of V is the subspace of V × E defined by f(v) = p(e),
and the inverse image is also the subspace of V × p−1[U ] defined by the same equation. If h is the
homeomorphism p−1[U ] → U × A which exists by the assumption that U is evenly covered, then
under this homeomorphism the inverse image of V corresponds to the set of all points (v, u, a) in
V × U × A such that f(v) = u; i.e, the inverse image is given by the product of A with the graph
of f |U . Since the graph is homeomorphic to U , it follows that the inverse image is homeomorphic
to U via coordinate projection; one can check directly that all these maps are compatible with the
appropriate projections onto U , and this shows that U is evenly covered.

For the second part, if a lifting ϕ exists, then the image of the map sending y to (y, ϕ(y)) is
contained in Y ×X E and hence determines a map s : Y → Y ×X E; by definition the composite of
s with projection onto Y is the identity. Conversely, if there is a map s : Y → Y ×X E such that
p(Y,f)s = 1Y , then the composite of s with j : Y ×X E ⊂ E satisfies p oj os = f , and therefore j os
is a lifting of f .

(ii) If f is a subspace inclusion then Y ×X E is just the set of all points (y, e) in Y ×p−1[Y ] such
that p(e) = y. This maps homeomorphically to p−1[Y ] by projection onto the second factor, and
an explicit inverse is given by the map sending e to (p(e), e). Both of these maps are compatible
with respect to the various projections onto Y .

4. Let x ∈ X and let U be an evenly covered open neighborhood of x. Since X is totally
disconnected there is an open subneighborhood V ⊂ U such that V is open and closed in X. By
continuity p−1[V ] is open and closed in E.

If y ∈ Y , let p(y) = x, so that x has an evenly covered open neighborhood V which is also
closed in X. Now let W be the sheet over V which contains y. We claim that W is open and closed
in Y . Openness follows because W is a sheet over an evenly covered open subset of X. To prove
that W is closed, let W ′ be the union of all the other sheets over V , so that W ′ is open and E−W ′

is closed. Then W = p−1[V ]∩ (X −W ′) shows that W is an intersection of two closed subsets and
hence W is closed in Y .

5. (i) More generally, if B is a base for the topology of X and E → X is a covering space
projection, then the subset B′ of all evenly covered open subsets of B is also a base because every
evenly covered open set is also a union of basic open subsets. Therefore if X is second countable,
then there is a countable base B of X by evenly covered open subsets.
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Let A be the family of all open subsets W ⊂ E which are sheets over evenly covered open
subsets V ⊂ X such that V ∈ B. We claim that A is a base for the topology on E. Since the
number of sheets over each V is countable by the countability assumption and the number of open
sets in B is countable, it follows that A is a countable family. Therefore we need only show that A
is a base for the topology.

Let C be the family of open subsets in E such that W ∈ C if and only if W is a sheet over an
evenly covered open subset V ⊂ X. Then C is a base for the topology on E, so it will suffice to
show that every subset in C is a union of open subsets in A. Let W ∈ C as above, and assume it
is a sheet over V . Then we can write V = ∪j Uj as a countable union of open sets Uj ∈ B, and
it follows that W is the union of the open subsets Nj = p−1[Uj ] ∩ W . By definition the sets Nj

belong to A, so we have shown that A forms a base for the topology of E.

(ii) Follow the hint. By a previously proved exercise in Munkres we know that E is T3, and
by the first part of this exercise it is also second countable. Therefore the Urysohn Metrization
Theorem implies that E is metrizable.

VIII.5 : Simply connected spaces

Additional exercises

1. (i) We need to show that g · x = x for some x only if g = 1. Let (u, v) denote a point
of S2 × S3, and suppose that g · (u, v) = (u, v); i.e., g · u = u and g · v = v. If g ∈ Cn then
g · (u, v) = (u, g · v), and the second coordinate is equal to v if and only if g = 1. On the other
hand, if g 6∈ Cn then g · (u, v) = (−u, v) 6= (u, v), so that g · (u, v) = (u, v) implies that g must be
equal to 1.

(ii) The preceding result yields a free action of D(2n) on the simply connected space S 2 ×S3,
and by the results in this section of the notes the fundamental group of the quotient space Xn =
S2 × S3/D(2n) has a fundamental group isomorphic to D(2n).

(iii) Let ∆ : D(2n) → Z2 be the homomorphism defined in the exercise, and identify Z2

with ± 1 as usual. Then the coordinate projection p : S2 × S3 → S2 has the property that
p(g · (u, v) ) = (∆(g) · u), and this implies that p passes to a map q from Xn to RP

2. Let γ be
a great circle curve in S2 which joins a basepoint z to its antipodal point −z, let v0 ∈ S3, take
β(t) = (γ(t), v0) ∈ S2 × S3, and let ρ : S2 × S3 → X be the quotient projection. Then ρ oγ is a
closed durve in X, and its image q oρ oγ generates the fundamental group of RP

2. Therefore the
map from π1(X) to π1() is nontrivial. Further analysis would show that the kernel of this map in
fundamental groups is just Cn, but this was not asked for in the exercise.

2. If the inclusion S1 ⊂ RP
n were a retract, then it would induce a monomorphism of

fundamental groups. Since π1(S
1) ∼= Z and π1(RP

n) is finite for n ≥ 2, this cannot happen.

3. (i) Under the given conditions, the result from this section imply that the map p∗;π1(X) →
π1(RP

n × RP
n) ∼= Z

2 × Z2 is injective and the number of sheets in the covering is the index of the
image of p∗. If there is only one sheet, then this map must be a homeomorphism (it is 1–1, onto,
continuous and open). Otherwise the number of sheets is the index of a subgroup of a group of order
4, and as such this number must be finite and even. (ii) If E is a connected space covering space
of X satisfying the default hypotheses and π1(X) is finite of odd order, then π1(E) is isomorphic
to a subgroup of π1(X) as in the first part of this exercise, but now the index of the subgroup
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must divide the odd number |π1(X)| and hence the index, which equals the number of sheets in
the covering, must be (finite and) odd. In particular, the index cannot be equal to 2.

VIII.6 : Homotopy of paths and line integrals

Additional exercises

1. Recall the definition of the winding number integral: If p(z) is never zero on a circle CR of
radius R about the origin and Γ(p,R) be the closed curve given by p(exp(R · 2π i t)) for 0 ≤ t ≤ 1,
then the winding number integral is equal to

∫

Γ(p,R)

x dy − y dx

x2 + y2

and its value is an integral multiple of 2π. By the results of this section, the integral factor is equal
to the degree of the following composite

S1 R×

−−−−−→ CR
p

−−−−−→ C − {0}
u

−−−−−→ S1

where R× denotes multiplication by R and u sends z to |z|−1 · z.

The preceding sentence implies that if the winding number is not zero then the displayed map
is not homotopic to a constant in C − {0} and hence that Γ(p,R) does not extend to a continuous
map from D2 into C − {0}. Now p(r · v) is a continuous extension of Γ(p,R) to a map D2 → C,
and by the preceding sentence we know that its image cannot be contained in C − {0}. Therefore
its image must contain the point 0; in other words there must be some z0 such that |z| < R and
p(z0) = 0.

2. The underlying idea is to show that the winding number is defined for p + q and it is equal
to the winding number of p, which by hypothesis is nonzero.

First of all, the condition |q| < |p| for |z| ≤ R implies that |p + q| ≥ |p| − |q| > 0 for |z| = R,
and therefore the winding number of p+q can be defined. To prove the winding numbers are equal,
it is only necessary to show that Γ(p,R) and Γ(p + q,R) are homotopic as maps into C−{0}. One
obvious idea is to consider the straight line homotopy p + t q where 0 ≤ t ≤ 1 and show that its
image lies in C = {0}. The verification of this statement is a slight embellishment on what was
already shown: |p + tq| ≥ |p| − t|q| ≥ |p| − |q| > 0.

3. We know that the value of the integral only depends upon the free homotopy class of γ,
and since there are only countably many free homotopy classes in [S1, U ] it follows that there are
only countably many possible values for the integral. Furthermore, since the line integral of a
concatenated curve is the sum of the line integrals of the two pieces, it follows that the line integral
of f defines a homomorphism S(f) from π1(U) to the additive complex numbers, with the value of
S(f) only depending upon the image of a class in π1(U) in [S1, U ].

If the line integral has only finitely many values, then S(f) has a finite image, and since S(f)
is a homomorphism it follows that every element in the image has finite order. However, the only
elment of finite additive order in C is 0, and therefore it follows that the image of S(f) must be
{0} and there is only one possible value for the line integral.
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SOLUTIONS TO EXERCISES FOR

MATHEMATICS 205A — Part 9

Fall 2014

IX. Computing fundamental groups

IX.1 : Free groups

Additional exercises

1. For the sake of definiteness, assume that x and y are free generators for F . If H has index 2
in F , then H is a normal subgroup and F/H ∼= Z2. Therefore every such subgroup is the kernel of
a surjection from F to Z2. CLAIM 1: This is a 1–1 correspondence.

We can check this directly. There are three nontrivial homomorphisms from F into Z2, and
they are completely determined by the values of a homomorphism on the generators. Consider the
effect of each example on the set S = {x, xy, y}. For the homomorphism sending (x, y) to (1, 0)
the intersection of S with the kernel is {x}, for the homomorphism sending (x, y) to (0, 1) the the
intersection of S with the kernel is {y}, and for the homomorphism sending (x, y) to (1, 1) the the
intersection of S with the kernel is empty.

Therefore there are exactly three subgroups of index 2 in F , one of which is normally generated
by x and y2, another of which is normally generated by y and x2, and the last of which is normally
generated by x−1y and x2 (or y−1x and x2, or xy and x2, etc.).

2. We shall verify that F/H satisfies the appropriate Universal Mapping Property with free
generators corresponding to the elements of X − Y . Let G be a group, let j : X → F identify X
with a subset of F , and let h : X − Y → G be a map of sets. Extend h to a mapping h0 : X → Y
by setting h(y) = 1 if y ∈ Y . Since F is free on X, there is a homomorphism η0 : F → G such
that η0

oj(x) = h0(x) for all x ∈ X. Since y ∈ Y implies h0(y) = 1, the kernel of η0 contains the
normal subgroup H, and if π : F → F/H is the quotient map then there is a unique homomorphism
η : F/H → G such that η oπ = η0.

Before proving that F/H has the Universal Mapping Property for X − Y , we need to check
that the map π oj : X → F/H is 1–1. Perhaps the easiest way to do this is to let A be the free
group on X − Y and take the homomorphism F → A which sends X − Y to these free generators
and sends Y to {1}. Since the map X −Y → F → F/H → A is 1–1, it follows that X −Y → F/H
is also 1–1, confirming what we expected.

To complete the proof of the Universal Mapping Property, identify X − Y with a subset of
F/H via the map sending x to j ′(x) = π oj(x), so that η oj′(x) = η0

oj(x) = h0(x) for all x ∈ X−Y .
Therefore F/H has the universal mapping property for X − Y .

3. (i) Let F ′
n ⊂ Fn be the commutator subgroup; then the quotient is isomorphic to the free

abelian group An
∼= Zn on n generators. If T : Fn → Fn is an automorphism and h : Fn → An is

the quotient projection as in the statement of the exercise, then the kernel of h oT must contain the
commutator subgroup F ′

n = [Fn, Fn] because the image of the homomorphism is abelian. Therefore
there is a unique homomorphism θ(T ) : An → An such that h oT = θ(T ) oh.
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Suppose now that we are given two automorphisms T1 and T2. By the uniqueness statement
proved in the preceding paragraph, it is enough to show that h oT1

oT2 = θ(T1) oθ(T2) oh. This
follows because h oT1

oT2 = α(T1) oh oT2 = α(T1) oα(T2) oh.

(ii) The statement in the hint is true because h o idFn
= h = idAn

oh. Therefore if S = T−1 we
have

idAn
= θ(idFn

) = θ(S oT ) = θ(S) oθ(T )

and by interchanging the roles of S and T we also have idAn
= θ(T ) oθ(S). Therefore θ(T ) is an

automorphism, and predictably its inverse is θ(S).

(iii) Again for definiteness, let x and y denote the generators of F2 which project down to the
elements (1, 0) and (0, 1) in A2

∼= Z2. Following the hint, we shall find automorphisms of F2 which
induce θ on A2 for choices of θ corresponding to each one of the three given generators. To avoid
space-consuming displays of 2 × 2 matrices we shall refer to the displayed matrices, in order from
left to right, as the diagonal generator, the transposition generator, and the shear generator. For
the diagonal generator, take the self-homomorphism T of F2 which sends x to x−1 and y to itself;
such a homomorphism exists because F2 is free, and it is an automorphism because T oT = id (it
is only necessary to check this on the free generators), so that T is equal to its own inverse. For
the transposition generator, take the self-homomorphism T which interchanges x and y; once again
T oT = id implies that T is its own inverse. Finally, for the shear generator, take the homomorphism
T sending x to itself and y to xy. For this example we claim that the inverse is the homomorphism
sending x to itself and y to x−1y. Once again, to prove that S oT and T oS are the identities, it
is enough to do so on the standard set of free generators. Clearly we have S oT (x) = x = T oS(x)
since S(x) = T (x) = x, and we also have

S oT (y) = S(xy) = S(x)S(y) = x · (x−1y) = y

T oS(y) = T (x−1y) = T (x−1)T (y) = x−1 · (xy) = y

and therefore we know that S = T−1.

4. (i) Take the map from Fn−1 to G with sends the free generator xi ∈ Fn−1 to gi ∈ G. The
extension of this map to a homomorphism is onto, and therefore G is isomorphic to a quotient of
Fn−1.

(ii) In any group G, if g = g1 then either g = 1 or else g2 = 1. The latter cannot happen in an
odd order group unless G = 1, so this means that the nontrivial elements of G can be decomposed
into 1

2
(|G| − 1) pairs of the form {gi, hi = g−1

i }, where 1 ≤ i ≤ k and |G| = 2k + 1.

In this case take the map from Fk to G with sends the free generator xi ∈ Fk to gi ∈ G. The
extension of this map to a homomorphism is onto, and therefore G is isomorphic to a quotient of
Fk.

IX.2 : Sums and pushouts of groups

Problems from Munkres, § 68, p. 421

2. (a) Let 1 6= xi ∈ Gi for i = 1, 2; then x1x2x
−1
1 x−1

2 is a reduced word, and by Step 4 in the
proof of Munkres, Theorem 68.2 we know that this element is not the identity in G1 ∗G2. But this
means that x1x2 6= x2x1 whenever x1 and x2 are nontrivial elements of G1 and G2 respectively.
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(b) If x is a reduced word of even length, write it in the form a1b1 · · · akbk where each aj lies
in one of the groups Gi and each bj lies in the other group. It follows that for each n > 0 that
xn corresponds to the reduced word a1b1 · · · ankbnk where the sequences satisfy the periodicity
conditions aj = aj+k and bj = bj+k for j ≤ nk − k. Since this is also a nontrivial word, it follows
from the same reasoning as before that xn 6= 1 in the free product. Therefore x has infinite order.

Suppose now that we have a reduced word x of odd length ≥ 3 (this was not part of the

problem as stated in Munkres, but clearly it is indispensable because a reduced word of length 1
cannot be conjugate to anything shorter). In analogy with the preceding paragraph, write x in
the form b0a1b1 · · · akbk where aj and bj are as before. We can easily find a shorter word which
is conjugate to the given one because b−1

0 xb0 is equal to a1b1 · · · ak(bkb0). There are now two
possibilities. If bkb0 6= 1, then we have shown that x is conjugate to an element corresponding to a
reduced word of even length 2k. If bkb0 = 1, then we have shown that x is conjugate to an element
corresponding to a reduced word of odd length 2k − 1.

(c) By part (b) and induction, every nontrivial word is either conjugate to a word whose length
is either an even number or 1 (look at the shortest word in the conjugacy class, and note that a
nontrivial word cannot be conjugate to the empty word). If the word x is conjugate to a word y
of even length, then the orders of x and y are equal, and since y has infinite order it follows that
the same holds for x. On the other hand, if x is conjugate to a word y of length 1, we know that
y must correspond to a nontrivial element of G1 or G2, and if x has finite order then y must also
have the same finite order.

3. The easiest way to solve this exercise might be to look at the images of everything in the direct
product G1 × G2. The Universal Mapping Property for free products guarantees the existence of
a homomorphism θ : G1 ∗ G2 → G1 × G2 such that θ oi1(a) = (a, 1) and θ oi2(b) = (1, b), where
it denotes the standard injection of Gt into G1 ∩ G2. The problem does not require a proof that
cG1c

−1 is a subgroup, but this follows quickly from the fact that the latter is the image of G1 under
the conjugation automorphism of G1 ∗G2 sending x to cxc−1.

Suppose that a ∈ G1 is such that cac−1 ∈ G2 It then follows that θ(a) ∈ G1 × {1} and
θ(c)θ(a)θ(c)−1 ∈ {1} × G2. CLAIM: θ(c)θ(a)θ(c)−1 ∈ G1 × {1}, and this element corresponds to
a conjugate of a in G1. — If this is true, then θ(c)θ(a)θ(c)−1 belongs to (G1 × {1}) ∩ ({1} ×G2),
which is the trivial group, and furthermore a is conjugate to this element in G1. In particular, a
is conjugate in G1 to the trivial element, and this implies that a = 1. To summarize, the claim
implies that if cac−1 ∈ G2 then a = 1 and therefore also cac−1 = 1.

To prove the assertions regarding θ(c)θ(a)θ(c)−1, write c = u1v1 · · · ukvk where uj ∈ G1×{1}
and vj ∈ {1} ×G2. If c 6= 1 we can do this using either a reduced word of even length or taking a
reduced word of odd length and setting u1 = 1 (if the word starts and ends with something from
G2) or vk = 1 (if the word starts and ends with something from G1). Since the images of G1 and
G2 commute with each other, an inductive argument shows that

θ(c) θ(a)θ(c)−1 = θ(u1v1 · · · ukvk) θ(a)θ(u1v1 · · · ukvk)−1 =

θ(u1v1 · · · uk−1vk−1) θ(ukau
−1

k )θ(u1v1 · · · uk−1vk−1)
−1 = · · · = θ(u1 · · · uk a u

−1

k · · · u−1

k )

where the expression in the last term is an element of G1 which is conjugate (in G1) to a. This is
the claim in the preceding paragraph.
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Problems from Munkres, § 69, p. 425

1. To simplify the notation, if H is a group, then Ab(H) will denote the quotient H/[H,H],
where [H,H] is the commutator subgroup (which is normal in H). We shall also denote G1 ∗ G2

by G as in the statement of the exercise.

Starting with the abelinization homomorphisms αi : Gi → Ab(Gi), we can define a homomor-
phism θ : G → Ab(G1) ⊕Ab(G2) whose restriction to G1 ⊂ G is the map sending a to (a, 0) and
whose restriction to G2 ⊂ G is the map sending b to (0, b). By construction θ is onto, and since the
codomain is an abelian group the kernel of θ must contain the commutator subgroup. Therefore θ
factors as a composite G → Ab(G) → Ab(G1) ⊕ Ab(G2), where the first arrow is abelianization
and the second will be denoted by ϕ.

For the same general reasons, the composites Gi → G = G1 ∗G2 → Ab(G) have factorizations
Gi → Ab(Gi) → Ab(G), and the induced maps of abelianizations will be denoted by Ji. Therefore
we can define a homomorphism

ψ : Ab(G1) ⊕Ab(G2) −→ Ab(G)

such that ψ(u, v) = J1(u) + J2(v). By construction the composites

Gi → Ab(Gi) → Ab(G) → Ab(Gi) = Gi → G→ Gi → Ab(Gi)

are the abelianization mappings, and therefore the composites Ab(Gi) → Ab(G) → Ab(Gi) are
identity mappings. Similarly, if i 6= j then the triviality of the composites Gi → G → Gj implies
that the abelianized mappings Ab(Gi) → Ab(G) → Ab(Gj) are zero homomorphisms. If we
combine these with the definitions of ϕ and ψ, we see that ϕ oψ is the identity on Ab(G1)⊕Ab(G2).
We claim these maps are isomorphisms, and to prove this it will suffice to show that ψ is onto.
However, this follows quickly because we know that G is generated by the images of G1 and G2,
which implies that Ab(G) is generated by the images of Ab(G1) and Ab(G2).

3. For the sake of definiteness, we shall assume that m ≥ n (it will be clear that the case m ≤ n
can be handled similarly).

(a) If G1 and G2 are abelian groups, then Exercise 1 implies that Ab(G1 ∗G2) ∼= G1 ⊕G2. If
we specialize to the case where G1 = Zm and G2 = Zn, this implies that Ab(G1 ∗ G2) is a finite
group of order mn.

(b) Follow the hint. By Exercise 68.2 in Munkres, the only elements of finite order in G1 ∗G2

are those which are conjugate to elements in either G1 or G2, and thus if g ∈ Zm ∗ Zn has finite
order, this order must divide either m or n. Since we are assuming that m ≥ n, the largest possible
order is m, and in fact this order is realized by the generator of Zm.

(c) If G = Zm ∗ Zn, then |Ab(G)| = mn implies that mn is uniquely determined by G, and
by (b) we know that m is uniquely determined by G. Therefore n = (mn)/m is also uniquely
determined by G.

4. The goal of the problem is to find finite abelian groups G1, G2, H1, H2 such that |G1| 6= |H1|
and |G2| 6= |H2| such that G1 × G2

∼= H1 ×H2, and the hint is to use the abstract version of the
Chinese Remainder Theorem: Za × Zb

∼= Zab if a and b are relatively prime. — The latter can
be found in nearly every upper level undergraduate textbook on abstract algebra or elementary
number theory, so we shall not prove it here.
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Since 2, 3, 5 are pairwise relatively prime the Chinese Remainder Theorem and (2 ·3) ·5 = 30 =
2 · (3 · 5) imply that

Z30
∼= Z6 × Z5 , Z30

∼= Z2 × Z15

so we get the desired examples if we take G1 = Z6, G2 = Z5, H1 = Z2, and H2 = Z15.

Additional exercises

1. We shall repeatedly use the fact that a free product of two groups ∗i Li is uniquely character-
ized up to isomorphism by the fact that homomorphisms from ∗i Li to another group M correspond
bijectively to homomorphisms from the summands Li into M , and the correspondence is given by
restricting to the subgroups Li.

For (G ∗ H) ∗ K, the preceding paragraph means that homomorphisms from this group to
some other group M are in 1–1 correspondence with homomorphisms from G ∗H and K into M .
However, homomorphisms from G ∗H into M in 1–1 correspondence with homomorphisms from G
into M and from H into M . Combining these, we see that homomorphisms from (G ∗H) ∗K into
M are in 1–1 correspondence with homomorphisms G → M , H → M and K → M . Since this is
the defining condition for a free product of the three groups G, H and K it follows that (G∗H)∗K
is in fact a free product of these three groups. Similarly, homomorphisms from G ∗ (H ∗K) into
some other group M are in 1–1 correspondence with homomorphisms from G and H ∗K into M ,
and since homomorphisms from H ∗K into M in 1–1 correspondence with homomorphisms from
H into M and from K into M , we see that homomorphisms from G ∗ (H ∗K) into M are in 1–1
correspondence with homomorphisms G → M , H → M and K → M ; as before, this means that
G ∗ (H ∗K) is in fact a free product of G, H and K.

Finally, homomorphisms from both G ∗ H and H ∗ G into an arbitrary group H correspond
bijectively to homomorphisms G→M and H →M , and this yields an isomorphism between G∗H
and H ∗G.

2. (i) Follow the hint and note that K ∗K ∼= K because K ∗K is a free group on ℵ0 + ℵ0 = ℵ0

generators if K is a free group on ℵ0 generators. If H1 is finite but nontrivial and H2 = H1 ∗K,
then H1 is finite but H2 is infinite. On the other hand, we have

H2 ∗K ∼= (H1 ∗K) ∗K ∼= H1 ∗ (K ∗K) ∼= H1 ∗K

which is what we wanted to prove.

(ii) The underlying ideas are the same, but here we have K ×K = K ⊕K is isomorphic to K
because K ⊕K is a free abelian group on ℵ0 generators if K is. If H1 is finite but nontrivial and
H2 = H1 ∗ ×K, then H1 is finite but H2 is infinite. On the other hand, we have

H2 ×K ∼= (H1 ×K) ×K ∼= H1 × (K ×K) ∼= H1 ×K

which is what we wanted to prove.

(iii) Once again, this is the same basic idea, but now we are working with topological spaces.
An explicit isometry from Y × Y to Y is given as follows: Let {ej} denote the set of standard unit
vectors in Y , and take the linear isomorphism from Y × Y to Y which sends (ej ,0) to e2j−1 and
(0, ej) to e2j−1. This is clealy an invertible linear transformation, and if one imposes the metrics
associated to the usual dot products (so that the unit vectors are orthonormal and Y × {0} is
orthogonal to {0}×Y ), then this linear isomorphism is an isometry of inner product spaces, which
implies among other things that Y × Y is homeomorphic to Y .
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Let X1 be a compact metric space, and let X2 = X1 × Y . Then X1 is not homeomorphic to
X2 but X1 × Y is homeomorphic to X2 × Y because we have X2 × Y = X1 × Y × Y ∼= X1 × Y .

3. As before the proof that h × h is the identity reduces to showing that h × h maps the free
generators x and y to them selves. Since h(x) = y and h(y) = x, this follows immediately.

Suppose now that h(w) = w for some nontrivial reduced word w in x and y. If w begins with a
power of x then h(w) begins with a power of y and vice versa. By the unique factorization property
for nontrivial reduced words, it follows that h(w) cannot be equal to w.

Note. In contrast, the induced automorphism θ(h) of Z2 sends (1, 1) to itself.

IX.3 : The Seifert – van Kampen Theorem

Problems from Munkres, § 70, p. 433

1. By the Seifert-van Kampen Theorem it will suffice to show that

π1(U ∩ V, p) i1∗−−−−−→ π1(U, p)




y

i2∗





y

π1(V, p) −−−−−→ π1(U, p)/N1 ∗ π1(V, p)/N2

is a pushout diagram if i1∗ and i2∗ are trivial homomorphisms, where the maps from π1(U, p) and
π1(V, p) to the respective quotients π1(U, p)/N1 and π1(V, p)/N2 followed by the usual injections
J1 and J2 into the free product. Denote the quotient projections π1(U, p) → π1(U, p)/N1 and
π1(V, p) → π1(V, p)/N2 by q1 and q2 respectively.

Suppose that we are given homomorphisms A : π1(U, p) → G and B : π1(V, p) → G such
that A oi1∗ = B oi2∗. Since i1∗ and i2∗ are trivial it follows that we have factorizations through
the respective quotients; i.e., we have A = A′ oq1 and B = B′ oq2 for uniquely determined ho-
momorphisms A′ and B′. By the Universal Mapping Property for free products, there is a
unique homomorphism C from the free product into G whose restrictions to oJ1 and C oJ2 to
π1(U, p)/N1 and π1(V, p)/N2 are equal to A′ and B′ respectively, and therefore we also have
C o(J1

oq1) = A′ oq1 = A and C o(J2
oq2) = B′ oq2 = B. To complete the proof, we need to show

that if D : π1(U, p)/N1 ∗ π1(V, p)/N2 is an arbitrary homomorphism such that D o(J1
oq1) = A and

D o(J2
oq2)B, then D = C. If D satisfies these conditions then we have D oJ1

oq1 = C oJ1
oq1 and

D oJ2
oq2 = C oJ2

oq2; since q1 and q2 are onto, the given equations imply that D oJ1 = C oJ1 and
D oJ2 = C oJ2. We can now use the uniqueness condition in the Universal Mapping Property for
free products to conclude that D = C. This completes the proof that the diagram at the beginning
of this solution is a pushout.

3. (a) If G1 has a finite generator set X1 with a finite relation set R1 and G2 has a finite
generator set X2 with a finite relation set R2, then G1 ∗G2 has a finite generator set X1 qX2 with
a finite relation set R1 qR2,

(b) Follow the hint, but work more generally with a pushout

K
i1−−−−−→ H1





y

i2





y

j1

G2

j2−−−−−→ G
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where K is finitely generated and H1 and H2 are finitely presented.

The construction of pushouts in Section IX.2 shows that G is isomorphic to the quotient of
Γ = G1 ∗G2 by the normal subgroup N which is generated by all elements of the form i−1

1 (k) i2(k),
where k runs through all the elements of G. CLAIM: If k1, · · · , kr generate K, then N is also the

smallest normal subgroup containing the finite set S = {i−1
1 (kt) i2(kt) | 1 ≤ t ≤ r}.

If the claim is true, we can complete the solution as follows: By Exercise 1 we know that
G1 ∗ G2 is finitely presented, and by the claim we know that N is finitely normally generated, so
if G1 ∗ G2 is presented with finite generating set X and finite relation set R, then we obtain the
quotient by expanding R to a set which also includes a finite family of words in the generators
which map to the elements in the set S.

We now prove the claim. Let N0 be the subgroup normally generated by S, so that N0 ⊂ N .
To prove the reverse inclusion, consider the map of quotient groups π : Γ/N0 → Γ/N which sends
each coset of N0 to the coset N which contains it, and let ρ : G→ G/N0 be the usual quotient space
projection. By definition, N0 is normally generated by the elements i−1

1 (kt) i2(kt), and therefore
ρ oi1(kt) = ρ oi2(kt) for all t. Since ρ, i1 and i2 are homomorphisms and the elements kt generate
K, it follows that ρ oi1(k) = ρ o i2(k) for all k ∈ K. But this means that the normal subgroup
N0 contains all elements of the form i−1

1 (k) i2(k) where k ∈ K, and since these elements normally
generate N it follows that all of N0 is contained in N .

Additional exercises

1. (i) For this part of the exercise, in the pushout diagram

π1(U ∩ V, p) i1∗−−−−−→ π1(U, p)




y

i2∗





y

j1∗

π1(V, p)
j2∗−−−−−→ π1(X, p)

we know that π1(U, p) is trivial and π1(V, p) is abelian. It will suffice to prove that the map
π1(V, p) → π1(X, p) is onto. We know that π1(X, p) is generated by the images of π1(U, p) and
π1(V, p) and since the image of the first group must be trivial it follows that π1(V, p) generates
π1(X, p), which means that π1(V, p) → π1(X, p) is onto.

(ii) Let X be the Figure Eight Space which is a union of two closed subspaces C1 ∪ C2 such
that each is homeomorphic to S1 and C1 ∩ C2 consists only of the basepoint p. Choose points
qi ∈ Ci − {p}, and let U1 and U2 be X − {q2} and X − {q1} respectively (note the switch in
subscripts — this is not a misprint). Then Ci is a strong deformation retract of Ui and U1 ∩ U2 is
contractible, so that the pushout diagram associated to π1(X = U1 ∪ U2 is given as follows:

{0} ∼= π1(U ∩ V, p) i1∗−−−−−→ π1(U, p) ∼= Z




y

i2∗





y

j1∗

Z ∼= π1(V, p)
j2∗−−−−−→ π1(X, p) ∼= F2

In this example the fundamental groups of U and V are abelian but the fundamental group of X
is not.
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2. (i) Once again we know that π1(X) is generated by the images of π1(U) and π1(V ). Since
π1(U ∩V ) maps onto both of the latter groups, it follows that all the generators for π1(X) actually
lift back to π1(U ∩ V ).

(ii) As in (i) if A and B denote generating sets for π1(U) and π1(V ) respectively and A′ and
B′ denote their images in π1(X), then A′ ∪B′ generates π1(X). But if A and B are finite, then so
is A′ ∪B′.

3. We begin with a general statement. Suppose that we have a group G presented as a quotient
F/N where F is freely generated by X and N is normally generated by relations R ⊂ F . Then
Ab(G) is isomorphic to F/N [F, F ], which is isomorphic to

(F/[F, F ])/(N [F, F ]/[F, F ])

in which N [F, F ]/[F, F ] is the image of N ⊂ F → F/[F, F ].

For the example in this exercise, the preceding observation shows that the abelianization
Ab(G) is the quotient of Z2 modulo the subgroup generated by the single abelianized relation
(3,−2) because the abelianizations of the other two relations are trivial. One easy way of seeing
that the quotient is infinite cyclic is to observe that the homomorphism Z2 → Z sending (x, y) to
2x+ 3y is onto and its kernel is the cyclic subgroup generated by (3,−2).

(ii) Let ρ : G → G/N be the quotient group projection. Since xy−1 ∈ N it follows that
ρ(x) = ρ(y). By definition we know that x3 = y2, so that ρ(x)3 = ρ(y)2. If we combine the
preceding two sentences we find that ρ(x)3 = ρ(x)2, which means that ρ(x) = 1 and hence also
that ρ(y) = ρ(x) = 1; i.e., we have x, y ∈ N . Since x and y generate G, this means that N = G.

4. By the Seifert-van Kampen Theorem, it will suffice to prove the following algebraic result
about pushout diagrams of groups: If we are given an onto homomorphism i1 : K → H1 and an
isomorphism i2 : K → H2, then the following square is a pushout diagram:

K
i1−−−−−→ H1





y

i2





yid

H1

i1i−1

2−−−−−→ H1

This square commutes because both composites from K to H1 are equal to i1.

As usual, we shall prove the given square is a pushout by verifying that it has the Universal
Mapping Property. So let f1 : H1 →M and f2 : H2 →M satisfy f1

oi1 = f2 oi2. We need to find a
unique map h : H1 →M such that h oji = fi, where j1 is the identity and j2 = i1 oi−1

2 . If we take
h = f1, then h oj1 = h o id = f1 and h oj2 = h o i1 oi−1

2 = f1 oi−1
2 = f2 oi2 oi−1

2 = f2, so there is a map
from H1 to M with the right properties. To show that a map with the right properties is unique,
note that if k oji = fi for i = 1, 2 then k = k o id = k oj1 = f1, so that k = h.

5. Consider the associated pushout diagram:

Z × Z
p1−−−−−→ Z





y

p2





y

j1

Z
j2−−−−−→ A

Since p1 and p2 are onto, it follows that the composite Z × Z → A is also onto (see Exercise 2);
note that A is abelian because it is a homomorphic image of Z×Z. Since (1, 0) and (0, 1) are in the

8



kernels of p2 and p1 respectively, it follows that both these elements map to zero in A, and since
the two elements in question generate Z × Z, it follows that everything in Z × Z maps to zero in
A. If we combine this with the conclusion of the previous paragraph, we see that A must be the
trivial group.

6. Follow the hint; let U = M−Y and V = M−X. Then U is homeomorphic to Xq [0, 1) with
x ∈ X identified to 0, and V is homeomorphic to (0, 1]qY with 1 identified to y ∈ Y . Both U and V
are open in M , and their intersection is homeomorphic to the open interval (0, 1). Furthermore, X
and Y are strong deformation retracts of U and V respectively. Therefore the Seifert-van Kampen
Theorem implies that the fundamental group of M is the free product of the fundamental groups
of X and Y (we have not been careful about the basepoints because the isomorphism type of the
fundamental groups of the spaces in this exercise are isomorphic for all choices of basepoints).

IX.4 : Examples and computations

Additional exercises

1. (i) One can also model X topologically as the subspace C ⊂ R
3 given by S2 ∪{(0.0)}× [−1, 1].

We shall prove that this space is homeomorphic to the subspace of R4 described in the exercise as
follows: Take the identity map on S2, and map a point of the form (0, 0, t), where −1 ≤ t ≤ 1, to
the point (0, 0, t,

√
1 − t2). One can check directly that this map is continuous and 1–1 onto, so it

is a homeomorphism because X is compact Hausdorff.

(ii) Follow the hint. The space which interests us is S2 ∪A, and D3 ∪A is formed from it by
regularly attaching a 3-cell, so by Proposition 3 IX.4.2 we know that π1(S

2 ∪A) ∼= π1(D
3 ∪A).

(iii) If B ⊂ R3 is the straight line segment described in the exercise which joins the north and
south poles of S2, then a retraction D3 → B is defined by sending (x, y, z) to z; if we also take the
straight line homotopy between these two points (which stays inside D3 by convexity), we obtain
deformation retract data for B ⊂ D3. Now A∩B consists of the two points ± e3, and by an exercise
from Unit VII it follows that B ∪A is a strong deformation retract of D3 ∪A. Since B ∪A is the
union of two closed subspaces homeomorphic to [−1, 1] which meet at their endpoints, the space
A∪B is homeomorphic to S1; for the sake of completeness, we note that an explicit homeomorphism
is given by sending one copy of [−1, 1] to the upper semicircle by the mapping t→ (t,

√
1 − t2) and

sending the other copy of [−1, 1] to the lower semicircle by the mapping t→ (t,−
√

1 − t2).

Finally, the preceding observations combine to yield the fundamental group relationships
π1(S

2 ∪A) ∼= π1(D
3 ∪A) ∼= π1(B ∪A) ∼= π1(S

1) ∼= Z, as asserted in the statement of the exercise.

2. The intersection of D2 × {0} with S2 is equal to S1 × {0}, so if we take A = S2 and B = D2

then we have an example with the properties described in the discussion before the statement of
Proposition IX.4.2. Therefore we can apply this result to conclude that the map of fundamental
groups π1(S

2) → π1(X) is onto. Since π1(S
2) is trivial, it follows that π1(X) must also be trivial.

3. (i) Follow the hint. The data in the problem yield the following commutative diagram, in
which the vertical arrows jk are isomorphisms:

Z → · · · c−1

k Z
⊂−−−−−→ c−1

k+1
Z → · · · Q





y

j1





y

jk





y

jk+1

A1 → · · · Ak
hk−−−−−→ Ak+1 → · · · G
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If we define ϕk : c−1

k Z → G by gk
ojk, then we have the recursive property

ϕk+1|c−1

k Z = gk+1
ojk+1|c−1

k Z = gk+1
ohk

ojk = gk
ojk = ϕk

and therefore we can assemble these mappings to produce a homomorphism ϕ : Q → G. This map
is onto, for each a ∈ G has the form gk(b) for some k and b ∈ Ak, so if jk(b′) = b we have ϕk(b′) = a.
In particular, this implies that G is abelian, so we shall use 0 to denote the neutral element in G.
To see that ϕ is 1–1, suppose that x ∈ Q maps to 0, and choose k such that x ∈ c−1

k Z. Then
jk(x) ∈ Ak maps to 0 in G, and therefore there is some M ≥ 0 such that jk(x) maps to 0 in Ak+M .
But the map Ak → Ak+M is equivalent to a nonzero map Z → Z, so if jk(x) maps to 0 in some
Ak+M then we must have jk(x) = 0. Since jk is an isomorphism we must have x = 0. Therefore
ϕ : Q → G is an isomorphism.

(ii) The mapping j[d] is 1–1 because the composite of j[d] with projection onto the D2 factor
is the standard inclusion of S1 in D2, and the map j[d]∗ in fundamental groups corresponds to
multiplication by d because the composite of j[d] with projection onto the S 1 factor has degree d
and this coordinate projection map induces an isomorphism π1(S

1 ×D2) → π1(S
1).

(iii) A more concrete approach to constructing E is to describe it as a subspace of R5 =
C × C × R; more precisely, we shall realize each Sk as a subset of C

2 × [k, k + 1] such that the
continuous mapping Sk → [k + 1] corresponds to the last coordinate. Consider the subspace Tk of
C2 × [k, k + 1] consisting of S1 × D2 × {k + 1} together with the image of S1 × [0, 1] under the
continuous mapping θk defined by

θk(z, t) = (tzdk + (1 − t)z, tz, t+ k) .

We claim that θk is 1–1, and from this it follows that the standard quotient map from Sk to Tk

is a homeomorphism onto its image. So suppose that θk(z, t) = θk(z′, t′). Equating the third
coordinates, we see that t + k = t′ + k, so that t = t′. Now equating the second coordinates, we
see that tz = tz′ so that either t = 0 (and hence t′ = 0 or else z = z′; in the second case we are
finished, so assume that t = 0 and look at the first coordinates. When t = 0 the first coordinate
equation reduces to z = z′, so we have shown that (z, t) = (z ′, t′) must always hold. — Continuing,
we see that the union ∪j≤k Tk is homeomorphic to Ek, and if we set T = ∪k Tk we have a 1–1
onto continuous mapping E → T . Projection onto the final coordinate in R5 = C×C ×R yields a
continuous mapping from T to [0,∞) such that the composite E → T → [0,∞) has all the right
properties. Furthermore, this mapping sends the inverse image of [0, k) homeomorphically to the
inverse image of [0, k) for all k, and from this one can prove that the map E → T is actually a
homeomorphism (but this will not be needed to carry out the computations).

We now need to verify the assertion about the maps in fundamental groups associated to the
inclusions Ek → Ek+1. To start, we claim that for each k the inclusion S1 × {0} × {k + 1} ⊂ Sk is
a deformation retract. Since we know that the inclusion S1 ×{0}× {k+1} ⊂ S1 ×D2 ×{k+ 1} is
a deformation retract, it will suffice to show that S1 ×D2 ×{k+ 1} ⊂ Sk is a deformation retract.
This follows because Sk = F1 ∪ F1, where F1 = S1 × D2 × {k + 1} and F2 is homeomorphic to
S1 × [0, 1] such that S1 × {1} corresponds to F1 ∩ F2. We can now proceed by induction on j to
show that the inclusion

S1 × {0} × {k + 1} ⊂
k

⋃

i=j

Ei

is a deformation retract for j = k, k − 1, · · · , 1. Furthermore, it also follows that Sk+1 ⊂ Ek+1 is
a deformation retract.
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The algebraic implication of the preceding paragraph is that the homomorphism π1(Ek) →
π1(Ek+1) is equivalent to the homomorphism π1(S

1 × {0} × {k + 1}) → π1(Sk+1) induced by
inclusion. Since the composite of this inclusion with the retraction Ek+1 → S1 × {0} × {k + 2}
has degree d, it follows that all the homomorphisms of fundamental groups in this paragraph are
equivalent to multiplication by dk on Z.

Note. Some of the mappings constructed in (iii) do not preserve basepoints particularly well,
but this will not cause problems because in all cases the spaces are homotopy equivalent to S 1.
This means that their fundamental groups are abelian and there are unique change of basepoint
isomorphisms.

(iv) Each subset Sk is compact, and since Ek is a quotient of a finite union of subsets homeo-
morphic to S1, · · · , Sk, it follows that Ek is also compact. Furthermore, if K ⊂ E is compact then
its image in [0,∞) will also be compact, and since this image is contained in some closed interval
[0,M ] it follows that K ⊂ EM for some M . The statements about the topology of E all follow
from the fact that E is homeomorphic to T (but we shall not need these in the next step, which is
the last one).

(v) We have shown that the diagram of fundamental group maps is the same as the algebraic
diagram considered in (i), so by (i) it is only necessary to check that it satisfies properties (2) and
(3) in (i). These follow from the Compact Supports Property for fundamental groups (Proposition
VIII.1.12) and the fact that every compact subset of E is contained in some Ek.

(vi) Everything will go through if we modify the definition of the integer sequence dk; specif-
ically, if we are only interested in fractions which are monomials in S we can take dk to be the
product of the first k primes in S if |S| ≥ k and taking dk to be the product of all the primes in S
if |S| < k. If we now define ck as before to be d1 · · · dk−1 for the new sequence {dk}, then S−1Z

will be the union of the sets c−1

k Z.
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