Tree – plus – one graphs

Theorem III.3.1 describes the fundamental groups of graphs which are unions of a maximal tree plus one additional edge. Here is a drawing to illustrate a typical example for which this assumption holds; in this example, if one removes the edge \mathbf{F} , the resulting graph \mathcal{W} is a maximal tree.

All of the subtrees which are relevant to the proof of the theorem are marked in blue or green. In particular, A - B - C - D - E is the path in the maximal tree \mathcal{M} joining the two vertices u and z of the deleted edge **F**. If we remove all these edges we are left with the union \mathcal{N} of all the graphs marked in green. Since \mathcal{M} is a maximal tree, each component of \mathcal{N} is also a tree, and furthermore each component contains exactly one of the vertices u, v, w, x, y, z.